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Introduction of Dynamic Programming

I Finite horizon and/or non-stationary dynamic programming problems
I Value function:

Vt(xt , θt) = max
as∈D(xs ,θs ,s)

T−1∑
s=t

βs−tE {us(xs , as , θs)}+βT−tE {VT (xT , θT )}

I Bellman equation:

Vt(x , θ) = max
a∈D(x,θ,t)

ut(x , a) + βE
{
Vt+1(x+, θ+) | x , θ, a

}
,

s.t. x+ = gt(x , θ, a, ω),

θ+ = ht(θ, ε),



Three Numerical Parts in DP

I Approximation of Value Functions
I (Multidimensional) Chebyshev polynomails

I Numerical Integration
I Gauss-Hermite quadrature

I Optimization
I NPSOL



Typical Application I

I Optimal growth problem:

V0(k0) = max
c,l

T−1∑
t=0

βtu(ct , lt) + βTVT (kT ),

s.t. kt+1 = F (kt , lt)− ct , 0 ≤ t < T ,
k ≤ kt ≤ k̄, 1 ≤ t ≤ T ,
ct , lt ≥ ε, 0 ≤ t < T ,

I Bellman equation:

Vt(k) = max
c,l

u(c , l) + βVt+1(k+),

s.t. k+ = F (k, l)− c ,
k ≤ k+ ≤ k̄, c , l ≥ ε,



Typical Application II

I Multi-stage portfolio optimization problem:

V0(W0) = max
St ,0≤t<T

E{u(WT )},

I Wealth transition:

Wt+1 = Rf (Wt − e>St) + R>St ,

I Bellman equation:

Vt(W ) = max
B,S

E{Vt+1(Rf B + R>S)},

s.t. B + e>S = W ,



Typical Application III

Multi-country optimal growth problem:

V0(k0, θ0) = max
kt ,It ,ct ,lt

E

{
T−1∑
t=0

βtu(ct , lt) + βTVT (kT , θT )

}
,

s.t. kt+1,j = (1− δ)kt,j + It,j , j = 1, . . . , d ,

Γt,j =
ζ

2
kt,j

(
It,j
kt,j
− δ
)2

, j = 1, . . . , d ,

d∑
j=1

(ct,j + It,j − δkt,j) =
d∑

j=1

(f (kt,j , lt,j , θt)− Γt,j) ,

θt+1 = g(θt , εt).



Numerical Dynamic Programming

Value function iteration method for solving finite-horizon and/or
non-stationary dynamic programming problems.

I Initialization. Choose the approximation grid, X = {xi : 1 ≤ i ≤ m},
and choose functional form for V̂ (x ; b). Let V̂ (x ; bT ) = VT (x).
Iterate through steps1 and 2 over t = T − 1, ..., 1, 0.

I Step 1. Maximization step: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βE{V̂ (x+
i ; bt+1)},

for each xi ∈ X , 1 ≤ i ≤ m.
I Step 2. Fitting step: Using the appropriate approximation method,

compute the bt such that V̂ (x ; bt) approximates (xi , vi ) data.



Computational Challenges

I Smooth function approximation is important for high-dimensional
problems:

I It can avoid the curse of dimensionality
I Fast Newton-type optimiation solvers can be applied

I Monotonicity and concavity of value functions may be NOT
preserved by smooth function approximation

I Difficult for optimization solvers to find global maximizers

I High-dimensional problems requires many approximation nodes
I Efficient usage of all possible information (such as slopes of value

functions) can improve much
I Parallelization can also be very efficient



Approximation

I Chebyshev polynomial approximation

V̂ (x ; b) =
n∑

j=0

bjTj(Z (x)),

I Chebyshev polynomial basis: Tj (z) = cos(j cos−1(z))
I Normalization: Z (x) = 2x−xmin−xmax

xmax−xmin

I Multidimensional Chebyshev polynomail approximation
I Complete polynomial approximation:

V̂n(x ; b) =
∑

0≤|α|≤n

bαTα (Z(x)) ,

I Tα(z) denote the product Tα1(z1) · · · Tαd (zd )



