Advances in Numerical Dynamic Programming and New Applications

Yongyang Cai, Hoover Institution

(Co-author: Kenneth L. Judd)

June 27, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

- Introduction of Numerical Dynamic Programming
- Advances in Numerical Dynamic Programming
 - Shape-preserving Approximation
 - Hermite Approximation
 - Parallelization
- Applications
 - Dynamic Portfolio Optimization
 - Dynamic and Stochastic Integration of Climate and Economy

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction of Dynamic Programming

- Finite horizon and/or non-stationary dynamic programming problems
- Value function:

$$V_t(x_t,\theta_t) = \max_{a_s \in \mathcal{D}(x_s,\theta_s,s)} \sum_{s=t}^{T-1} \beta^{s-t} \mathbb{E} \left\{ u_s(x_s,a_s,\theta_s) \right\} + \beta^{T-t} \mathbb{E} \left\{ V_T(x_T,\theta_T) \right\}$$

Bellman equation:

$$\begin{aligned} V_t(x,\theta) &= \max_{\mathbf{a}\in\mathcal{D}(x,\theta,t)} \quad u_t(x,\mathbf{a}) + \beta \mathbb{E}\left\{V_{t+1}(x^+,\theta^+) \mid x,\theta,\mathbf{a}\right\},\\ \text{s.t.} \quad x^+ &= g_t(x,\theta,\mathbf{a},\omega),\\ \theta^+ &= h_t(\theta,\epsilon), \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Three Numerical Parts in DP

- Approximation of Value Functions
 - (Multidimensional) Chebyshev polynomails

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Numerical Integration
 - Gauss-Hermite quadrature
- Optimization
 - NPSOL

Typical Application I

Optimal growth problem:

$$V_{0}(k_{0}) = \max_{c,l} \sum_{t=0}^{T-1} \beta^{t} u(c_{t}, l_{t}) + \beta^{T} V_{T}(k_{T}),$$

s.t. $k_{t+1} = F(k_{t}, l_{t}) - c_{t}, \quad 0 \le t < T,$
 $\underline{k} \le k_{t} \le \overline{k}, \quad 1 \le t \le T,$
 $c_{t}, \ l_{t} \ge \epsilon, \quad 0 \le t < T,$

Bellman equation:

$$V_t(k) = \max_{c,l} u(c,l) + \beta V_{t+1}(k^+),$$

s.t. $k^+ = F(k,l) - c,$
 $\underline{k} \le k^+ \le \overline{k}, c, l \ge \epsilon,$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Typical Application II

Multi-stage portfolio optimization problem:

$$V_0(W_0) = \max_{S_t, 0 \le t < T} \mathbb{E}\{u(W_T)\},\$$

• Wealth transition:

$$W_{t+1} = R_f(W_t - e^\top S_t) + R^\top S_t,$$

Bellman equation:

$$V_t(W) = \max_{B,S} \mathbb{E}\{V_{t+1}(R_f B + R^\top S)\},$$

s.t. $B + e^\top S = W,$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Typical Application III

Multi-country optimal growth problem:

$$V_{0}(k_{0},\theta_{0}) = \max_{k_{t},l_{t},c_{t},l_{t}} \mathbb{E}\left\{\sum_{t=0}^{T-1}\beta^{t}u(c_{t},l_{t}) + \beta^{T}V_{T}(k_{T},\theta_{T})\right\},$$

s.t. $k_{t+1,j} = (1-\delta)k_{t,j} + l_{t,j}, \quad j = 1,...,d,$
 $\Gamma_{t,j} = \frac{\zeta}{2}k_{t,j}\left(\frac{l_{t,j}}{k_{t,j}} - \delta\right)^{2}, \quad j = 1,...,d,$
 $\sum_{j=1}^{d}(c_{t,j} + l_{t,j} - \delta k_{t,j}) = \sum_{j=1}^{d}(f(k_{t,j},l_{t,j},\theta_{t}) - \Gamma_{t,j}),$
 $\theta_{t+1} = g(\theta_{t},\epsilon_{t}).$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Numerical Dynamic Programming

Value function iteration method for solving finite-horizon and/or non-stationary dynamic programming problems.

