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Introduction of Dynamic Programming

» Finite horizon and/or non-stationary dynamic programming problems
» Value function:

T-1
Vilxe,0:) = max > B E{us(xs, 3, 0s) }+B87 E{Vr(xr,07)}

Q-GD(X379l15) s—t
» Bellman equation:

Vt(Xa 0) = aelry(?(?(a,t) Ut(Xv a) + /B]E{Vt+1(x+79+) | X767 a} )
st xT = gi(x,0,a,w),

0 = he(6, €),



Three Numerical Parts in DP

» Approximation of Value Functions

> (Multidimensional) Chebyshev polynomails
» Numerical Integration

» Gauss-Hermite quadrature
» Optimization

» NPSOL



Typical Application |

» Optimal growth problem:

T-1

Vo(ko) = max > Bu(ce, k) + 57 Vr (kr),
’ t=0
st kepr = Fke, Ie) — o,
k<ke<k, 1<t<T,
Ct,/tZG, 0§t<7—7

0<t<T,

» Bellman equation:

Vt(k) = max U(C7 /)+6Vt+1(k+)a

c,l
st. kT =F(k ) —c,
k<kt <k cl>e¢



Typical Application Il

» Multi-stage portfolio optimization problem:

Vo(Wo) = s max E{u(WT)},

» Wealth transition:
Wii1 = Re(We — e S;) + RTS,,
» Bellman equation:
V(W) = max E{Vis1(RB+RTS)},

st. B+e'S=W,



Typical Application Il

Multi-country optimal growth problem:

T-1
Vo(ko,eo) = max E{ZBtU(Ch/t)-i-BTVT(kT,GT)} R

Ke e Ce,l
tylt tylt t:0

s.t. kt+17j:(1_6)kt,j+lt,j, j=1,...,d,

I 2
rt,j = gktJ <k:J. 5) y J= 17"'ad7
5J

d
(cej+ lej — Okej) = Z (F(keg, lej: 0e) = Tej) s

1 j=1
Ori1 = g(9t76t)‘

M=

.
Il



Numerical Dynamic Programming

Value function iteration method for solving finite-horizon and/or
non-stationary dynamic programming problems.
> Initialization. Choose the approximation grid, X = {x; : 1 <
and choose functional form for V(x; b). Let V(x; bT) = V7
Iterate through stepsl and 2 over t = T —1,...,1,0.

i < m},
(%)
» Step 1. Maximization step: Compute

vi= max  u(x;,a) + BE{V(x" b))},
a;€D(x;,t)

foreach x; € X, 1 <i<m.

» Step 2. Fitting step: Using the appropriate approximation method,
compute the b* such that V/(x; b') approximates (x;, v;) data.



Computational Challenges

» Smooth function approximation is important for high-dimensional
problems:

» It can avoid the curse of dimensionality
» Fast Newton-type optimiation solvers can be applied

» Monotonicity and concavity of value functions may be NOT
preserved by smooth function approximation

» Difficult for optimization solvers to find global maximizers
» High-dimensional problems requires many approximation nodes

> Efficient usage of all possible information (such as slopes of value
functions) can improve much
» Parallelization can also be very efficient



Approximation

» Chebyshev polynomial approximation
V(x;ib) =) bTi(Z (x)).
j=0

> Chebyshev polynomial basis: 7;(z) = cos(j cos™*(z))

» Normalization: Z (x) = 2):":“'%

» Multidimensional Chebyshev polynomail approximation
» Complete polynomial approximation:

Vn(x;b): Z baTa (Z(x)),

0<|a|<n

> Ta(z) denote the product 7o, (z1) - - Tay(2d)