Shape-preserving Chebyshev Interpolation
I LP problem to find coefficients

min
bj ,b+

j ,b
−
j

m−1∑
j=0

(b+
j + b−j ) +

n∑
j=m

(j + 1−m)2(b+
j + b−j ),

s.t.
n∑

j=0

bjT ′j (yi ′) > 0, i ′ = 1, . . . ,m′,

n∑
j=0

bjT ′′j (yi ′) < 0, i ′ = 1, . . . ,m′,

n∑
j=0

bjTj (zi ) = vi , i = 1, . . . ,m,

bj − b̂j = b+
j − b−j , j = 0, . . . ,m − 1,

bj = b+
j − b−j , j = m, . . . , n,

b+
j , b−j ≥ 0, j = 1, . . . , n,

I y : shape nodes; z : approximation nodes



Application in Example I

Figure: Errors of numerical dynamic programming with Chebyshev interpolation
with/without shape-preservation for growth problems
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Hermite Value Function Iteration

I Envelope Theorem: If

H(x) = max
a

f (x , a)

s.t. g(x , a) = 0,
h(x , a) ≥ 0,

then

∂H(x)

∂xj
=
∂f
∂xj

(x , a∗(x))+λ∗(x)>
∂g
∂xj

(x , a∗(x))+µ∗(x)>
∂h
∂xj

(x , a∗(x))



Get Slopes Easily

I Equivalent formulation:

H(x) = max
a,y

f (y , a)

s.t. g(y , a) = 0,
h(y , a) ≥ 0,
xj − yj = 0, j = 1, . . . , d ,

I Get slope of H easily:

∂H(x)

∂xj
= τ∗j (x),

I τ∗j (x): the shadow price of the trivial constraint xj − yj = 0



Multidimensional Hermite Approximation

I Least-square problem

min
b

N∑
i=1

vi −
∑

0≤|α|≤n

bαTα
(
x i)2

+

N∑
i=1

d∑
j=1

s i
j −

∑
0≤|α|≤n

bα
∂

∂xj
Tα
(
x i)2

I Hermite data {(x i , vi , s i ) : i = 1, . . . ,N}:
I vi = V (x i ),
I s i

j = ∂
∂xj

V (x i )



Application in Example II

Figure: Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization
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Accuracy and Running Times

Table: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic
Portfolio Optimization

m L-VFI error H-VFI error L-VFI time H-VFI time
5 0.8 0.00327 9 seconds 10 seconds
10 0.00328 1.3× 10−5 12 seconds 17 seconds
20 2.0× 10−6 33 seconds

I To reach the same accuracy of H-VFI, for one-dimensioanl problems,
L-VFI needs

I twice as many nodes
I twice as much time



Application in Example III (Three Countries)

Figure: L-VFI vs H-VFI for Three-Country Optimal Growth Problems
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Lagrange (125 approximation nodes)

Lagrange (343 approximation nodes)

Lagrange (1000 approximation nodes)

Lagrange − regression line

Hermite (125 approximation nodes)

I To reach the same accuracy of H-VFI, for three-dimensioanl
problems, L-VFI needs

I 8 times as many nodes (1000 nodes vs 125 nodes)
I 8 times as much time



Application in Example III (Six Countries)

Table: H-VFI vs L-VFI for Six-Dimensional Stochastic Problems

error of c∗0 error of l∗0 time (hour)
m
3
5
6

L-VFI H-VFI
3.8(−2) 3.6(−3)

5.5(−3)

3.1(−3)

L-VFI H-VFI
5.4(−2) 5.2(−3)

8.2(−3)

4.5(−3)

L-VFI H-VFI
0.3 0.67

8.74
36.6

Note: a(k) means a× 10k .

I To reach the same accuracy of H-VFI, for six-dimensioanl problems,
L-VFI needs

I 64 times as many nodes (66 nodes vs 36 nodes)
I 55 times as much time (36.6 hours vs 0.67 hours)



Parallelization in Dynamic Programming

I Parallelization in Maximization step in NDP: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βE{V̂ (x+
i ; bt+1)},

for each xi ∈ Xt , 1 ≤ i ≤ mt .