Initialization. Choose the approximation grid, X = {x_i : 1 ≤ i ≤ m}, and choose functional form for V(x; b). Let V(x; b^T) = V_T(x). Iterate through steps1 and 2 over t = T − 1, ..., 1, 0.

Step 1. Maximization step: Compute

$$v_i = \max_{\mathbf{a}_i \in \mathcal{D}(x_i, t)} u_t(x_i, \mathbf{a}_i) + \beta \mathbb{E}\{\hat{V}(x_i^+; \mathbf{b}^{t+1})\},\$$

for each $x_i \in X$, $1 \le i \le m$.

Step 2. Fitting step: Using the appropriate approximation method, compute the b^t such that V(x; b^t) approximates (x_i, v_i) data.

Computational Challenges

Smooth function approximation is important for high-dimensional problems:

- It can avoid the curse of dimensionality
- Fast Newton-type optimiation solvers can be applied
- Monotonicity and concavity of value functions may be NOT preserved by smooth function approximation
 - Difficult for optimization solvers to find global maximizers
- High-dimensional problems requires many approximation nodes
 - Efficient usage of all possible information (such as slopes of value functions) can improve much

Parallelization can also be very efficient

Approximation

Chebyshev polynomial approximation

$$\hat{V}(x;\mathbf{b}) = \sum_{j=0}^{n} b_j \mathcal{T}_j(Z(x)),$$

- Chebyshev polynomial basis: T_j(z) = cos(j cos⁻¹(z))
 Normalization: Z(x) = <sup>2x-x_{min}-x_{max}/_{xmax} x_{min}
 </sup>

Multidimensional Chebyshev polynomail approximation

Complete polynomial approximation:

$$\hat{V}_n(x; \mathbf{b}) = \sum_{0 \le |\alpha| \le n} b_{\alpha} \mathcal{T}_{\alpha} \left(Z(x) \right),$$

ション ふゆ アメリア メリア しょうくの

• $\mathcal{T}_{\alpha}(z)$ denote the product $\mathcal{T}_{\alpha_1}(z_1)\cdots \mathcal{T}_{\alpha_d}(z_d)$

Shape-preserving Chebyshev Interpolation

LP problem to find coefficients

$$\begin{split} \min_{b_{j},b_{j}^{+},b_{j}^{-}} & \sum_{j=0}^{m-1} (b_{j}^{+}+b_{j}^{-}) + \sum_{j=m}^{n} (j+1-m)^{2} (b_{j}^{+}+b_{j}^{-}), \\ \text{s.t.} & \sum_{j=0}^{n} b_{j} \mathcal{T}_{j}'(y_{i'}) > 0, \quad i' = 1, \dots, m', \\ & \sum_{j=0}^{n} b_{j} \mathcal{T}_{j}''(y_{i'}) < 0, \quad i' = 1, \dots, m', \\ & \sum_{j=0}^{n} b_{j} \mathcal{T}_{j}(z_{i}) = v_{i}, \quad i = 1, \dots, m, \\ & b_{j} - \hat{b}_{j} = b_{j}^{+} - b_{j}^{-}, \quad j = 0, \dots, m-1, \\ & b_{j} = b_{j}^{+} - b_{j}^{-}, \quad j = m, \dots, n, \\ & b_{j}^{+}, \ b_{j}^{-} \ge 0, \quad j = 1, \dots, n, \end{split}$$

▶ y: shape nodes; z: approximation nodes

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Application in Example I

Figure: Errors of numerical dynamic programming with Chebyshev interpolation with/without shape-preservation for growth problems