Shape-preserving Chebyshev Interpolation

» LP problem to find coefficients

m—1 n
Jmin 375 b))+ DG+ L= m)(s b,
(e ] j=0 j=m

s.t. ij’]}l(yﬂ)>0, i'zl,...,m,
=0
ij,];//(yi’)<07 il:la"'ama
j=0

ij’]}(Z,‘)IV,', i:l,...,m,
Jj=0

bj—bj=b—b7, j=0,...m-1,
bj:bjrfbj_, j=m,...,n,

+ o P
bj,bj >0, j=1,...,n,

> y: shape nodes; z: approximation nodes



Application in Example |

Figure: Errors of numerical dynamic programming with Chebyshev interpolation
with /without shape-preservation for growth problems
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Hermite Value Function lteration

» Envelope Theorem: If

H(x) = max f(x, a)
st. g(x,a)=0
h(x,a) >0
then
OH(x) of

< \T 08 +0h,
D% axj( a* (x)+A"(x) " 67]_( " (x))+u(x) " —Xj(x,a (x))



Get Slopes Easily

» Equivalent formulation:

H(x) = max f(y,a)
a*y
st. g(y,a) =0,
h(y,a) = 0,

xi—yj=0 j=1,...,d,

> Get slope of H easily:

> T

7 (x): the shadow price of the trivial constraint x; — y; = 0



Multidimensional Hermite Approximation

» Least-square problem

N
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» Hermite data {(x',v;,s"):i=1,...,N}:
> v = V(x), _
| 4 SJ' = %V(X')



Application in Example |l

Figure: Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization
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Accuracy and Running Times

Table: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic
Portfolio Optimization

’ m \ L-VFI error \ H-VFI error \ L-VFI time \ H-VFI time ‘

5 0.8 0.00327 9 seconds | 10 seconds
10 0.00328 1.3x 107° | 12 seconds | 17 seconds
20 [ 2.0x 10°° 33 seconds

» To reach the same accuracy of H-VFI, for one-dimensioanl problems,
L-VFI needs

> twice as many nodes
> twice as much time



Application in Example Il (Three Countries)

Figure: L-VFI vs H-VFI for Three-Country Optimal Growth Problems
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Application in Example |1l (Six Countries)

Table: H-VFI vs L-VFI for Six-Dimensional Stochastic Problems

error of ¢y error of Iy time (hour)
m L-VFI H-VFI L-VFI H-VFI L-VFI  H-VFI
3 38(—2) 3.6(-3) 54(—2) 52(-3) 03 067
5 5.5(—3) 8.2(—3) 8.74
6 3.1(-3) 4.5(-3) 36.6

Note: a(k) means a x 10%.

» To reach the same accuracy of H-VFI, for six-dimensioan| problems,
L-VFI needs

> 64 times as many nodes (6° nodes vs 3° nodes)
> 55 times as much time (36.6 hours vs 0.67 hours)



Parallelization in Dynamic Programming

» Parallelization in Maximization step in NDP: Compute

vi= max _ u(x,a;)+ BE{V(x"; b},
a;ED(x,-,t)
for each x; € X;, 1 < i < my.
» Master-Worker system: Master processor, Worker processors.

» Workers solve the independent maximzation problems
» Master distributes tasks, collects results, does the fitting step



Parallelization Results for Example Il

» Multi-country optimal growth problem:

Vt(kae) = m?f U(C7/)+6E{Vt+1(k+70+)|0}7
s.t. kjﬂ?:(l—é)kj—l—lj-i-q, j=1,...,d,
S (hos) e
FJ—2kJ i o), j=1,...,d,
d d
Z(Cj"’lj Z kis 1i:60;) = T;)
j=1 j=1
9+:g(97£t)5

» Four-dimensional k (continuous)
» Four-dimensional € (discrete with 7 values per country)

» Four-dimensional € (discrete with 3 values per country)



Results for Example Il

» 2401 tasks per value function iteration

» 2401 optimization problems per task

Table: Statistics of parallel dynamic programming under HT Condor-MW for
the growth problem

Wall clock time for three VFIs 8.28 hours
Total time workers were assigned 16.9 days
Average wall clock time per task | 199 seconds

