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Abstract

This paper develops an econometric framework to investigate the structure of co-

dependences across markets and to test whether it changes over time or across

market conditions. Our approach is based on the computation, over both a test

and a benchmark period, of the conditional probability that the returns on one

market are lower than a given quantile, when returns on the other market are

also lower than their corresponding quantile, for any set of prespeci�ed quantiles.

Quantiles are allowed to vary over time using the CAViaR methodology developed

by Engle and Manganelli (2004). Graphically, the conditional probabilities can

be represented in what we call �the contagion box�, which is a square of unit

side. Since a 45� line represents the case of independence, the presence of co-

movements is indicated when the conditional probability plots above this line.

Di¤erences in the intensity of co-movements can be identi�ed directly from the

conditional probability plots for test and benchmark periods. From this insight,

rigorous econometric tests of contagion are derived and implemented. In the

process we obtain a new result in the regression quantile literature. We illustrate

the methodology by investigating the impact of the �tequila� (1994/95), Asian

(1997) and Russian (1998) crises on the major Latin American equity markets.

Our results suggest signi�cant presence of contagion.
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1 Introduction

The �nancial crises which characterised the second half of the 1990s have stirred a

hot debate about the stability of the international �nancial system. One of the key

questions still in search of an answer is whether the Tequila crisis, the Asian �u and

the Russian worm were episodes of �nancial contagion. Contagion is broadly de-

�ned as an increase in �nancial market co-movement over crisis periods. The issue

is particularly important because under contagion the likelihood that �nancial crises

spread over from one country to another increases. Measuring co-dependences across

�nancial markets, though, remains an open issue. Policy intervention would have dif-

ferent scope whether one detects contagion or simple interdependence. An accurate

measure of �nancial co-movements therefore constitutes an indispensable instrument

in the policy maker toolbox. Precise measures of asset co-movements are also impor-

tant for a broad spectrum of applications, which range from portfolio allocation, risk

management, and monitoring �nancial stability.

In the empirical literature several methodologies to measure co-dependence among

asset returns are available. Extensive surveys are provided by Dungey, Fry, González-

Hermosillo, and Martin (2003), Pericoli and Sbracia (2003), and de Bandt and Hart-

mann (2000). In essence, one can distinguish between two di¤erent approaches: mod-

elling �rst and/or second moments of returns (see, for instance, Forbes and Rigobon,

2002, King, Sentana and Wadhwani, 1994, Ciccarelli and Rebucci, 2003), and estimat-

ing the probability of co-exceedance1 (see, among others, Longin and Solnik, 2001,

Hartmann, Straetmans and de Vries, 2003, and Bae, Karolyi and Stulz, 2003). Each

of these methodologies su¤ers from several drawbacks. Correlation-based models do

not account for asymmetries in the joint distribution. GARCH-type approaches as-

sume that negative and positive extremes follow the same process as the other returns.

Probability models generally analyse only single points of the support of the distri-

bution and adopt a two-step estimation procedure without correcting the standard

errors.

This paper provides a common econometric framework to investigate the problem

at hand. The cornerstone of our approach is the estimation of the conditional prob-

ability that returns on market Y are lower than a given quantile, when returns on

market X are also lower than their corresponding quantile. Quantiles are modelled

through the Conditional Autoregressive Value at Risk (CAViaR) approach of Engle

and Manganelli (2004) and estimated via regression quantile (Koenker and Bassett,

1978). In general, the stronger the co-dependence between X and Y , the higher the

1Co-exceedance occurs when both market returns on X and Y exceed some pre-speci�ed thresh-

olds.
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conditional probability of co-movement. Comparing these probabilities in crisis and

tranquil periods allows one to directly identify contagion.

Our methodology possesses several advantages. First, casting the econometric

framework in term of regression quantiles permits to make proper inference. Second,

we are able to measure co-dependence over any subset of the support of the joint

distribution. In particular, asymmetries in co-movement in the positive and negative

parts of the distribution can be tested for. Third, one can test whether economic vari-

ables signi�cantly increase the probability of co-movement. Fourth, since regression

quantile is a semi-parametric technique, there is no need to impose any distributional

assumption on returns. Fifth, the results can be easily visualised in what we call �the

contagion box�. The contagion box is a square of unit side, where, for any set of

�-quantiles, � 2 (0; 1), the conditional probabilities are plotted against �. When the
plot of the conditional probability lies above the 45� line, which represents the case

of independence between two markets, there is evidence of positive co-movements.

When the conditional probability of co-movements for the crisis and tranquil periods

are plotted in the same graph, di¤erences in the intensity of co-movements can be

identi�ed directly. From this insight, rigorous econometric tests for contagion are

derived and implemented. In the process we obtain a new result in the regression

quantile literature. We show that the asymptotic covariance matrix of the estimated

probabilities depends on the joint bivariate distribution evaluated at the quantiles.

This can be interpreted as the bivariate extension of the height of the density function

that typically appears in the standard errors of regression quantiles. We illustrate our

methodology by investigating the impact of the major crises of the Nineties on the

main Latin American equity markets.

The focus of this study is mostly methodological, and its applications are not lim-

ited to the speci�c issue of testing for contagion. For instance, for strategic allocation

purposes, risk-averse investors could use the contagion box to select those asset classes

which exhibit lowest co-movements. Hedging hinges on a similar principle: investors

search hedge and underlying assets which move into opposite directions. Finally, pol-

icy makers are interested in measuring dependence among asset returns: if economies

are largely interconnected through �nancial markets and crises spill over despite sound

fundamentals, there would be limited scope for intervention. As a result, �nancial

stability could be in danger and alternative strategies need to be implemented.

The paper proceeds as follows. In Section 2 we describe our empirical framework,

provide some intuition and compare our tests to the alternatives in the literature.

The formal econometrics of the tests is developed in Section 3. Section 4 describes
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the data. Section 5 reports the results of the analysis. Section 6 concludes.

2 The contagion box

In this section we �rst develop a formal framework to measure co-movements between

two random variables and then show how it can be used to test for contagion. The

probability of co-movements will be conveniently represented in a square with unit

side, the �contagion box�. After de�ning a benchmark against which our measure

of co-dependence can be compared, we derive an analytical de�nition of contagion.

Finally, we show that the contagion box can include as special cases other methodolo-

gies commonly used to detect contagion, such as Extreme Value Theory (EVT), the

logit/probit approach and the correlation framework proposed by Forbes and Rigobon

(2002).

2.1 The analytical framework

Let yt and xt denote two di¤erent random variables. Let qYt (�
0
�Y ) � qY (�0�Y ; 
t) be

the time t �-quantile of the conditional distribution of yt, where �0�Y is a vector of

unknown true parameters that characterise the �-quantile and 
t the information set

which includes all variables observed up to the beginning of time t. Analogously, for

xt, we de�ne qXt (�
0
�X) � qX(�0�X ;
t). These quantiles can depend on any variable

that belongs to the information set at time t. If 
t is the empty set (i.e., 
t = ?,
8t), then the �-quantiles are constant for all t. On the other hand, if 
t contains all
the available information up to time t, the �-quantiles are not necessarily constant.

Denote the conditional cumulative joint distribution of the two random variables

by Ft(y; x). De�ne F�t (yjx) � Pr(yt � y j xt � x) = Pr(yt�y;xt�x)
Pr(xt�x) and F+t (yjx) �

Pr(yt � y j xt � x) = Pr(yt�y;xt�x)
Pr(xt�x) . Our basic tool of analysis is the following

conditional probability:

pt (�) �
(
F�t

�
qYt (�

0
�Y )jqXt (�0�X)

�
if � � 0:5

F+t
�
qYt (�

0
�Y )jqXt (�0�X)

�
if � > 0:5

: (1)

This conditional probability represents an e¤ective way to summarise the charac-

teristics of Ft(y; x)2 ;3.

2We could study both F�t (yjx) and F+t (yjx) for the whole range of � between 0 and 1, 0 � � � 1:

However for � = 1; F�t (yjx) = 1 and for � = 0; F+t (yjx) = 1: Hence most of the interesting information

about the co-movements of xt and yt is provided by F�t (yjx) for � � 0:5 and by F+t (yjx) for �: > 0:5:
3For hedging purposes, we could as well have de�ned G�t (yjx) �

Pr(yt�y;xt�x)
Pr(xt�x) and G+t (yjx) �
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If we think of fxtgTt=1 and fytg
T
t=1 as the time series returns of two di¤erent

markets, for each quantile �, pt (�) measures the probability that on market Y the

return will fall below (or above) its �-quantile, conditional on the same event occurring

in market X.

The characteristics of pt (�) can be conveniently analysed in what we call the

�contagion box� (see Figure 1). The contagion box is a square with unit side,

where pt (�) is plotted against �. The shape of pt (�) will generally depend on the

characteristics of the joint distribution of the random variables xt and yt, and there-

fore for generic distributions it can be derived only by numerical simulation. There

are, however, three important special cases that do not require any simulation: 1)

perfect positive correlation, 2) independence and 3) perfect negative correlation. If

two markets are independent, which implies �Y X = 0, pt (�) will be piece-wise linear,

with slope equal to one, if � 2 (0; 0:5), and slope equal to minus one, if � 2 (0:5; 1).
When there is perfect positive correlation between xt and yt (i.e. �Y X = 1), pt (�)

is a �at line that takes on unit value. Under this scenario, the two markets essen-

tially reduce to one. The polar case occurs for a perfect but negative correlation, i.e.

�Y X = �1. In this case pt (�) is always equal to zero. The reason is that if yt falls in
one half of its distribution, xt will not, because it will take on diametrically opposite

values.