Hermite Value Function Iteration

Envelope Theorem: If

$$H(x) = \max_{a} f(x, a)$$

s.t. $g(x, a) = 0,$
 $h(x, a) \ge 0,$

then

$$\frac{\partial H(x)}{\partial x_j} = \frac{\partial f}{\partial x_j}(x, a^*(x)) + \lambda^*(x)^\top \frac{\partial g}{\partial x_j}(x, a^*(x)) + \mu^*(x)^\top \frac{\partial h}{\partial x_j}(x, a^*(x))$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Get Slopes Easily

Equivalent formulation:

$$\begin{array}{lll} H(x) & = & \max_{a,y} \ f(y,a) \\ & & \mathrm{s.t.} \ g(y,a) = 0, \\ & & h(y,a) \geq 0, \\ & & x_j - y_j = 0, \quad j = 1, \dots, d, \end{array}$$

• Get slope of *H* easily:

$$\frac{\partial H(x)}{\partial x_j} = \tau_j^*(x),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\tau_j^*(x)$: the shadow price of the trivial constraint $x_j - y_j = 0$

Multidimensional Hermite Approximation

Least-square problem

$$\min_{\mathbf{b}} \qquad \sum_{i=1}^{N} \left(v_{i} - \sum_{0 \le |\alpha| \le n} b_{\alpha} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2} + \\ \sum_{i=1}^{N} \sum_{j=1}^{d} \left(s_{j}^{i} - \sum_{0 \le |\alpha| \le n} b_{\alpha} \frac{\partial}{\partial x_{j}} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► Hermite data { $(x^i, v_i, s^i) : i = 1, ..., N$ }: ► $v_i = V(x^i)$, ► $s_j^i = \frac{\partial}{\partial x_j}V(x^i)$

Application in Example II

Figure: Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization

Accuracy and Running Times

Table: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic Portfolio Optimization

т	L-VFI error	H-VFI error	L-VFI time	H-VFI time
5	0.8	0.00327	9 seconds	10 seconds
10	0.00328	$1.3 imes10^{-5}$	12 seconds	17 seconds
20	$2.0 imes10^{-6}$		33 seconds	

 To reach the same accuracy of H-VFI, for one-dimensioanl problems, L-VFI needs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- twice as many nodes
- twice as much time

Application in Example III (Three Countries)

Figure: L-VFI vs H-VFI for Three-Country Optimal Growth Problems

Application in Example III (Six Countries)

Table: H-VFI vs L-VFI for Six-Dimensional Stochastic Problems

		error of c_0^*		error	error of l_0^*		time (hour)	
_	т	L-VFI	H-VFI	L-VFI	H-VFI	L-VFI	H-VFI	
	3	3.8(-2)	3.6(-3)	5.4(-2)	5.2(-3)	0.3	0.67	-
	5	5.5(-3)		8.2(-3)		8.74		
	6	3.1(-3)		4.5(-3)		36.6		
			1					

Note: a(k) means $a \times 10^k$.

 To reach the same accuracy of H-VFI, for six-dimensioanl problems, L-VFI needs

- ▶ 64 times as many nodes (6⁶ nodes vs 3⁶ nodes)
- 55 times as much time (36.6 hours vs 0.67 hours)

Parallelization in Dynamic Programming

> Parallelization in Maximization step in NDP: Compute

$$v_i = \max_{a_i \in \mathcal{D}(x_i, t)} u_t(x_i, a_i) + \beta \mathbb{E}\{\hat{V}(x_i^+; \mathbf{b}^{t+1})\},$$

for each $x_i \in X_t$, $1 \le i \le m_t$.

Master-Worker system: Master processor, Worker processors.