Number of (different) workers 50

Overall Parallel Performance 98.6%




Parallel Efficiency for Example Il

Table: Parallel efficiency for various number of worker processors

# Worker | Parallel Average task Total wall clock
processors | efficiency | wall clock time (seconds) | time (hours)
50 98.6% 199 8.28
100 97% 185 3.89
200 91.8% 186 2.26




PART II:

NEW APPLICATIONS



Dynamic Portfolio Optimization

n stocks and 1 bond, T periods

| 4
» R=(Ry,...,R,)": random return vector of stocks
» Ry: riskless return of bond

>

Dynamic Portfolio Problem:

Vo (W) = . (r)n<atx<T E[u(W7T)]

v

Xt = (Xe1, ..., Xen) | ¢ fractions of wealth invested in the stocks
W;: wealth. When 7 = 0:

v

Wi = Wt(Rf(l - eTXt) + RTXt)a



Portfolio with Transaction Costs

» Multi-stage Portfolio Optimization Problem:

Vo(Wo, x0) = max E {u(Wr)}

st. Wi = eTXt+1 + Re(1 — elx — ye)Wh),
Xt+1,i = Ri(Xt,i + 5t,i)Wt7
e = eT((St + 710¢[),
Xe1,i = Xeyr,i/ Wera,

t=0,....,T—=1, i=1,... k,

» 7: proportional transaction costs

> J;; > 0 means buying, and J;; < 0 means selling



Bellman Equation

» Bellman equation

Vt(WnXt) = n}ax E{Vt+l(Wt+1;Xt+1)}7

where
}/t = eT((St + T|6t|)7
Xep1,i = Ri(x¢,i + 0¢,i) We,
Wi = eTX1:+1 + Re(1— e x — Ve ) W,
Xt4+1,i = Xt+1,i/Wt+la



No-trade regions




» Number of Value Function lterations: 6

» Number of optimization problems in one VFI: 15625

Parallelization of Seven-Asset Portfolio Problems

» Number of quadrature points for the integration in the objective
function for one optimization problem: 15625

Num of Jobs | Wall Clock | Total CPU | Parallel
in one VFI Time Time Efficiency
96 cores 625 1.27 hours | 4.7 days 92.3%
480 cores 3125 16 minutes 4.9 days 92%
Condor MW 3125 1.3 hours 4.7 days 89%

100 workers




New Application II: Climate Change Analysis

Question: What can and should be the response to rising CO2
concentrations?

» Analytical tools in the literature: IAMs (Integrated Assessment
Models)

» Two components: economic model and climate model
> Interaction is often limited: Economy emits CO2 which affects world
average temperature which affects economic productivity.

» Existing IAMs cannot study dynamic decision-making in an evolving
and uncertain world
» Most are deterministic; economic actors know with certainty the

consequences of their actions and the alternatives
» Most are myopic; standard reason is computational feasibility



Nordhaus' DICE: The Prototypical Model

» DICE2007 was the only dynamic economic model used by the US
Interagency Working Group on the Cost of Carbon
» Economic system
> gross output: Y: = f(ke, t) = Atkto‘/tlfo‘
» damage factor: Q¢ =1/ (14 m TAT 4+ ma( TET)?)
> emission control cost: A: = o126, %2, where p: is policy choice
> output net of damages and emission control: Q:(1 — A:) Y
» Climate system
Carbon mass: M, = (M2T, MPF MEC)T
Temperature: T, = (TAT, TFO)T
Carbon emission: E; = o¢(1 — pe) Ye + ELand
Radiative forcing: Fe = nlog, ((M{™ + MAY) / (2M8™)) + FEX

vV vy VvVy



Uncertainty and Risk

All agree that uncertainty needs to be a central part of any IAM analysis
Multiple forms of uncertainty
» Risk: productivity shocks, taste shocks, uncertain technological
advances, weather shocks
» Parameter uncertainty: policymakers do not know parameters that
characterize the economic and/or climate systems
» Model uncertainty: policymakers do not know the proper model or
the stochastic processes