The above discussion suggests that the shape of pt (�) might provide key insights

about the dependence between two random variables xt and yt. Indeed, pt (�) satis�es

some basic desirable properties, as summarised in the following theorem (all proofs

can be found in Appendix B):

Theorem 1 pt(�) for � 2 (0; 1) satis�es the following properties:

1. F�t
�
qYt (�

0
�Y )jqXt (�0�X)

�
= F�t

�
qXt (�

0
�X)jqYt (�0�Y )

�
,

F+t
�
qYt (�

0
�Y )jqXt (�0�X)

�
= F+t

�
qXt (�

0
�X)jqYt (�0�Y )

�
(Symmetry),

2. pt(�) = 1 for � 2 (0; 1) () Co-monotonicity,

3. pt(�) = 0 for � 2 (0; 1) (= Counter-monotonicity,

Pr(yt�y;xt�x)
Pr(xt�x) as well as

st (�) �

8<: G�t
�
qYt (�

0
�Y )jqXt (�01��X)

�
if � � 0:5

G+t
�
qYt (�

0
�Y )jqXt (�01��X)

�
if � > 0:5

:

Similar results and tools as those developed below for pt (�) can be derived to study the changes in

st (�) :
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4. pt(�) = � for � 2 (0; 1) (= Independence.

According to Theorem 1 our measure of conditional probability will allow us to

recognise joint random variables characterised by co-monotonicity, which includes the

case of perfect positive correlation. For independence and counter-monotonicity (of

which perfect negative correlation is a special case), we can only derive a necessary

condition. This is the price we have to pay for looking only at co-movements associ-

ated to the same quantiles. Of course, one could look at di¤erent quantiles simulta-

neously, thus recovering the entire information contained in the joint distribution of

the two random variables. Such information, however, could not be displayed in the

simple contagion box illustrated above. Our measure aims at striking a reasonable

compromise between simplicity and completeness.

2.2 Measuring Contagion

While pt(�) can be used to measure the dependence between di¤erent markets, the

interest of the researcher often lies in testing whether this dependence has changed

over time. Contagion is an important case in point.

In epidemiology contagion is associated to any disease which is easily transmitted

by contact. In statistical terms, the presence of contagion can be tested by identifying

a �control group�and an �experimental group.�In the experimental group, unlike in

the control group, patients are exposed to the potentially contagious disease. Next,

one would compute the conditional probability that one patient contracts the disease,

provided that another one is already sick. The presence of contagion would imply that

this conditional probability would be higher in the experimental than in the control

group.

The analogy with economics is straightforward: �patients� can be replaced by

�markets� and �sick� by �quantile exceedance�. The control group is given by the

set of returns in �tranquil times�, while the experimental group by the set of returns

in �crisis periods�. Testing for �nancial contagion is equivalent to testing if the condi-

tional probability of co-movements between two markets increases over crisis periods

versus tranquil times. This is indeed the spirit of the �very restrictive�de�nition of

the World Bank.4

The framework of the contagion box can be used to formalise this intuition. Let

pC(�) � C�1
P
t2fcrisis timesg pt(�) and p

N (�) � N�1P
t2ftranquil timesg pt(�), where

4See the web site http://www1.worldbank.org/economicpolicy/managing%20volatility/

contagion/de�nitions.html
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C and N denote the number of crisis and tranquil times, respectively. We adopt the

following working de�nition of contagion:

De�nition 1 (Contagion) - There exists contagion in a given interval [�; ��] if

�
�
�; ��
�
=
R ��
� [p

C(�)� pN (�)]d� > 0.

�
�
�; ��
�
measures the area between the average conditional probabilities pC(�) and

pN (�) over the interval
�
�; ��
�
. Unlike correlation-based measures, �

�
�; ��
�
permits to

analyse changes in co-dependence over speci�c parts of the distribution. For instance,

it may occur that � (0; 1) is quite small just because of positive co-dependence on the

left tail of the distribution and negative on the right tail, so that the two values tend

to o¤set each other.

We can describe existing contributions to the contagion literature in terms of the

contagion box. First, our approach has direct ties with the EVT. Indeed, lim�!0 pt(�) is

exactly the de�nition of �tail dependence�for the lower tail used in the EVT litera-

ture (similar result holds for the upper tail). Existing contributions (e.g., Longin and

Solnik, 2001 and Hartmann, Straetmans and de Vries, 2003) di¤er from ours under

two important aspects. First, they only look at one (extreme) point of the distrib-

ution. Second, in the light of De�nition 1, they fail to compare this point to some

benchmark against which contagion can be measured. Moreover, it is not obvious

how these approaches can be modi�ed to control for economic variables.

Our methodology is also close to the logit/probit literature (e.g., Eichengreen,

Rose and Wyplosz, 1996, Bae, Karolyi and Stulz, 2003, and Gropp and Moerman,

2004). The value of pt(�) in the contagion box can in principle be computed through

the logit/probit approach. The main problem with this methodology is that it adopts

a two-step procedure and it is not clear how correct inference can be made. In the

next section we propose a more coherent econometric framework based on regression

quantile.

Finally, previous research (see, for instance, Longin and Solnik, 1995, Karolyi

and Stulz, 1996, De Santis and Gerard, 1997, and Ang and Bekaert, 2002) suggests

that correlation increases when returns are large in absolute value, and in particular

over bear markets. However, as pointed out by Longin and Solnik (2001) and Forbes

and Rigobon (2002), among others, the di¤erence in estimated correlation between

volatile and tranquil periods could be spurious and due to heteroskedasticity. By

modelling conditional probability with regression quantiles, our approach is robust to

this problem.

It is instructive to see how the contagion box �ts the framework used by Forbes
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and Rigobon (2002). They propose the following model for contagion:

yt = �xt + "t;

xt = ut:

According to this model, an increase in � would induce a higher degree of co-

movements between the two markets X and Y . In terms of the contagion box, this

requires that the conditional probability p[yt > q�Y
�
�0�;
t

�
j xt > q�X

�
�0�;
t

�
;
t] is

increasing in �. If "t and ut are independent, the �-quantile of yt can be written as

q�tY = �"t + �q�tX , where �"t is a suitable constant independent of �. This conditional

probability can be rewritten as follows:

��1p
h
yt > q�tY ; ut > q�tX j
t

i
=

= ��1p
h
�ut + "t > �"t + �q

�
tX ; ut > q�tX j
t

i
= ��1p

h
ut > q�tX + (�"t � "t)=�; ut > q�tX j
t

i
= ��1fp

h
ut > q�tX + (�"t � "t)=�

i
p["t < �"t] + p

h
ut > q�tX

i
p["t > �"t]g:

The derivative of the above expression with respect to � is positive for all �.

3 The Econometrics of the Contagion Box

Constructing the contagion box and testing for di¤erences in the probability of co-

movement requires several steps. First, we estimate the univariate quantiles associ-

ated to the return series of interest. Second, we construct, for each series and for each

quantile, indicator variables which are equal to one if the observed return is lower

than this quantile and zero otherwise. Finally, we regress the ��quantile indicator

variable of country Y on the ��quantile indicator variable of country X, interacted

with crisis dummies. These regression coe¢ cients will provide a direct estimate of

the conditional probabilities of co-movements.

In this section we brie�y review the CAViaR model of Engle and Manganelli (2004)

that is used to estimate time-varying quantiles, and derive their joint distribution.

Next, in section 3.2 we discuss the estimation of the conditional probabilities and

their asymptotic properties.

3.1 CAViaR and Regression Quantiles

The CAViaR model parametrises directly a time-varying quantile, using an autore-

gressive structure. Let zt be the random variable of interest. The evolution of the
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time-varying quantiles is speci�ed as follows:

qt(��) = ��0 +

qX
i=1

��iqt�i +

pX
j=1

l(��j ; zt�j ;
t): (2)

The autoregressive terms ��iqt�i(��) ensure that the quantile changes slowly over

time. The rationale is to capture the volatility clustering typical of �nancial variables.

l(�), which is a function of a �nite number of lagged values of observables that be-
long to the information set at time t, establishes a link between these predetermined

variables and the quantile. This is the means by which variables characterizing the

�nancial and economic conditions of the market under scrutiny are allowed to a¤ect

the characteristics of the returns distribution.

The unknown parameters of the CAViaR model are estimated via the regres-

sion quantiles loss function, �rst introduced by Koenker and Bassett (1978). De�ne

��(�) � [� � I(� � 0)]�, where I(�) denotes an indicator function that takes on value
one if the expression in parenthesis is true and zero otherwise. The unknown pa-

rameters of the quantile speci�cation can be consistently estimated by solving the

following minimisation problem:

min
��

T�1
TX
t=1

�� (zt � qt(��)) :

Engle and Manganelli (2004) provide su¢ cient conditions for consistency and

asymptotic normality results.

For the purpose of the present paper, we need to derive the joint distribution

of the regression quantile estimators of the two di¤erent time series, yt and xt. Let

��i � [�
0
�iY

; �0�iX ]
0 denote the vector containing the �i-quantile regression parameters

for yt and xt, and � � [�0�1 ; :::; �
0
�m ]

0, where 0 < �1 < : : : < �m < 1. De�ne also the

following matrices:

D�Z � E

"
T�1

TX
t=1

h�Zt (q
Z
t (�

0
�Z)j
t)rqZt (�0�Z)r0qZt (�0�K)

#
(Z = Y;X); (3)

D� � diag[D�Y ; D�X ];

where h�Yt (q
Y
t (�

0
�Y )j
t) and h�Xt (qXt (�

0
�X)j
t) are the value of the density functions

of yt and xt evaluated at the �-quantile and rqKt (�0�j) is the gradient of the quantile
function. Finally, let rqt(�0�i) � [r

0qYt (�
0
�iY
); r0qXt (�0�iX)]

0. The following corollary

derives the joint asymptotic distribution of the regression quantile estimators.
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Corollary 1 Under assumptions C0-C7 and AN1-AN4 in Appendix A,
p
TA�1=2D(�̂�

�0)
d! N(0; I), where

D � diag(D�i) i = 1; :::;m;

A �
�
(minf�i; �jg � �i�j)Aij

�m
i;j=1

;

Aij � E
h
T�1

PT
t=1rqt(�0�i)r

0qt(�
0
�j
)
i

i; j = 1; :::;m:

Engle and Manganelli (2004) provide asymptotically consistent estimators of the

variance-covariance matrix (see their theorem 3).