- Workers solve the independent maximzation problems
- Master distributes tasks, collects results, does the fitting step

Parallelization Results for Example III

Multi-country optimal growth problem:

$$V_t(k,\theta) = \max_{c,l,l} u(c,l) + \beta \mathbb{E} \left\{ V_{t+1}(k^+,\theta^+) \mid \theta \right\},$$

s.t. $k_j^+ = (1-\delta)k_j + l_j + \epsilon_j, \quad j = 1, \dots, d,$
 $\Gamma_j = \frac{\zeta}{2}k_j \left(\frac{l_j}{k_j} - \delta\right)^2, \quad j = 1, \dots, d,$
 $\sum_{j=1}^d (c_j + l_j - \delta k_j) = \sum_{j=1}^d (f(k_j, l_j, \theta_j) - \Gamma_j),$
 $\theta^+ = g(\theta, \xi_t),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Four-dimensional k (continuous)
- Four-dimensional θ (discrete with 7 values per country)
- Four-dimensional ϵ (discrete with 3 values per country)

Results for Example III

- ▶ 2401 tasks per value function iteration
- 2401 optimization problems per task

Table: Statistics of parallel dynamic programming under HTCondor-MW for the growth problem

8.28 hours
16.9 days
199 seconds
50
98.6%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parallel Efficiency for Example III

Table: Parallel efficiency for various number of worker processors

# Worker Parallel		Average task	Total wall clock
processors	efficiency	wall clock time (seconds)	time (hours)
50	98.6%	199	8.28
100	97%	185	3.89
200	91.8%	186	2.26

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

PART II:

NEW APPLICATIONS

Dynamic Portfolio Optimization

- n stocks and 1 bond, T periods
- $R = (R_1, \ldots, R_n)^{\top}$: random return vector of stocks
- *R_f*: riskless return of bond
- Dynamic Portfolio Problem:

$$V_0(W_0) = \max_{x_t, 0 \le t < T} \mathbb{E}[u(W_T)]$$

- $x_t = (x_{t1}, \dots, x_{tn})^\top$: fractions of wealth invested in the stocks
- W_t : wealth. When $\tau = 0$:

$$W_{t+1} = W_t(R_f(1 - e^\top x_t) + R^\top x_t),$$

Portfolio with Transaction Costs

١

Multi-stage Portfolio Optimization Problem:

$$\mathcal{V}_{0}(W_{0}, x_{0}) = \max_{\delta_{t}} \mathbb{E} \{ u(W_{T}) \}$$

s.t. $W_{t+1} = \mathbf{e}^{\top} X_{t+1} + R_{f} (1 - \mathbf{e}^{\top} x_{t} - y_{t}) W_{t}),$
 $X_{t+1,i} = R_{i} (x_{t,i} + \delta_{t,i}) W_{t},$
 $y_{t} = \mathbf{e}^{\top} (\delta_{t} + \tau | \delta_{t} |),$
 $x_{t+1,i} = X_{t+1,i} / W_{t+1},$
 $t = 0, ..., T - 1; \quad i = 1, ..., k,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- τ : proportional transaction costs
- $\delta_{t,i} > 0$ means buying, and $\delta_{t,i} < 0$ means selling

Bellman Equation

Bellman equation

$$V_t(W_t, x_t) = \max_{\delta_t} \mathbb{E} \{ V_{t+1}(W_{t+1}, x_{t+1}) \},$$

where

$$y_t \equiv \mathbf{e}^{\top} (\delta_t + \tau | \delta_t |),$$

$$X_{t+1,i} \equiv R_i (x_{t,i} + \delta_{t,i}) W_t,$$

$$W_{t+1} \equiv \mathbf{e}^{\top} X_{t+1} + R_f (1 - \mathbf{e}^{\top} x_t - y_t) W_t,$$

$$x_{t+1,i} \equiv X_{t+1,i} / W_{t+1},$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

No-trade regions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Parallelization of Seven-Asset Portfolio Problems

- Number of Value Function Iterations: 6
- Number of optimization problems in one VFI: 15625
- Number of quadrature points for the integration in the objective function for one optimization problem: 15625

	Num of Jobs	Wall Clock	Total CPU	Parallel
	in one VFI	Time	Time	Efficiency
96 cores	625	1.27 hours	4.7 days	92.3%
480 cores	3125	16 minutes	4.9 days	92%
Condor MW	3125	1.3 hours	4.7 days	89%
100 workers				

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

New Application II: Climate Change Analysis

Question: What can and should be the response to rising CO2 concentrations?

