Macro-Financial Implications of the Surging Global Demand (and Supply) of International Reserves

Enrique G. Mendoza and NBER

Vincenzo Quadrini University of Pennsylvania University of Southern California NBER and CEPR

> **International Monetary Fund 25th Jacques Polak Annual Research Conference** November 14, 2024

FACT 1: Surge in EMEs' reserves since 1990s

FACT 2: Surge in AEs' public debt since 2008

Public Debt Advanced Economies

Questions

- 1. What are the implications for credit markets?
 - interest rates
 - private-sector credit
 - leverage
 - financial stability, etc.
- 2. What are the macroeconomic implications?
 - global imbalances
 - frequency and severity of crises (volatility)
 - international externalities
 - governments' ability to respond to crises
 - benefits of FX accumulation, etc.

Methodology & findings

We analyze a model in which private debt is (a) defaultable and (b) akin to inside money (has productive use or convenience yield), and find that:

Methodology & findings

We analyze a model in which private debt is (a) defaultable and (b) akin to inside money (has productive use or convenience yield), and find that:

- 1. Surge in **EMEs FX reserves** causes:
 - Lower world interest rate.
 - Higher private leverage.
 - Higher macroeconomic volatility in both AEs and EMEs (reserves externality).

Methodology & findings

We analyze a model in which private debt is (a) defaultable and (b) akin to inside money (has productive use or convenience yield), and find that:

- 1. Surge in **EMEs FX reserves** causes:
 - Lower world interest rate.
 - Higher private leverage.
 - Higher macroeconomic volatility in both AEs and EMEs (reserves externality).
- 2. Surge in **AEs public debt** causes:
 - Higher world interest rate.
 - Lower private leverage.
 - Lower macroeconomic volatility in both AEs and EMEs (debt externality).

A TWO-REGION MELTZER DIAGRAM INTUITION

Global asset market equilibrium

Advanced Economies

Emerging Economies

Effects of higher FX in EMEs: NFA & interest rate

Effects of higher FX in EMEs: Private-sector leverage

Why does higher leverage increase output volatility?

- Borrowers default when debt exceeds liquidation value of capital (high leverage)
- Liquidation price is stochastic (self-fulfilling equilibrium)
- Higher leverage thus makes private default larger and more likely
- Larger default causes larger redistribution from lenders to borrowers
- Because debt has a productive use for lenders, larger redistribution causes deeper recessions.
- International spillovers occur because of cross-border debt holdings

MODEL DESIGN

Two-region world economy

Financial asset purchases from AEs lenders

Financial asset purchases from EMEs lenders

Intermediate goods producers (Net borrowers)

Technology & profits

• Continuum of firms produce intermediate goods with C-D technology

$$x_t = l_t^{\gamma} k_t^{1-\gamma}$$

$$l_t = Labor$$

 $k_t = Capital (grows exogenusly, depreciates at rate τ)$

• Operating profits

$$p_t x_t - w_t l_t$$

 $p_t =$ Price of intermediate goods $w_t =$ Wage rate

Default, leverage & crises

- Borrow $q_{t-1}d_t$ at t-1 promising to repay d_t at t, but actual repayment is $\delta_t d_t$.
- Default and renegotiation occur when debt exceeds liquidation value of capital: $d_t > \ell_t k_t$
- Liquidation price is stochastic (model's only shock):

$$\ell_t = \left\{ egin{array}{ccc} 1 & {
m with prob.} \ 1-\lambda \ \kappa < 1 & {
m with prob.} \end{array}
ight.$$

 $-\kappa$ is a country-specific parameter (debt supply shifter).

• A financial crisis occurs when $d_t > \ell_t k_t$ and $\ell_t = \kappa$

Convex borrowing cost & supply of assets $\varphi(d_{t+1}, \kappa k_{t+1}) = \eta \left[\frac{\max\{0, d_{t+1} - \kappa k_{t+1}\}}{d_{t+1}} \right]^2 d_{t+1},$ $\overline{R}_t^{-1} = \beta + \Phi\left(\frac{d_{t+1}}{\kappa k_{t+1}}\right),$ with $\Phi'(\cdot) \ge 0$ Supply of Assets Risk-free (borrowing) interest rate, \overline{R}_t

Final goods producers (entrepreneurs) (Net lenders)

Utility, technology & working capital

- Expected log utility: $E_0 \sum_{t=0}^{\infty} \beta^t \ln(c_t^e)$
- Linear production function: $y_t = z x_t$

 $x_t = \text{inputs purchased at price } p_t$ z = country-specific productivity

- Profits: $\pi_t = \mathbf{z}x_t p_t x_t$
- Working capital constraint (wkc): $m_t \ge \phi p_t x_t$ (w. multiplier $\hat{\xi}_t$)