3.2 Estimation of the Conditional Probability

We estimate the average conditional probability pt(�) by running the following re-

gression:

IYt (�
0
�i
) = ��iI

X
t (�

0
�i
) + �t i = 1; :::;m; (4)

where IYt (�
0
�i
) � I

�
yt � qYt (�

0
�iY
)
�
and IXt (�

0
�i
) � I

�
xt � qXt (�

0
�iX
)
�
. In case one is

interested in testing whether this conditional probability changes during crisis times,

a dummy variable DC
t indicating the crisis period can be included in the regression.

The econometrics is complicated by the fact that we observe only estimated quan-

tities. In practice, we can run only the following regression:

IYt (�̂�i) = ~��iI
X
t (�̂�i) + ~�t i = 1; :::;m; (5)

where the hat indicates that the expression is evaluated at the estimated regression

quantile parameters. To incorporate crisis dummies, it is convenient to rewrite this

regression in a more general form:

IYt (�̂�i) = Ŵ�it~��i +~�t: (6)

Without crisis dummies, Ŵ�it � IXt (�̂�i). When crisis dummies
�
DC
t

�
are included,

we have Ŵ�it � [IXt (�̂�i); I
X
t (�̂�i)D

C
t ].

Let �0 � [�0�1
0; :::; �0�m

0]0 be the vector of true unknown parameters to be estimated.

Similarly, de�ne ~̂� � [~̂��1 0; :::; ~̂��m 0]0, where ~̂��i is the OLS estimator of (6). We need
to derive the asymptotic distribution of

p
T
�
~̂�� �0

�
. Note that ~̂� � T�1Q̂�1R̂,

where Q̂ � T�1diag(Ŵ 0
�i
Ŵ�i), R̂ � [Ŵ 0

�i
IY (�̂�i)]

m
i=1, Ŵ�i � [Ŵ�it]

T
t=1 and I

Y (�̂�i) �
[IYt (�̂�i)]

T
t=1.

The following theorem shows that the OLS estimators of regression (6) are asymp-

totically consistent estimators of the average conditional probability pt(�) in tranquil

and crisis periods.
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Theorem 2 (Consistency) - Assume that C=T T!1�! k, where k 2 (0; 1) is the

asymptotic ratio between the number of observations in crisis periods (C) and the

total number (T ) of periods. Under the same assumptions of Corollary 1,

~̂�1�i
p! E[pt(�i)j no crisis] � pN (�i) i = 1; :::;m;

~̂�1�i + ~̂�
2
�i

p! E[pt(�i)jcrisis] � pC(�i) i = 1; :::;m:

~̂�1�i is the parameter associated with I
X
t (�̂�i) and, as such, it converges to the average

probabilities of no crisis. Similarly, since ~̂�2�i is the coe¢ cient of I
X
t (�̂�i)D

C
t , the sum

of ~̂�1�i+ ~̂�
2
�i
converges in probability to the average probabilities of a crisis. According

to this theorem, testing for an increase in the conditional probability during crisis

periods is equivalent to testing for the null that �2�i is equal to zero. Indeed, it is

only when �2�i = 0 that the two conditional probabilities coincide. Otherwise, if

�2�i is less than zero, the conditional probability over crisis times will be lower than

the conditional probability during no crisis. By the same token, if �2�i is greater than

zero, the conditional probability over crisis periods will be higher than the conditional

probability estimated during tranquil times.

The asymptotic distribution of the OLS estimators is derived in the following

theorem.

De�ne

W 0
�i
�
�
IXt (�

0
�i
); IXt (�

0
�i
)DC

t

�T
t=1

;

R � [Rt(�0)]Tt=1;

Rt(�
0) �

�
IY Xt (�0�i)� E[I

Y X
t (�0)]; IY Xt (�0�i)D

C
t � E[IY Xt (�0) jcrisis]

�m
i=1

;

IY Xt (�0�i) � IXt (�
0
�i
)IYt (�

0
�i
)

	 � [ t(�0)]Tt=1

 t(�
0) � [ t(�0�i)]

m
i=1

 t(�
0
�i
) �

�
(�i � IYt (�0�iY ))r

0qYt (�
0
�iY
); (�i � IXt (�0�iX))r

0qXt (�
0
�iX
)
�0

Theorem 3 (Asymptotic Normality) - Under the same assumptions of Corollary

1,
p
TM�1=2Q

�
~̂�� �0

�
d! N(0; I); (7)

where

Q � E[T�1diag(W 00
�i
W 0
�i
)]; (8)
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M � E[T�1(R+GD�1	)0(R+GD�1	)]; (9)

G � diag(G�i); (10)

G�i � E

(
T�1

TX
t=1

Ut

"
r0qXt (�0�i)

Z qYt (�
0
�i
)

�1
ht(q

X
t (�

0
�i
); y)dy+ (11)

+r0qYt (�0�i)
Z qXt (�

0
�i
)

�1
ht(x; q

Y
t (�

0
�i
))dx

#)
;

Ut � [1; DC
t ]
0;

and ht(x; y) is the joint pdf of (xt; yt).

This result is new in the regression quantile literature. Without the correction

term GD�1	 in the matrix M , we would get the standard OLS variance-covariance

matrix. The correction is needed in order to account for the estimated regression

quantile parameters that enter the OLS regression. This correction term is similar to

the one derived by Engle and Manganelli (2004) for the in-sample Dynamic Quantile

test. The main di¤erence is related to the composition of the matrix G. Since two

di¤erent random variables (xt and yt) enter the regression, G contains the termsR qYt (�0�i )
�1 ht(q

X
t (�

0
�i
); y)dy and

R qXt (�0�i )
�1 ht(x; q

Y
t (�

0
�i
))dx, which can be interpreted as

the bivariate analogue of the height of the density function evaluated at the quantile

that typically appears in standard errors of regression quantiles.

The variance-covariance matrix can be consistently estimated using plug-in es-

timators. The only non-standard term is G�i , whose estimator is provided by the

following theorem.

Theorem 4 (Variance-Covariance Estimation) - Under the same assumptions

of Theorem 3 and assumptions VC1-VC3 in Appendix A, Ĝ�i
p! G�i, where

Ĝ�i � (2T ĉT )�1
TP
t=1

n
I(jxt � qXt (�̂�i)j < ĉT )I(yt � qYt (�̂�i) < 0)Utr

0
�q
X
t (�̂�i)

+I(jyt � qYt (�̂�i)j < ĉT )I(xt � qXt (�̂�i) < 0)Utr
0
�q
Y
t (�̂�i)

o ;

and ĉT is de�ned in assumption VC1.

4 Data

The empirical analysis is carried out on returns on equity indices for four Latin Amer-

ican countries, Brazil, Mexico, Chile and Argentina. We choose these equity markets
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for several reasons. First, they are considered to be emerging markets and therefore

believed to be less robust to externals shocks than fully developed markets. Second,

at least one of the countries in the sample (Mexico) has experienced in the recent

past a severe �nancial crisis that is widely recognized to have a¤ected other Latin

American economies. Third, the four equity markets are open over the same hours

during the day. Hence the daily returns we investigate are synchronous, avoiding

the confounding e¤ects that non synchronous returns can have on the measurement

of co-movements (see Martens and Poon, 2001, and Sander and Kleinmeier, 2003).

Equity returns are continuously compounded and computed from Morgan Stanley

Capital International (MSCI) world indices, which are market-value-weighted and do

not include dividends. The data set covers the period from December 31st, 1987 to

June 3rd, 2004 for a total of 4226 days on which at least one of the market is open.

Although the four equity markets in our sample are almost always open simultane-

ously, there are instances in which markets are closed in one country and opened in

the other, as national holidays and administrative closure do not fully coincide. To

adjust for these non-simultaneous closures, for each pair of country, we include only

the returns for the days on which both markets were open that day and had been

open the day before.5

Descriptive statistics for the asset data and the sample characteristics are given

in Table 1. In Panel A the overall sample univariate statistics are reported. There

is strong evidence of excess skewness and leptokurtosis at 1% signi�cance level, a

clear sign of non-normality. This is con�rmed by the Jarque-Bera normality test.

The second part of Panel A reports, for each pair of countries, sample correlations

on the �rst line and sample size on the second line. When considering each market

individually (diagonal elements), we have a maximum of 3,975 valid daily returns for

Chile and a minimum of 3,883 returns for Brazil. The o¤-diagonal report bivariate

correlations and sample size. For example, over the whole period, there are 3,718 days

for which both the Argentinian and Mexican equity markets were open simultaneously,

and neither was closed on the preceding day. Bivariate sample sizes vary from a

maximum of 3,749 for Chile and Argentina to a minimum of 3,682 for Brazil and

Argentina. Over those days on which both market in each pair was open, the average

5We also implemented an alternate way to adjust for non�simultaneous market closures. We

retained the returns on the day after the market closure for the market that did close. However, since

the return on the day after a market closure is in fact a multi�day return, we adjusted the returns on

the market that did not close by cumulating the daily returns over the period the other market closed

plus the day it reopened. This procedure added between 10 and 25 observations to the di¤erent pairs

and did not materially a¤ect the results.
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correlation of daily returns is 0.25.