- Analytical tools in the literature: IAMs (Integrated Assessment Models)
 - Two components: economic model and climate model
 - Interaction is often limited: Economy emits CO2 which affects world average temperature which affects economic productivity.
- Existing IAMs cannot study dynamic decision-making in an evolving and uncertain world
 - Most are deterministic; economic actors know with certainty the consequences of their actions and the alternatives

ション ふゆ アメリア メリア しょうくの

Most are myopic; standard reason is computational feasibility

Nordhaus' DICE: The Prototypical Model

- DICE2007 was the only dynamic economic model used by the US Interagency Working Group on the Cost of Carbon
- Economic system
 - gross output: $Y_t \equiv f(k_t, t) = A_t k_t^{\alpha} l_t^{1-\alpha}$
 - damage factor: $\Omega_t \equiv 1/\left(1 + \pi_1 T_t^{\text{AT}} + \pi_2 (T_t^{\text{AT}})^2\right)$
 - emission control cost: $\Lambda_t \equiv \psi_t^{1-\theta_2} \theta_{1,t} \mu_t^{\theta_2}$, where μ_t is policy choice
 - output net of damages and emission control: $\Omega_t(1 \Lambda_t)Y_t$
- Climate system
 - Carbon mass: $\mathbf{M}_t = (M_t^{\text{AT}}, M_t^{\text{UP}}, M_t^{\text{LO}})^{\top}$
 - Temperature: $\mathbf{T}_t = (T_t^{\text{AT}}, T_t^{\text{LO}})^{\top}$
 - Carbon emission: $E_t = \sigma_t (1 \mu_t) Y_t + E_t^{\text{Land}}$
 - Radiative forcing: $F_t = \eta \log_2 \left(\left(M_t^{\text{AT}} + M_{t+1}^{\text{AT}} \right) / \left(2M_0^{\text{AT}} \right) \right) + F_t^{\text{EX}}$

うして ふゆう ふほう ふほう うらつ

All agree that uncertainty needs to be a central part of any IAM analysis Multiple forms of uncertainty

- Risk: productivity shocks, taste shocks, uncertain technological advances, weather shocks
- Parameter uncertainty: policymakers do not know parameters that characterize the economic and/or climate systems
- Model uncertainty: policymakers do not know the proper model or the stochastic processes

Abrupt, Stochastic, and Irreversible Climate Change

Question: What is the optimal carbon tax when faced with abrupt and irreversible climate change?

- Common assumption in IAMs: damages depend only on contemporaneous temperature
- Our criticism: this cannot analyze the permanent and irreversible damages from tipping points
- We show that
 - Abrupt climate change can be modeled stochastically
 - The policy response to the threat of tipping points is very different from the policy response to standard damage representations.

Tipping point

- A tipping point is where temperature causes a big event with permanent damage
- The time of tipping is a Poisson process, and probability of a tipping point occurring at t equals the hazard rate h_t(T_t^{AT})
- Examples:
 - Thermohaline circulation collapse
 - Extreme catastrophy (Weitzman (2009)): small probability (hazard rate is 0.1% at 2100) but big deduction of production (20% damage)

Cai-Judd-Lontzek DSICE Model

DSICE (Dynamic Stochastic Integrated Model of Climate and Economy)

DSICE = DICE2007

- + stochastic damage factor
- + stochastic production function
- + flexible period length