Abrupt, Stochastic, and Irreversible Climate Change

Question: What is the optimal carbon tax when faced with abrupt and
irreversible climate change?
» Common assumption in IAMs: damages depend only on
contemporaneous temperature
» Our criticism: this cannot analyze the permanent and irreversible
damages from tipping points
» We show that

» Abrupt climate change can be modeled stochastically
» The policy response to the threat of tipping points is very different
from the policy response to standard damage representations.



Tipping point

» A tipping point is where temperature causes a big event with
permanent damage

» The time of tipping is a Poisson process, and probability of a tipping
point occurring at t equals the hazard rate h,(TAT)
» Examples:
» Thermohaline circulation collapse

» Extreme catastrophy (Weitzman (2009)): small probability (hazard
rate is 0.1% at 2100) but big deduction of production (20% damage)



Cai-Judd-Lontzek DSICE Model

DSICE (Dynamic Stochastic Integrated Model of Climate and Economy )

DSICE

DICE2007
stochastic damage factor

stochastic production function

+ o+ +

flexible period length

DSICE: new features
» Economic system: Y; = f(k, (e, t) = CtAtkf‘/tl_“ where
Cer1 = 8%(Ce,w?) is an AR(1) process for the productivity state ¢
» Climate system: Q. = (1 — J;)/ (1 + m TAT + mo(TAT)?) where
Jev1 = g7 (Je,wl) is a Markov process for the damage factor state J



DP model of DSICE

» DP model for DSICE

Ve(k,M,T,(,J) = max ur(c) + BE[Veyr (KT, M, TF, ¢, J7)]
st. kT = (1-080)k+Q:(1—A)Y:—c,
MT = oMM+ (E,0,0)7,
T = &'T+(4F,0)7,
¢t o= gt (¢ wd),
Jo= gUw)

» One year (or one quarter of a year) time steps over 600 years
» Seven continuous states: k, M, T, (

» one discrete state: J



Epstein-Zin Preference

» Epstein-Zin preference

Ut (/‘(,M,T,J) = max{(l—/B) U(Ct,/t)+
CH

5 [E{ (U (k+>M+7T+7J+))1_7HM}1_w

» 1): the inverse of the intertemporal elasticity of substitution
> ~: the risk aversion parameter

Standardized DP model:

B
1—4
1-y

{E{((l — ) Veya (KT, M+’T+,J+)):J)H 1oy

Vt(k7M7T7J) = max U(Ct,/t)+ X
Cp



Accuracy Test and Running Times

» Relative errors and running times for the deterministic problem for

accuracy test

[degree [ k[ MAT | TAT c [ p | Time
4 6.4(—4) | 5.8(—5) | 6.1(—5) | 1.8(—4) | 1.7(—4) | 7.8 minutes
6 | 2.5(—5) | 9.4(—7) | 1.0(—6) | 2.6(5) | 9.5(—6) | 2.2 hours
» Running times for various cases of DSICE
Step Size h | Num of Nodes Time
One Tipping Point 1 year 31,250 16 minutes
One Economic Shock 1 year 625,000 15.7 hours
& Three Tipping Points
Parallel DSICE with 1 year 625,000 11.75 minutes
One Economic Shock & (total CPU time:
Three Tipping Points 20.9 hours)
across 112 cores




Big Increase of Carbon Tax

] | ¥ | v | Carbon tax |
DICE 2| 2 $37
DSICE, tipping of 2.5% damage | 2 | 10 $54
DSICE, tipping of 5% damage | 2 | 2 $69
DSICE, tipping of 5% damage | 2 | 10 $75
DSICE, tipping of 5% damage | 2 | 20 $83
DSICE, disaster case 2|10 $124