We use the de�nitions of Forbes and Rigobon (2002) to determine the crisis periods

in our sample. Turbulent times in our sample cover three sub-periods: November 1,

1994 to March 31, 1995 (Tequila crisis); June 2, 1997 to December 31, 1997 (Asian

crisis); and August 3, 1998 to December 31, 1998 (Russian crises). The crisis sample

includes 371 potential trading days. Excluding market closures and the subsequent

day, we have a maximum of 347 valid crisis daily returns for Argentina and a minimum

of 343 returns for Brazil. Panel B and C report univariate sample size and volatilities

(diagonal elements) and bivariate sample size and correlations (o¤-diagonal elements)

for both tranquil and crisis periods. What is striking from Panel B and C is that

correlations increase dramatically between tranquil and crisis periods: the average

correlation is approximately 0.19 over tranquil days and approximately 0.68 for days

of turbulence. Based on this type of evidence traditional tests of correlation would

have indicated the presence of contagion. However, the table also documents that for

all countries, except Argentina, returns volatility increased dramatically in crisis over

tranquil periods. This highlights the heteroskedasticity problem identi�ed by Forbes

and Rigobon (2002) and casts doubts on the reliability of the correlation evidence.

In the following section we investigate these issues with the contagion box and

provide a more robust and nuance answer to the question.

5 Empirical Results: an Application to Latin America

In this section, we report the results of the contagion box methodology to the analysis

of co-movements across some Latin American equity markets. We investigate if the

probability of co-movement over crisis times versus tranquil periods increases for

Brazil, Mexico, Chile and Argentina. To illustrate the methodology, we �rst plot

the conditional probability of tail events, p(�); estimated using unconditional and

conditional quantile regressions against the benchmark of independence. Next, we

compare these probabilities to those obtained from simulations of typical bivariate

returns distributions calibrated to match sample moments. Finally, in a second group

of charts, we report estimated conditional probabilities of co-movements between

equity return pairs during tranquil and crisis times, and provide tests of the di¤erence

in co-movement incidence between the two periods. Crisis periods are �rst determined

exogenously and then in terms of high volatility.

To characterize the shape of p(�) it would be necessary to have knowledge about

the joint distribution of security returns. Natural benchmarks are the normal or

14



Student�t distribution, in the case fat tails need to be accommodated. Therefore,
in the simulation exercise, we assume that returns are either bivariate normal or

Student�t with �ve degrees of freedom. The distributions are calibrated with the
unconditional correlation and volatility of the relevant sample returns. In the same

set of charts we also report a conditional probability estimated according to equation

(5) where constant and time-varying quantiles are used. When estimating this prob-

ability we utilise the whole sample period, which includes both crisis and tranquil

times. More importantly, no assumption about the distribution of returns is needed.

A visual comparison allows to detect whether estimated probabilities deviate from

what would be expected if the true data generating process followed a normal or a

Student�t distribution. Take as an example the country pair Brazil-Argentina (see
�gure 2). For � 6 0:5; that is, for returns below the median, the simulated proba-

bilities tend to underestimate the estimated conditional probability of co-movements.

As for the right tail, i.e. for � > 0:5, the probability curve obtained with regression

quantiles approximately coincide with the co-movement probability generated by the

simulation. If co-movements were analysed through correlation estimates, it would

not be possible to distinguish between right and left tails of a distribution.

We estimate the time-varying quantiles of the returns, zt, using the following

CAViaR speci�cation:

qt(��) = ��0 + ��1D
C
t + ��2zt�1 + ��3qt�1(��)� ��2��3zt�2 + ��4 jzt�1j : (12)

The rational behind this parametrisation lies in the strong autocorrelation (both

in levels and squares) exhibited by our sample returns. This CAViaR model would

be correctly speci�ed if the true DGP were as follows:

zt = 
0 + 
1zt�1 + "t "t � i:i:d:
�
0; �2t

�
; (13)

�t = �0 + �1 jzt�1j+ �2�t�1:

We add the dummy variable DC
t to the CAViaR speci�cation to ensure that we

have exactly the same proportion of quantile exceedances in both tranquil and cri-

sis periods. This will guarantee that Pr
�
yt � qYt (�

0
�Y )jxt � qXt (�

0
�X)

�
= Pr(xt �

qXt (�
0
�X)jyt � qYt (�

0
�Y )) as per Theorem 1.6 For each market we estimate model (12)

6Asymptotically, correct speci�cation would imply the same number of exceedances in crisis and

tranquil periods. However, in �nite samples, this need not to be the case. Failure to account for this

fact would a¤ect the estimation of the conditional probabilities.
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for 99 quantile probabilities ranging from 1% to 99%.

To check whether the parametrization we propose is sensible, we carry out the

in-sample Dynamic Quantile (DQ) test of Engle and Manganelli (2004). The DQ

statistic tests the null hypothesis of no autocorrelation in the exceedances of the

quantiles as correct speci�cation would require. The DQ test is implemented with 20

lags of the �hit�function (see Theorem 4 of Engle and Manganelli, 2004, for details).

We report in �gures 3A-3B the p-values of the DQ test statistic for the 99 estimated

quantiles of Argentinian and Brazilian returns. For comparison, we show in the same

picture the DQ test associated to the unconditional quantiles. Unconditional quantile

speci�cations are rejected most of the times, while CAViaR models are not.

Figure 4 and �gures 5A-5E represent the estimated conditional probabilities of

co-movement over crisis and tranquil times for all the country pairs. Notice that

conditional probabilities are represented over the whole distribution and not only

for lower and upper quantiles. Our approach permits to explore how and if the

conditional probability of co-movements changes for any interval in the support of

the distribution. The attractiveness of inspecting all the quantiles lies in the fact that

one does not need to arbitrarily specify a large absolute value return as a symptom

of a crisis.

In �gures 4 and 5A-5E two solid lines are plotted together with the case of inde-

pendence. The thin line indicates the conditional probability of co-movements under

the benchmark or, equivalently, over tranquil times. This line is the graphical rep-

resentation of pN (�) in De�nition 1. The thick line, instead, shows the conditional

probability of co-movements during crisis times and plots pC(�). The con�dence

bands associated to plus or minus twice the standard errors are reported as dotted

lines. When the bold line lies above the benchmark, this can be interpreted as evi-

dence for increased co-movements or contagion. When the two lines approximately

coincide, there is no di¤erence in co-movements between the two periods. Finally, if

the thick line lies below the benchmark, during crises time the co-movements between

two di¤erent markets actually decrease.

The results for Argentina and Brazil show striking evidence of contagion for most

quantiles. Only in the extreme upper and lower parts of the distribution, where stan-

dard errors become wider due to the limited number of exceedances, the probability

of co-movement in crisis time is not statistically di¤erent from the probability of co-

movement in tranquil times. The increase in probability is not only statistically but

also economically signi�cant. For instance, the probability of co-movement associated

to the 10%-quantile jumps from about 24% in tranquil times to about 60% in crisis
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times. This implies that in quiet periods one should expect Brazilian and Argentinian

equity returns to simultaneously exceed the 10%-quantile only one day out of four. In

crisis periods, instead, this event will occur on average two days out of three. Similar

patterns characterise the other country pairs, although the increases in probabilities

are less impressive.

The interest may lie in testing whether speci�c parts of the distribution are subject

to contagion. Rigorous joint tests for contagion which follow from the De�nition 1

can be constructed as follows:

b� ��; ��� =
P

�2[�;��]
[pC(�)� pN (�)] (14)

=
P

�2[�;��]
~̂�2�i ;

where ~̂�2�i is de�ned in Theorem 2. For each country pair, table 2 contains the

standard errors associated with the sum of ~̂�2�i over �. Panels A, B, and C report the

test statistics computed over di¤erent intervals of �.

Three interesting points emerge from a close examination of the table. First,

the country pair Mexico-Chile is the only one for which we never identify contagion.

For all the others there is evidence of contagion for most parts of the distribution.

Second, there are instances where one part of the distribution is subject to contagion,

while others are not. This is the case for Mexico and Brazil when � 2 (0; 0:5] and
� 2 [0:5; 1), and for the couples Brazil-Chile and Argentina-Chile when � 2 (0; 0:1]
and � 2 [0:9; 1). Notice that this analysis could not be carried out with tests based
on the estimation of correlation coe¢ cients (Forbes and Rigobon, 2002). Third, the

tests get weaker as the values of � are restricted to be closer to the tails (see Panel C).

This suggests that using only single quantiles may diminish the possibility of �nding

signi�cant contagion and that a wider spectrum of quantiles is needed.

Overall, the table indicates that the distributions are characterised by strong

asymmetries, which cannot be detected by simple correlation. Interestingly, the over-

all picture which emerges from table 2 is not in line with that of Forbes and Rigobon

(2002), who never found evidence of contagion between Mexico and the other Latin

American countries.

Finally, in �gure 6 we present an example of how to introduce economic variables

in the contagion box. Instead of using the historical crisis times as in Forbes and

Rigobon (2002), we de�ne crisis and tranquil periods in terms of high and low volatil-

ity, respectively. We compute the volatility of the average returns on Argentinian and
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Brazilian stock markets as an exponentially weighted moving average (EWMA) with

decay coe¢ cient equal to 0:97. Next we identify as crisis periods the 10% number

of observations with highest EWMA volatility, i.e. DC
t � I

�
�2EWMA;t > q0:90

�2EWMA

�
.