I Master-Worker system: Master processor, Worker processors.
I Workers solve the independent maximzation problems
I Master distributes tasks, collects results, does the fitting step



Parallelization Results for Example III

I Multi-country optimal growth problem:

Vt(k, θ) = max
c,l,I

u(c , l) + βE
{
Vt+1(k+, θ+) | θ

}
,

s.t. k+
j = (1− δ)kj + Ij + εj , j = 1, . . . , d ,

Γj =
ζ

2
kj

(
Ij
kj
− δ
)2

, j = 1, . . . , d ,

d∑
j=1

(cj + Ij − δkj) =
d∑

j=1

(f (kj , lj , θj)− Γj) ,

θ+ = g(θ, ξt),

I Four-dimensional k (continuous)
I Four-dimensional θ (discrete with 7 values per country)
I Four-dimensional ε (discrete with 3 values per country)



Results for Example III

I 2401 tasks per value function iteration
I 2401 optimization problems per task

Table: Statistics of parallel dynamic programming under HTCondor-MW for
the growth problem

Wall clock time for three VFIs 8.28 hours
Total time workers were assigned 16.9 days
Average wall clock time per task 199 seconds
Number of (different) workers 50
Overall Parallel Performance 98.6%



Parallel Efficiency for Example III

Table: Parallel efficiency for various number of worker processors

# Worker Parallel Average task Total wall clock
processors efficiency wall clock time (seconds) time (hours)

50 98.6% 199 8.28
100 97% 185 3.89
200 91.8% 186 2.26



PART II:

NEW APPLICATIONS



Dynamic Portfolio Optimization

I n stocks and 1 bond, T periods
I R = (R1, . . . ,Rn)>: random return vector of stocks
I Rf : riskless return of bond
I Dynamic Portfolio Problem:

V0(W0) = max
xt ,0≤t<T

E[u(WT )]

I xt = (xt1, . . . , xtn)>: fractions of wealth invested in the stocks
I Wt : wealth. When τ = 0:

Wt+1 = Wt(Rf (1− e>xt) + R>xt),



Portfolio with Transaction Costs

I Multi-stage Portfolio Optimization Problem:

V0(W0, x0) = max
δt

E {u(WT )}

s.t. Wt+1 = e>Xt+1 + Rf (1− e>xt − yt)Wt),

Xt+1,i = Ri (xt,i + δt,i )Wt ,

yt = e>(δt + τ |δt |),
xt+1,i = Xt+1,i/Wt+1,

t = 0, . . . ,T − 1; i = 1, . . . , k,

I τ : proportional transaction costs
I δt,i > 0 means buying, and δt,i < 0 means selling



Bellman Equation

I Bellman equation

Vt(Wt , xt) = max
δt

E {Vt+1(Wt+1, xt+1)} ,

where

yt ≡ e>(δt + τ |δt |),
Xt+1,i ≡ Ri (xt,i + δt,i )Wt ,

Wt+1 ≡ e>Xt+1 + Rf (1− e>xt − yt)Wt ,

xt+1,i ≡ Xt+1,i/Wt+1,



No-trade regions
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Parallelization of Seven-Asset Portfolio Problems

I Number of Value Function Iterations: 6
I Number of optimization problems in one VFI: 15625
I Number of quadrature points for the integration in the objective

function for one optimization problem: 15625

Num of Jobs Wall Clock Total CPU Parallel
in one VFI Time Time Efficiency

96 cores 625 1.27 hours 4.7 days 92.3%
480 cores 3125 16 minutes 4.9 days 92%

Condor MW 3125 1.3 hours 4.7 days 89%
100 workers



New Application II: Climate Change Analysis

Question: What can and should be the response to rising CO2
concentrations?

I Analytical tools in the literature: IAMs (Integrated Assessment
Models)

I Two components: economic model and climate model
I Interaction is often limited: Economy emits CO2 which affects world

average temperature which affects economic productivity.

I Existing IAMs cannot study dynamic decision-making in an evolving
and uncertain world

I Most are deterministic; economic actors know with certainty the
consequences of their actions and the alternatives

I Most are myopic; standard reason is computational feasibility



Nordhaus’ DICE: The Prototypical Model

I DICE2007 was the only dynamic economic model used by the US
Interagency Working Group on the Cost of Carbon

I Economic system
I gross output: Yt ≡ f (kt , t) = Atkαt l1−αt
I damage factor: Ωt ≡ 1/

(
1 + π1TAT

t + π2(TAT
t )2)

I emission control cost: Λt ≡ ψ1−θ2
t θ1,tµ

θ2
t , where µt is policy choice

I output net of damages and emission control: Ωt(1− Λt)Yt

I Climate system
I Carbon mass: Mt = (MAT

t ,MUP
t ,MLO

t )>

I Temperature: Tt = (TAT
t ,TLO

t )>

I Carbon emission: Et = σt(1− µt)Yt + ELand
t

I Radiative forcing: Ft = η log2
((

MAT
t + MAT

t+1
)
/
(
2MAT

0
))

+ FEX
t



Uncertainty and Risk

All agree that uncertainty needs to be a central part of any IAM analysis
Multiple forms of uncertainty

I Risk: productivity shocks, taste shocks, uncertain technological
advances, weather shocks

I Parameter uncertainty: policymakers do not know parameters that
characterize the economic and/or climate systems

I Model uncertainty: policymakers do not know the proper model or
the stochastic processes



Abrupt, Stochastic, and Irreversible Climate Change

Question: What is the optimal carbon tax when faced with abrupt and
irreversible climate change?