DSICE: new features

- Economic system: $Y_t \equiv f(k_t, \zeta_t, t) = \zeta_t A_t k_t^{\alpha} l_t^{1-\alpha}$ where $\zeta_{t+1} = g^{\zeta}(\zeta_t, \omega_t^{\zeta})$ is an AR(1) process for the productivity state ζ
- Climate system: $\Omega_t \equiv (1 J_t) / (1 + \pi_1 T_t^{AT} + \pi_2 (T_t^{AT})^2)$ where $J_{t+1} = g^J (J_t, \omega_t^J)$ is a Markov process for the damage factor state J

DP model of DSICE

DP model for DSICE

$$V_{t}(k, \mathbf{M}, \mathbf{T}, \zeta, J) = \max_{c,\mu} u_{t}(c) + \beta \mathbb{E}[V_{t+1}(k^{+}, \mathbf{M}^{+}, \mathbf{T}^{+}, \zeta^{+}, J^{+})]$$

s.t. $k^{+} = (1 - \delta)k + \Omega_{t}(1 - \Lambda_{t})Y_{t} - c,$
 $\mathbf{M}^{+} = \Phi^{M}\mathbf{M} + (E_{t}, 0, 0)^{\top},$
 $\mathbf{T}^{+} = \Phi^{T}\mathbf{T} + (\xi_{1}F_{t}, 0)^{\top},$
 $\zeta^{+} = g^{\zeta}(\zeta, \omega^{\zeta}),$
 $J^{+} = g^{J}(J, \omega^{J})$

One year (or one quarter of a year) time steps over 600 years

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Seven continuous states: $k, \mathbf{M}, \mathbf{T}, \zeta$
- one discrete state: J

Epstein-Zin Preference

Epstein-Zin preference

$$U_t(k, \mathbf{M}, \mathbf{T}, J) = \max_{c, \mu} \left\{ (1 - \beta) u(c_t, l_t) + \beta \left[\mathbb{E} \left\{ \left(U_{t+1}(k^+, \mathbf{M}^+, \mathbf{T}^+, J^+) \right)^{1 - \gamma} \right\} \right]^{\frac{1 - \psi}{1 - \gamma}} \right\}^{\frac{1}{1 - \psi}}$$

- $\blacktriangleright \ \psi$: the inverse of the intertemporal elasticity of substitution
- γ: the risk aversion parameter

Standardized DP model:

$$V_t(k, \mathbf{M}, \mathbf{T}, J) = \max_{c, \mu} \qquad u(c_t, l_t) + \frac{\beta}{1 - \psi} \times \left[\mathbb{E} \left\{ \left((1 - \psi) V_{t+1} \left(k^+, \mathbf{M}^+, \mathbf{T}^+, J^+ \right) \right)^{\frac{1 - \gamma}{1 - \psi}} \right\} \right]^{\frac{1 - \psi}{1 - \gamma}}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Accuracy Test and Running Times

 Relative errors and running times for the deterministic problem for accuracy test

degree	k	M ^{AT}	T^{AT}	С	μ	Time
4	6.4(-4)	5.8(-5)	6.1(-5)	1.8(-4)	1.7(-4)	7.8 minutes
6	2.5(-5)	9.4(-7)	1.0(-6)	2.6(-5)	9.5(-6)	2.2 hours

Running times for various cases of DSICE

	Step Size h	Num of Nodes	Time
One Tipping Point	1 year	31,250	16 minutes
One Economic Shock	1 year	625,000	15.7 hours
& Three Tipping Points			
Parallel DSICE with	1 year	625,000	11.75 minutes
One Economic Shock &			(total CPU time:
Three Tipping Points			20.9 hours)
across 112 cores			

Big Increase of Carbon Tax

	ψ	γ	Carbon tax
DICE	2	2	\$37
DSICE, tipping of 2.5% damage	2	10	\$54
DSICE, tipping of 5% damage	2	2	\$69
DSICE, tipping of 5% damage	2	10	\$75
DSICE, tipping of 5% damage	2	20	\$83
DSICE, disaster case	2	10	\$124

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?