Contrary to the �ndings of Bae, Karolyi and Stulz (2003), �gure 6 shows that volatil-

ity crises do not signi�cantly increase the probability of co-movement and therefore

cannot be responsible for the contagion e¤ects we found in �gure 3.

6 Summary of Results and Conclusions

In this study we propose a new methodology to measure co-dependence across distinct

asset classes and �nancial markets. Our approach is based on the CAViaR model of

Engle and Manganelli (2004) and permits to investigate whether co-dependence across

securities increases during turbulent times relative to calm periods. We compute the

conditional probability that returns on a certain market fall in the left (or right)

tail of their own distribution provided that returns on a di¤erent market have fallen

in the same tail of their own distribution. Probabilities are computed not only for

extreme quantiles, but span the whole distribution. These conditional probabilities

are visualised in �the contagion box�, which is a square of unit side. As an illustration,

we utilise our methodology to detect possible presence of contagion across the most

important Latin American equity markets. Our results show that, on average, over

turbulent times, co-movements in equity returns across national markets tend to

increase signi�cantly, both in the left and in the right tails of the distributions.

The approach we propose is quite general and can �nd application for portfolio

allocation, risk management and �nancial stability. Our methodology permits to

estimate the probability of co-movements for di¤erent ranges of the return distribution

and for di¤erent market conditions. Crisis periods may be de�ned exogenously or

endogenously as a function of information variables. Further our methodology allows

us to take into account local and global economic forces that may drive the returns

distribution and their co-movements.

A number of questions can be addressed, which leaves ample room for future re-

search. For instance, it would be possible to test if a crisis spills over across markets,

independently of how sound fundamentals are. Contagion is often divided into two

categories (Karolyi, 2003). The �rst category refers to the so-called �fundamental-

based contagion�, which occurs when co-movements in �nancial asset prices result

from real and �nancial linkages among market economies. The second category of

contagion involves co-movements that cannot be explained by fundamentals, but are
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rather the results of investors�behaviour. Financial panic, herd behaviour and in-

crease in risk aversion are examples of the so-called �irrational contagion�. A possi-

ble strategy to implement such a test would be to de�ne the crisis periods in terms

of a set of economic variables and then testing whether the associated coe¢ cient is

signi�cantly di¤erent from zero.

Other issues related to market linkages can be addressed as well. In the context

of the European Union, for instance, there is strong interest in investigating how

the inter-relations among �New� and �Old�Member States �nancial markets have

evolved after accession.
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Appendix A - Assumptions

Consistency Assumptions

C0. (
; F; P ) is a complete probability space, and fyt; xt; !tg, t = 1; 2; ::: are random
variables on this space.

C1. The functions qZt (��iZ), Z = Y;X, i = 1; :::;m, a mapping from B (a com-

pact subset of <p) to < are measurable with respect to the information set 
t and
continuous in B, for any given choice of explanatory variables fzt�1; !t�1; :::; z1; !1g,
where zt = yt; xt and !t 2 
t.

C2. hZt (zj
t) - the conditional density of zt - is continuous.
C3. There exists h > 0 such that, for all t and for all i = 1; :::;m, h�iZt (qZt (�

0
�iZ
)j
t) �

h.

C4. jqZt (��iZ)j < K(
t) for all ��iZ 2 B and for all t, where K(
t) is some

(possibly) stochastic function of variables that belong to 
t, such that E[K(
t)] �
K0 <1.

C5. E[jztj] <1 for all t.

C6. f��i(zt � q
Z
t (��iZ))g obeys the uniform law of large numbers.

C7. For every � > 0, there exists a � > 0 such that if jj� � �0�iZ jj � �, then

lim infT!1
P
P [jqZt (��iZ)� q

Z
t (�

0
�iZ
)j > � ] > 0.

Asymptotic Normality Assumptions

AN1. qZt (��iZ) is di¤erentiable in B and for all � and 
 in a neighbourhood �0 of

�0�iZ , such that jj��iZ � 
�iZ jj � d for d su¢ ciently small and for all t:

(a) jjrqZt (��iZ)jj � F (
t), where F (
t) is some (possible) stochastic function

of variables that belong to 
t and E[F (
t)3] � F0 <1, for some constant F0.
(b) jjrqZt (��iZ)�rq

Z
t (
�iZ)jj �M(
t; ��iZ ; 
�iZ) = O(jj��iZ�
�iZ jj), where

M(
t; ��iZ ; 
�iZ) is some function such that E[M(
t; ��iZ ; 
�iZ)
2] � M0jj��iZ �


�iZ jj < 1 and E[M(
t; ��iZ ; 
�iZ)F (
t)] � M1jj��iZ � 
�iZ jj < 1 for some con-

stants M0 and M1.

AN2. (a) hZt (zj
t) � H <1 8t.
(b) hZt (zj
t) satis�es the Lipschitz condition jhZt (�1j
t)�hZt (�2j
t)j � Lj�1�

�2j, 8t, for some constant L <1.
AN3. The matrices Aij and D�iZ have smallest eigenvalue bounded below by a

positive constant for T su¢ ciently large.
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AN4. The sequences fT�1=2
PT
t=1[�i � I(zt � qZt (�

0
�iZ
))]rqZt (�0�iZ)g obey the

central limit theorem.

Variance-Covariance Matrix Estimation Assumptions

VC1. ĉT =cT
p! 1, where the non-stochastic positive sequence cT satis�es cT = o(1)

and c�1T = o(T 1=2).

VC2. E[F (
t)4] � F1 <1, 8t, where F (
t) was de�ned in assumption AN1(a).
VC3. (a) T�1

PT
t=1rqZt (�0�iZ)r

0qZt (�
0
�jZ
)
p! Aij

(b)T�1
PT
t=1 h

�iZ
t (qZt (�

0
�iZ
)j
t)rqZt (�0�iZ)r

0qZt (�
0
�iZ
)
p! D�iK

(c) T�1
PT
t=1 Ut

h
r0qXt (�0�i)

R 0
�1 ht(q

X
t (�

0
�i
); y)dy +r0qYt (�0�i)

R 0
�1 ht(x; q

Y
t (�

0
�i
))dx

i
p!

G�i

Appendix B - Proofs of theorems in the text

Proof of Theorem 1

1. Symmetry: F�t
�
qYt (�

0
�Y ) j qXt (�0�X)

�
� Pr(yt�qYt (�0�Y ); xt�qXt (�0�X))

Pr(xt�qXt (�0�X))
=

Pr(yt�qYt (�0�Y ); xt�qXt (�0�X))
Pr(yt�qYt (�0�Y ))

� F�t
�
qXt (�

0
�X) j qYt (�0�Y )

�
, because

Pr
�
xt � qXt (�

0
�X)

�
= Pr

�
yt � qYt (�

0
�Y )
�
= �.

2. Co-monotonicity

(= Co-monotonicity requires that Ft(y1; x2) = minfF Yt (y1); FXt (x2)g, where F Yt (y)
and FXt (x) are the distribution functions of yt and xt, respectively. Let y

1 = qYt (�
0
�Y )

and x2 = qXt (�
0
�X) and suppose �rst that � < 0:5. We get Ft(qYt (�

0
�Y ); q

X
t (�

0
�X)) =

F Yt (q
Y
t (�

0
�Y )) = FXt (q

X
t (�

0
�X)) = �. Therefore, p(�) � Ft(qYt (�

0
�Y );q

X
t (�

0
�X))

FXt (q
X
t (�

0
�X))

=
FXt (q

X
t (�

0
�X))

FXt (q
X
t (�

0
�X))

=

1. For � > 0:5, simply note that Pr(yt � y1; xt � x2) = 1 � Pr(yt � y1) � Pr(xt �
x2) + Pr(yt � y1; xt � x2) = 1� �.
=) Suppose, without loss of generality, that Pr(yt � y1) = Pr(xt � x1) � Pr(xt �
x2). Suppose �rst that Pr(yt � y1) = Pr(yt � y2) < 0:5. Then, Pr(yt � y1; xt �
x2) = Pr(yt � y1) Pr(xt � x2 j yt � y1). But Pr(xt � x2 j yt � y1) = Pr(xt �
x1 + (x2 � x1) j yt � y1) = Pr(xt � x1 j yt � y1) + Pr(x1 � xt � x2 j yt �
y1) � Pr(xt < x1 j yt < y1) = 1, so Pr(xt � x2 j yt � y1) = 1. Therefore

Pr(yt � y1; xt � x2) = Pr(yt � y1) = minfF Yt (y1); FXt (x2)g. Suppose now that

Pr(yt � y1) > 0:5. Then, Pr(yt � y1; xt � x2) = Pr(xt � x2) Pr(yt � y1jxt � x2).

But Pr(yt � y1jxt � x2) � Pr(yt � y2jxt � x2) = 1. So Pr(yt � y1; xt � x2) =
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Pr(xt � x2) = 1 � Pr(xt � x2) � Pr(yt � y1) + Pr(yt � y1; xt � x2), which implies

Pr(yt � y1; xt � x2) = Pr(yt � y1) = minfF Yt (y1); FXt (x2)g.

3. Counter-monotonicity

(= Counter-monotonicity requires that Ft(y1; x2) = maxfF Yt (y1) + FXt (x
2)� 1; 0g.

Assume, without loss of generality, that F Yt (y
2) = FXt (x

2) � FXt (x
1) = F Yt (y

1).

Consider �rst the case F Yt (y
1) + FXt (x

2) � 1. Then Ft(y
1; x2) � Ft(y

1; x1) = 0

implying p(�) = 0. Consider now the case F Yt (y
1) + FXt (x

2) � 1. Note that

Pr(yt � y1; xt � x2) = 1 � FXt (x
2) � F Yt (y

1) + Ft(y
1; x2) = 0. Therefore, 0 =

Pr(yt � y1; xt � x2) � Pr(yt � y2; xt � x2) implying p(�) = 0.