I Common assumption in IAMs: damages depend only on
contemporaneous temperature

I Our criticism: this cannot analyze the permanent and irreversible
damages from tipping points

I We show that
I Abrupt climate change can be modeled stochastically
I The policy response to the threat of tipping points is very different

from the policy response to standard damage representations.



Tipping point

I A tipping point is where temperature causes a big event with
permanent damage

I The time of tipping is a Poisson process, and probability of a tipping
point occurring at t equals the hazard rate ht(TAT

t )

I Examples:
I Thermohaline circulation collapse
I Extreme catastrophy (Weitzman (2009)): small probability (hazard

rate is 0.1% at 2100) but big deduction of production (20% damage)



Cai-Judd-Lontzek DSICE Model

DSICE (Dynamic Stochastic Integrated Model of Climate and Economy )

DSICE = DICE2007
+ stochastic damage factor
+ stochastic production function
+ flexible period length

DSICE: new features
I Economic system: Yt ≡ f (kt , ζt , t) = ζtAtkαt l1−αt where
ζt+1 = gζ(ζt , ω

ζ
t ) is an AR(1) process for the productivity state ζ

I Climate system: Ωt ≡ (1− Jt)/
(
1 + π1TAT

t + π2(TAT
t )2

)
where

Jt+1 = gJ(Jt , ω
J
t ) is a Markov process for the damage factor state J



DP model of DSICE

I DP model for DSICE

Vt(k,M,T, ζ, J) = max
c,µ

ut(c) + βE[Vt+1(k+,M+,T+, ζ+, J+)]

s.t. k+ = (1− δ)k + Ωt(1− Λt)Yt − c ,
M+ = ΦMM + (Et , 0, 0)>,

T+ = ΦTT + (ξ1Ft , 0)>,

ζ+ = gζ(ζ, ωζ),

J+ = gJ(J, ωJ)

I One year (or one quarter of a year) time steps over 600 years
I Seven continuous states: k,M,T, ζ
I one discrete state: J



Epstein-Zin Preference

I Epstein-Zin preference

Ut (k,M,T, J) = max
c,µ

{
(1− β) u(ct , lt) +

β
[
E
{(

Ut+1
(
k+,M+,T+, J+

))1−γ}] 1−ψ
1−γ

} 1
1−ψ

I ψ: the inverse of the intertemporal elasticity of substitution
I γ: the risk aversion parameter

Standardized DP model:

Vt(k,M,T, J) = max
c,µ

u(ct , lt) +
β

1− ψ
×[

E
{(

(1− ψ) Vt+1
(
k+,M+,T+, J+

)) 1−γ
1−ψ

}] 1−ψ
1−γ



Accuracy Test and Running Times
I Relative errors and running times for the deterministic problem for

accuracy test

degree k MAT TAT c µ Time
4 6.4(−4) 5.8(−5) 6.1(−5) 1.8(−4) 1.7(−4) 7.8 minutes
6 2.5(−5) 9.4(−7) 1.0(−6) 2.6(−5) 9.5(−6) 2.2 hours

I Running times for various cases of DSICE

Step Size h Num of Nodes Time
One Tipping Point 1 year 31,250 16 minutes

One Economic Shock 1 year 625,000 15.7 hours
& Three Tipping Points
Parallel DSICE with 1 year 625,000 11.75 minutes

One Economic Shock & (total CPU time:
Three Tipping Points 20.9 hours)

across 112 cores



Big Increase of Carbon Tax

ψ γ Carbon tax
DICE 2 2 $37

DSICE, tipping of 2.5% damage 2 10 $54
DSICE, tipping of 5% damage 2 2 $69
DSICE, tipping of 5% damage 2 10 $75
DSICE, tipping of 5% damage 2 20 $83

DSICE, disaster case 2 10 $124