4. Independence:

(= By independence Ft(y1; x1) = F Yt (y
1)FXt (x

1). So Pr(yt � y1 j xt � x1) =
Pr(yt�y1) Pr(xt�x1)

Pr(xt�x1) = �. Q.E.D.

Proof of Corollary 1 - Rewrite equation (B2) in the proof of theorem 2 of Engle

and Manganelli (2004) for yt, xt and all �i:

D�1Y T
1=2(�̂�1Y � �

0
�1Y )

d! T�1=2
PT
t=1  t(�

0
�1Y )

D�1XT
1=2(�̂�1X � �

0
�1X)

d! T�1=2
PT
t=1  t(�

0
�1X)

...

D�mY T
1=2(�̂�mY � �

0
�mY )

d! T�1=2
PT
t=1  t(�

0
�mY )

D�mXT
1=2(�̂�mX � �

0
�mX)

d! T�1=2
PT
t=1  t(�

0
�mX)

where  t(�
0
�iY
) � [�i � I(yt � qYt (�

0
�iY
))]rqYt (�0�iY ), i = 1; :::;m and  t(�

0
�iX
) is

de�ned analogously. De�ning  t(�
0
�i
) � [ t(�

0
�iY
)0;  t(�

0
�iX
)0]0 and stacking every

pair Y and X together:

D�1T
1=2(�̂�1 � �

0
�1)

d! T�1=2
PT
t=1  t(�

0
�1)

...

D�mT
1=2(�̂�m � �

0
�m)

d! T�1=2
PT
t=1  t(�

0
�m)

Stacking once again these relationships together, we get:

D T 1=2(�̂ � �0) d! T�1=2
TX
t=1

2664
 t(�

0
�1)
...

 t(�
0
�m)

3775
The result follows from application of the central limit theorem (assumption AN4).

Q.E.D.
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Proof of Theorem 2 - We denote with
P
C and

P
N the summation over the

observations in crisis and non crisis periods. The OLS estimators for a generic �i are:

~̂�1�i =

P
N I

Y X
t (�̂�i)P

N I
X
t (�̂�i)

and

~̂�2�i =

P
C I

Y X
t (�̂�i)P

C I
X
t (�̂�i)

�
P
N I

Y X
t (�̂�i)P

N I
X
t (�̂�i)

Next, we show that both numerators and denominators, when appropriately re-scaled,

converge to well de�ned probabilities. We consider only one case, as the others can

be obtained similarly. We show �rst that C�1
nP

C [I
X
t (�̂�i)� I

X
t (�

0
�i
)]
o
= op(1).

De�ne �X�it � xt � qXt (�
0
�i
), �̂X�it � xt � qXt (�̂�i) and �t(�̂�i) � qXt (�

0
�i
) � qXt (�̂�i).

Suppose that �t(�̂�i) > 0. The same reasoning goes through for �t(�̂�i) < 0. Then:

jIXt (�̂�i)� I
X
t (�

0
�i
)j = jI(�X�it � �t(�̂�i))� I(�

X
�it
� 0)j

� I(0 � �X�it � �t(�̂�i))

Therefore, applying the mean value theorem:

EjIXt (�̂�i)� I
X
t (�

0
�i
)j � Ej

R �t(�̂�i )
0

~h�iXt (�) d�j
= Ej~h�iXt (�t(�̂�i))rq

X
t (�

�
�i
)(�̂�i � �

0
�i
)j

where ~h�iXt (�) is the pdf of (xt � qXt (�
0
�i
)) and ���i lies between �̂�i and �

0
�i
. Now

choose d > 0 arbitrarily small and T su¢ ciently large such that jj�̂�i � �0�i jj < d.

This, together with assumptions AN1(a) and AN2(a), implies that

EjIXt (�̂�i)� I
X
t (�

0
�i
)j � EjHjj�̂�i � �

0
�i
jjF (
t)j

� EjHdF (
t)j
� EjHdF0j = O(d)

Since d can be chosen arbitrarily small, this result implies that:

E
���C�1 nPC [I

X
t (�̂�i)� I

X
t (�

0
�i
)]
o��� � C�1

nP
C EjIXt (�̂�i)� I

X
t (�

0
�i
)j
o

= O(d) = op(1)

Now we need to show that C�1
P
C

�
IXt (�

0
�i
)� Pr(xt � qXt (�

0
�i
))
�
= op(1). This

term has expectation 0 and variance equal to:

C�2
X
C

E[IXt (�
0
�i
)� Pr(xt � qXt (�

0
�i
))]2 = C�1�i(1� �i)

T!1! 0

because all the cross products have expectation 0. Exactly the same reasoning is valid

for the other terms. Q.E.D.
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Proof of Theorem 3 - Consider �rst the case m = 1 and drop the subscript �

for notational convenience. De�ne:

gt(�̂) � Rt(�̂)� ��0

where ��0 �
�
E[IY Xt (�0)]; E[IY Xt (�0) j crisis]

�0
. We show �rst that T�1=2

PT
t=1 gt(�̂) =

T�1=2
PT
t=1fgt(�0) + ~Gt(�̂ � �0)g+ op(1), where ~Gt � Ut[r0qXt (�0)

R 0
�1

~ht(0; �)d� +

r0qYt (�0)
R 0
�1

~ht(�; 0)d�]and ~ht(�; �) is the joint pdf of
�
xt � qXt (�0); yt � qYt (�0)

�
.

De�ne rt(�̂) �
h
gt(�̂)� gt(�0)

i
� ~Gt(�̂ � �0). We need to show that rT (�̂) �

T�1=2jj
PT
t=1 rt(�̂)jj converges to zero in probability, that is, 8� > 0, limT!1 P

�
rT (�̂) > �

�
=

0, or, by the Chebyschev inequality, that limT!1E[rT (�̂)] = 0

First note that

gt(�̂)� gt(�0) = Ut

h
IY Xt (�̂)� IY Xt (�0)

i
= Ut

h
I(�t � �Yt (�̂))I(�t � �Xt (�̂))� I(�t � 0)I(�t � 0)

i
where �Yt (�̂) � qYt (�̂)� qYt (�0) and �Xt (�̂) � qXt (�̂)� qXt (�0).

Assume now, without loss of generality, that both �Yt (�̂) and �
X
t (�̂) are greater

than zero. The same reasoning goes through in the other cases.

gt(�̂)� gt(�0) = Ut

hh
I(�t � 0) + I(0 < �t � �Yt (�̂)

i
[I(�t � 0)+

+I(0 < �t � �Xt (�̂)
i
� I(�t � 0)I(�t � 0)

i
= Ut

h
I(�t � 0)I(�t � 0) + I(�t � 0)I(0 < �t � �Xt (�̂))+

+I(�t � 0)I(0 < �t � �Yt (�̂)) + I(0 < �t � �Yt (�̂))�
�I(0 < �t � �Xt (�̂))� I(�t � 0)I(�t � 0)

i
Putting these results together, we get:

E[rT (�̂)] � T�1=2
TX
t=1

EjjUt[I(�t < 0)I(0 < �t < �Xt (�̂)) + (15)

+ I(�t < 0)I(0 < �t < �Yt (�̂)) + (16)

+ I(0 < �t < �Yt (�̂))I(0 < �t < �Xt (�̂))� (17)

�[r0qXt (�0)
Z 0

�1
~ht(0; �)d� +

+r0qYt (�0)
Z 0

�1
~ht(�; 0)d�](�̂ � �0)]jj
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For the expectation in (15), applying Holder�s inequality (EjjY jj � jjE(Y )jj), we have:

E
h
UtI(�t < 0)I(0 < �t < �Xt (�̂))

i
= E

h
UtEt

h
I(�t < 0)I(0 < �t < �Xt (�̂))

ii
= E

h
Ut
R 0
�1

R �Xt (�̂)
0

~ht(�; �)d�d�
i

= E
h
Ut
R 0
�1

~ht(0; �)r0qXt (��)(�̂ � �0)d�
i

where �� lies between �̂ and �0. For (16):

E
h
UtI(�t < 0)I(0 < �t < �Yt (�̂))

i
= E

h
UtEt

h
I(�t < 0)I(0 < �t < �Yt (�̂))

ii
= E

h
Ut
R 0
�1

R �Yt (�̂)
0

~ht(�; �)d�d�
i

= E
h
Ut
R 0
�1

~ht(�; 0)r0qYt (���)(�̂ � �0)d�
i

where ��� lies between �̂ and �0. For (17):

E
h
UtI(0 < �t < �Yt (�̂))I(0 < �t < �Xt (�̂))

i
= E

h
UtEt

h
I(0 < �t < �Yt (�̂))I(0 < �t < �Xt (�̂))

ii
= E

h
Ut
R �Yt (�̂)
0

R �Xt (�̂)
0

~ht(�; �)d�d�
i

= E
h
Ut
R �Yt (�̂)
0

~ht(0; �)r0qXt (��)(�̂ � �0)d�
i

= E
nh
Ut~ht(0; 0)r0qYt (���)r0qXt (��)(�̂ � �0)+

+
R �Yt (�̂)
0

~ht(0; �)r0qXt (��)d�
i
(�̂ � �0)

o
= E

nh
2Ut~ht(0; 0)r0qYt (���)r0qXt (��)(�̂ � �0)

i
(�̂ � �0)

o
where �� and ��� lie between �̂ and �0. This last term is O(k�̂ � �0k2). So:

ErT (�̂) � T�1=2
PT
t=1 jjUtE[

R 0
�1

~ht(0; �)d�r0qXt (��)(�̂ � �0)+
+
R 0
�1

~ht(�; 0)d�r0qYt (���)(�̂ � �0)+
+2~ht(0; 0)r0qYt (���)r0qXt (��)(�̂ � �0)(�̂ � �0)
�(r0qXt (�0)

R 0
�1

~ht(0; �)d� +r0qYt (�0)
R 0
�1

~ht(�; 0)d�)(�̂ � �0)]jj

= T�1=2
PT
t=1 jjUtE[

R 0
�1

~ht(0; �)[r0qXt (��)�r0qXt (�0)](�̂ � �0)d�+
+
R 0
�1

~ht(�; 0)[r0qYt (���)�r0qYt (�0)](�̂ � �0)d�+
+2~ht(0; 0)r0qYt (���)r0qXt (��)(�̂ � �0)(�̂ � �0)]jj

� T�1=2
PT
t=1 jjE[M(
t; ��; �0)(�̂ � �0)+

+M(
t; �
��; �0)(�̂ � �0)+

+2HF (
t)
2jj�̂ � �0jj]
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= T�1=2
PT
t=1Op(jj�̂ � �0jj2)

= op(1)

because �̂ � �0 = op(T
�1=2). Therefore:

T�1=2
TX
t=1

gt(�̂) = T�1=2
TX
t=1

gt(�
0) + ~G

p
T (�̂ � �0) + op(1) (18)

Furthermore, from the proof of corollary 2 we have:

DT 1=2(�̂ � �0) d! T�1=2
TX
t=1

 t(�
0) (19)

Combining these two relations we get:

T�1=2
PT
t=1 gt(�̂) = T�1=2

PT
t=1 gt(�

0) + ~GD�1T�1=2
PT
t=1  t(�

0)

= T�1=2
PT
t=1

h
gt(�

0) + ~GD�1 t(�
0)
i

Since ~G
p! G, application of the central limit theorem yields the result.

For the case m > 2, simply stack the above relationships together for each �i to
get:

T�1=2
TX
t=1

gt(�̂) = T�1=2
TX
t=1

�
[gt(�

0
�i
)]mi=1 + diag(G�i)D

�1[ t(�
0
�i
))]mi=1

�
(20)

The result follows. Q.E.D.

Proof of Theorem 4 - The proof is similar to the proof of Theorem 3 of Engle

and Manganelli (2004). Drop the subscript � for notational convenience and de�ne

~GX � (2TcT )�1
TX
t=1

I(j�tj < cT )I(�t < 0)Utr0�qXt (�0) (21)

The other term of G can be estimated analogously. We �rst show that ĜX� ~GX =
op(1) and then that ~GX �GX = op(1). De�ne �̂t � xt � qXt (�̂) and �̂t � yt � qYt (�̂).

Then:

jjĜX � ~GX jj = cT
ĉT
jj(2cTT )�1PT

t=1 I(j�̂tj < ĉT )I(�̂t < 0)�
�I(j�tj < cT )I(�t < 0)Utr0�qXt (�̂)+
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+I(j�tj < cT )I(�t < 0)Ut

h
r0�qXt (�̂)�r0�qXt (�0)

i
+

+ cT�ĉT
cT

I(j�tj < cT )I(�t < 0)Utr0�qXt (�0)jj
Note that �̂t � �t � �Yt (�̂) and �̂t � �t � �Xt (�̂). We can rewrite the indicator

functions in the �rst line as:

jI(j�̂tj < ĉT )I(�̂t < 0)� I(j�tj < cT )I(�t < 0)j =
= jI(j�t � �Xt (�̂)j < ĉT )I(�t � �Yt (�̂) < 0)� I(j�tj < cT )I(�t < 0)j
= jI(j�t � �Xt (�̂)j < ĉT )[I(�t < 0) + I(0 < �t < �Yt (�̂))I(�

Y
t (�̂) > 0)�

�I(�Yt (�̂) < �t < 0)I(�
Y
t (�̂) < 0)]� I(j�tj < cT )I(�t < 0)j

�
���hI(j�t � �Xt (�̂)j < ĉT )� I(j�tj < cT )

i
I(�t < 0)

���+
+I(j�t � �Xt (�̂)j < ĉT )I

�
�
����Yt (�̂)��� < �t <

����Yt (�̂)����
Next note that:���hI(j�t � �Xt (�̂)j < ĉT )� I(j�tj < cT )

i
I(�t < 0)

��� �
� I

�
j�t + cT j < j�Xt (�̂)j+ jcT � ĉT j

�
+

+I
�
j�t � cT j < j�Xt (�̂)j+ jcT � ĉT j

�
Therefore:

jjĜX � ~GX jj � cT
ĉT
(2cTT )

�1PT
t=1f[I

�
j�t + cT j < j�Xt (�̂)j+ jcT � ĉT j

�
+

+I
�
j�t � cT j < j�Xt (�̂)j+ jcT � ĉT j

�
]F (
t)+

+I(j�t � �Xt (�̂)j < ĉT )I
�
�
����Yt (�̂)��� < �t <

����Yt (�̂)����F (
t)+
+I(j�tj < cT )I(�t < 0)M(
t; �̂; �

0)+

+
��� cT�ĉTcT

��� I(j�tj < cT )I(�t < 0)F (
t)
o

� cT
ĉT
(A1 +A2 +A3 +A4)

whereM(
t; �̂; �0) and F (
t) are de�ned in assumptions AN1 of Engle and Man-

ganelli (2004).

Now note that for any arbitrarily small d > 0, there always exists �T su¢ ciently

large such that 8T > �T ,
��� cT�ĉTcT

��� < d and c�1T jj�̂ � �0jj < d. Next we show that

E(Ai) = O(d), i = 1; 2; 3; 4, which implies that jjĜX � ~GX jj can be made arbitrarily
small by choosing d su¢ ciently small.

E(A1) � (2cTT )�1E
PT
t=1[I

�
j�t + cT j < j�Xt (�̂)j+ jcT � ĉT j

�
+

+I
�
j�t � cT j < j�Xt (�̂)j+ jcT � ĉT j

�
]F (
t)

= (2cTT )
�1E

PT
t=1[I

�
j�t + cT j < cT jrqXt (��)(�̂ � �0)=cT j+ cT jcT � ĉT j=cT

�
+

+I
�
j�t � cT j < cT jrqXt (��)(�̂ � �0)=cT j+ cT jcT � ĉT j=cT

�
]F (
t)

� (2cTT )�1E
PT
t=1Ef[I (j�t + cT j < cTd[F (
t) + 1])+

+I (j�t � cT j < cTd[F (
t) + 1])]F (
t)j
tg
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= (2cTT )
�1E

PT
t=1[

R cT d[F (
t)+1]�cT
�cT d[F (
t)+1]�cT h

X
t (�)d�+

+
R cT d[F (
t)+1]+cT
�cT d[F (
t)+1]+cT h

X
t (�)d�]F (
t)

� (2cTT )�1E
PT
t=1 [2cTd[F (
t) + 1]H + 2cTd[F (
t) + 1]H]F (
t)

where H is the maximum height of the density function (de�ned in AN2)

= (2cTT )
�1E

PT
t=1

�
4cTd[F (
t)

2 + F (
t)]H
�

� (2cTT )�1
PT
t=1 [4cTd[F0 + F0]H]

= T�1
PT
t=1 [2d[F0 + F0]H]

= [2d[F0 + F0]H]

= O(d)

E(A2) � (2cTT )�1E
PT
t=1 I(j�t��Xt (�̂)j < ĉT )I

�
�
����Yt (�̂)��� < �t <

����Yt (�̂)����F (
t)
� (2cTT )�1E

PT
t=1 I

�
�
���rqYt (��)(�̂ � �0)��� < �t <

���rqYt (��)(�̂ � �0)����F (
t)
� (2cTT )�1E

PT
t=1 I

�
�
���cTF (
t)(�̂ � �0)=cT ��� < �t <

���cTF (
t)(�̂ � �0)=cT ����F (
t)
� (2cTT )�1E

PT
t=1 I (�cTF (
t)d < �t < cTF (
t)d)F (
t)

= (2cTT )
�1E

PT
t=1

R cTF (
t)d
�cTF (
t)d h

Y
t (�)d�F (
t)

� (2cTT )�1E
PT
t=1 2cTF (
t)dHF (
t)

� T�1E
PT
t=1 F0dH

= F0dH

= O(d)

E(A3) � (2cTT )�1E
PT
t=1 I(j�tj < cT )I(�t < 0)M(
t; �̂; �

0)

� (2cTT )�1E
PT
t=1M(
t; �̂; �

0)

� (2cTT )�1
PT
t=1 cTM0jj�̂ � �0jj=cT

� (2T )�1
PT
t=1M0d

=M0d=2

= O(d)

E(A4) � (2cTT )�1E
PT
t=1

��� cT�ĉTcT

��� I(j�tj < cT )I(�t < 0)F (
t)

� (2cTT )�1E
PT
t=1 dI(j�tj < cT )F (
t)

= (2cTT )
�1E

PT
t=1 d

R cT
�cT h

X
t (�)d�F (
t)

� (2cTT )�1E
PT
t=1 d2cTHF (
t)

� T�1
PT
t=1 dHF0

= dHF0

= O(d)

It remains to show that ~GX �GX = op(1).
~GX �GX = (2TcT )�1

PT
t=1 I(j�tj < cT )I(�t < 0)Utr0�qXt (�0)�
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�(2TcT )�1
PT
t=1E [I(j�tj < cT )I(�t < 0)j
t]Utr0�qXt (�0)+

+(2TcT )
�1PT

t=1E [I(j�tj < cT )I(�t < 0)j
t]Utr0�qXt (�0)�
�E

n
T�1

PT
t=1 Utr0qXt (�0�)

R 0
�1 ht(0; �)d�

o
The term in the �rst two lines has expectation equal to 0 and variance equal to:

(2TcT )
�2E

nPT
t=1 (I(j�tj < cT )I(�t < 0)� E [I(j�tj < cT )I(�t < 0)j
t])Utr0�qXt (�0)

o2
= (2TcT )

�2E
nPT

t=1E (I(j�tj < cT )I(�t < 0)� E [I(j�tj < cT )I(�t < 0)j
t])2
�
Utr0�qXt (�0)

�2o
� (2TcT )�2

PT
t=1E (F (
t))

2

� (2TcT )�2
PT
t=1 F0

= (4Tc2T )
�1F0

= o(1)

For the term in the last two lines, instead, note that:���(2cT )�1E [I(j�tj < cT )I(�t < 0)j
t]�
R 0
�1 ht(0; �)d�

���
=
���(2cT )�1 R cT�cT R 0�1 ht(�; �)d�d� �

R 0
�1 ht(0; �)d�

���
�
���(2cT )�12cT R 0�1 ht(c

�; �)d� �
R 0
�1 ht(0; �)d�

���
where c� � max�2[�cT ;cT ]

R 0
�1 ht(�; �)d�

=
���R 0�1 ht(c

�; �)d� �
R 0
�1 ht(0; �)d�

���
� Ljc�j by assumption AN2(b)

� LcT

= o(1)

The result follows. Q.E.D.
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Table 1

Descriptive statistics of daily returns on stock market indices

This table reports the summary statistics of daily returns of the four country indices. Data are

from MSCI and returns are continuously compounded. The signi�cance level for excess skewness

and excess kurtosis is based on test statistics developed by D�Agostino, Belanger and D�Agostino

(1990). The Jarque-Bera (J-B) test for normality combines excess skewness and kurtosis, and is

asymptotically distributed as �2m with m = 2 degrees of freedom. � and �� denote 5% and 1%

signi�cance levels, respectively.

Panel A: Overall sample - December 31, 1987 �June 3, 2004

Argentina Brazil Chile Mexico

Summary statistics

Mean 0.29 0.49 0.08 0.11

Minimum -20.40 -21.74 -6.05 -12.69

Maximum 39.04 24.66 8.60 12.14

Std. Dev. 3.35 2.68 1.14 1.61

Skewness 1.58�� 0.25�� 0.23�� 0.07

Kurtosis 5.74�� 11.98�� 3.36�� 4.86��

J�B 25055.82�� 5354.92�� 1894.82�� 3881.02��

Correlations and sample size

Argentina 1.000 0.220 0.208 0.226

3926 3682 3749 3718

Brazil 1.000 0.284 0.319

3883 3721 3686

Chile 1.000 0.273

3975 3741

Mexico 1.000

3949
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Table 1�continued

Panel B: Tranquil Days

Argentina Brazil Chile Mexico

Standard deviations, correlations and sample size

Argentina 3.372 0.139 0.135 0.167

3579 3350 3411 3396

Brazil 2.532 0.184 0.254

3540 3396 3363

Chile 1.072 0.217

3630 3417

Mexico 1.522

3605

Panel C: Crisis Days

Argentina Brazil Chile Mexico

Standard deviations, correlations and sample size

Argentina 3.083 0.812 0.724 0.673

347 332 338 322

Brazil 3.806 0.704 0.602

343 325 323

Chile 1.693 0.505

345 324

Mexico 2.321

344
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Table 2

Test of di¤erence in tail co-incidences between crisis and tranquil periods

This table reports the sum of ~̂�2�i over �, i.e.
b� ��; ��� =P�2[�;��] ~̂�

2
�i
, as well as the associated

standard errors. The resulting t statistics provides a joint test for contagion which follows from

De�nition 1. Statistics indicated in bold are NOT signi�cant at the 5% level.

Country pairs Lower tail (� 6 0:5) Upper tail (� > 0:5)

Panel A b� (0; 0:5) b� (0:5; 1)
Stat. s.e. Statistic s.e.

Mex. �Bra. 7.34 3.50 3.41 2.61

Mex. �Arg. 9.67 3.57 7.27 2.89

Mex. �Chi. 5.85 3.27 5.36 2.88

Bra. �Arg. 13.36 3.63 12.28 3.32

Bra. �Chi. 9.26 3.36 8.86 3.19

Arg. �Chi. 10.35 3.27 10.51 3.21

Panel B b� (0; 0:25) b� (0:25; 0:5) b� (0:5; 0:75) b� (0:75; 1)
Stat. s.e. Stat. s.e. Stat. s.e. Stat. s.e.

Mex. �Bra. 3.74 2.28 3.74 1.73 3.23 1.65 0.33 1.42

Mex. �Arg. 6.09 2.29 3.80 1.76 3.50 1.68 3.93 1.68

Mex. �Chi. 3.03 2.16 2.87 1.63 2.85 1.59 2.59 1.79

Bra. �Arg. 7.54 2.28 6.04 1.82 4.52 1.71 7.96 2.02

Bra. �Chi. 4.43 2.13 5.01 1.74 3.48 1.61 5.45 2.00

Arg. �Chi. 4.99 2.08 5.58 1.71 4.17 1.64 6.56 2.01

Panel C b� (0; 0:1) b� (0:1; 0:5) b� (0:5; 0:9) b� (0:9; 1)
Stat. s.e. Stat. s.e. Stat. s.e. Stat. s.e.

Mex. �Bra. 1.86 1.34 5.61 2.74 3.37 2.29 -0.02 0.74

Mex. �Arg. 2.76 1.29 7.16 2.83 5.33 2.44 2.03 0.87

Mex. �Chi. 2.13 1.33 3.77 2.47 3.63 2.29 1.77 1.09

Bra. �Arg. 3.75 1.23 9.97 2.92 9.22 2.79 3.46 1.01

Bra. �Chi. 2.15 1.26 7.25 2.70 6.51 2.62 2.55 1.10

Arg. �Chi. 2.43 1.23 7.99 2.56 8.05 2.62 2.71 1.15
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Figure 1

The Contagion Box

This �gure plots the probability that a random variable yt falls below its �-quantile conditional on another

random variable xt being below its �-quantile. The case of perfect positive correlation (co-monotonicity),

independence, and perfect negative correlation (counter-monotonicity) are represented.

Theoretical co-incidences likelihood: co-monotonicity, independence, and counter-monotonicity
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Figure 2

Brazil�Argentina simulated and estimated tail co-dependence likelihood

These �gures plot the estimated probability that the second country equity index returns falls below its

�-quantile conditional on the �rst country index returns being below its �-quantile. The quantiles of

each returns series are estimated using unconditional or conditional quantile regressions. The estimated

co-incidence likelihood is compared to a benchmark of independence or to simulated tail co-incidence

based on either a bivariate normal or a bivariate student�t distribution with 5 degrees of freedom. The
simulations are calibrated to match the sample volatilities and correlation of the returns series. Daily

index returns are from MSCI and cover the period January 1, 1988 to June 4, 2004 (n = 3682).

Panel A: Unconditional and conditional quantile regressions

Panel B: Simulations and conditional quantile regression
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Figure 3

P-values of the Dynamic Quantile test

These �gures plot the p-values of the in-sample DQ test statistic of Engle and Manganelli (2004). The

DQ statistic tests the null hypothesis of no autocorrelation in the exceedances of the quantiles, as correct

speci�cation would require.

Panel A: Argentina

Panel B: Brazil
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Figure 4

Brazil�Argentina estimated probabilities in crisis vs. tranquil periods

This �gure plots the estimated probability that the second country equity index returns falls below its

�-quantile conditional on the �rst country index returns being below its �-quantile in crisis and in tranquil

periods. The quantiles of each returns series are estimated using conditional quantile regressions. The

two standard error bands around the estimated co-incidence likelihood in crisis periods are plotted as

dashed line. Daily index returns are from MSCI and cover the period January 1, 1988 to May 31, 2004

(n = 3682). The crisis sample includes 332 observations and cover the sub-periods November 1, 1994

to March 31 1995 (Tequila crisis), June 2, 1997 to December 31, 1997 (Asian crisis), and August 3, 1998

to December 31, 1998 (Russian and LTCM crisis).

Estimated probabilities from conditional quantile regression in tranquil and crisis times
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Figure 5

Estimated tail co-dependence likelihood in crisis vs. tranquil periods

These �gures plot the estimated probability that the second country equity index returns falls

below its �-quantile conditional on the �rst country index returns being below its �-quantile in

crisis and in tranquil periods. The quantiles of each returns series are estimated using conditional

quantile regressions. The two standard error bands around the estimated co-incidence likelihood in

crisis periods are plotted as dashed line. Daily index returns are from MSCI and cover the period

January 1, 1988 to May 31, 2004 (nMax=3,749, Chile-Argentina, nMin=3,682, Brazil-Argentina).

The crisis sample includes a maximum of 338 (Min: 322) observations and cover the sub periods

November 1, 1994 to March 31 1995 (Tequila crisis), June 2, 1997 to December 31, 1997 (Asian

crisis), and August 3, 1998 to December 31, 1998 (Russian crisis).

Panel A: Mexico �Brazil

Panel B: Mexico �Argentina
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Figure 5 - continued

Estimated tail co-dependences in crisis vs. tranquil periods

Panel C: Mexico �Chile

Panel D: Argentina �Chile
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Figure 5 - continued

Estimated tail co-dependences in crisis vs. tranquil periods

Panel E: Brazil �Chile
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Figure 6

Volatility Crisis for Brazil and Argentina

This �gure plots the probability of co-movements between Argentina and Brazil in high and low volatility

periods.
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