 $m_t = \text{financial wealth (post-default)}$ $\phi = \text{country-specific wk parameter (debt demand shifter)}$

Entrepreneurs' wealth & convenience yield

• Composition of post-default financial wealth:

$$m_t = \delta_{1,t} b_{1,t} + \delta_{2,t} b_{2,t} + b_{p,t},$$

 $b_{p,t} = \text{holdings of AEs govt. bonds chosen at } t - 1$ $b_{i,t} = \text{holdings of private bonds issued by region } i$ chosen at t - 1 $\delta_{i,t} = \text{fraction repaid by borrowers in region } i$ at t

• Convenience yield: if $\hat{\xi}_t > 0$, reduced demand for x_t implies

$$p_t < z, \qquad \pi_t = \frac{1}{\phi} \left(\frac{z}{p_t} - 1 \right) m_t > 0$$

- Default redistributes wealth causing recession (larger drops in x_t and p_t)

Demand for assets & intermediate goods

$$z_{t} = (1 + \hat{\xi}_{t}\phi)p_{t} \implies x_{t} = m_{t}/\phi p_{t} \quad \text{if } \hat{\xi}_{t} > 0$$

$$c_{t}^{e} = (1 - \beta)a_{t},$$

$$q_{1,t}b_{1,t+1} = \theta_{1,t}\beta a_{t},$$

$$q_{2,t}b_{2,t+1} = \theta_{2,t}\beta a_{t},$$

$$q_{p,t}b_{p,t+1} = (1 - \theta_{1,t} - \theta_{2,t})\beta a_{t}.$$

Demand for assets & intermediate goods

$$z_{t} = (1 + \hat{\xi}_{t}\phi)p_{t} \implies x_{t} = m_{t}/\phi p_{t} \quad \text{if } \hat{\xi}_{t} > 0$$

$$c_{t}^{e} = (1 - \beta)a_{t},$$

$$q_{1,t}b_{1,t+1} = \theta_{1,t}\beta a_{t},$$

$$q_{2,t}b_{2,t+1} = \theta_{2,t}\beta a_{t},$$

$$q_{p,t}b_{p,t+1} = (1 - \theta_{1,t} - \theta_{2,t})\beta a_{t}.$$

 $\theta_{1,t}$ and $\theta_{2,t}$ same across countries, solve

$$\mathbb{E}_{t} \left\{ \frac{\frac{\delta_{1,t+1}}{q_{1,t}}}{\theta_{1,t}\frac{\delta_{1,t+1}}{q_{1,t}} + \theta_{2,t}\frac{\delta_{2,t+1}}{q_{2,t}} + (1 - \theta_{1,t} - \theta_{2,t})\frac{1}{q_{p,t}}}{\frac{\delta_{2,t+1}}{q_{2,t}}} \right\} = 1,$$

$$\mathbb{E}_{t} \left\{ \frac{\frac{\delta_{2,t+1}}{q_{1,t}}}{\theta_{1,t}\frac{\delta_{1,t+1}}{q_{1,t}} + \theta_{2,t}\frac{\delta_{2,t+1}}{q_{2,t}} + (1 - \theta_{1,t} - \theta_{2,t})\frac{1}{q_{p,t}}}{\theta_{1,t}\frac{\delta_{1,t+1}}{q_{1,t}} + \theta_{2,t}\frac{\delta_{2,t+1}}{q_{2,t}} + (1 - \theta_{1,t} - \theta_{2,t})\frac{1}{q_{p,t}}} \right\} = 1.$$

Demand for Assets

Households & Government

Households

• Continuum of households with utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(c_t - z^{\frac{1}{\gamma}} \frac{h_t^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}} \right).$$

• Budget constraint

$$c_t = w_t h_t + \mathsf{div}_t + T_t$$

 $div_t = dividends$ from intermediate goods producers $T_t = transfers/taxes$ from home government

• Labor supply condition

$$z^{\frac{1}{\gamma}}h_t^{\frac{1}{\nu}} = w_t$$

Government budget constraints

- Reserves $(FX_{i,t})$ and AE's public debt $(D_{p,t})$ are time-varying but exogenous, taxes $(T_{i,t})$ balance the budget
- Government budget constraints:
 - Advanced Economies:

$$FX_{1,t} + q_{p,t}D_{p,t+1} = q_{p,t}FX_{1,t+1} + D_{p,t} + T_{1,t}$$

– Emerging Economies:

$$FX_{2,t} = q_{p,t}FX_{2,t+1} + T_{2,t}$$

QUANTITATIVE ANALYSIS

Methodology

- Goal: Quantify effects of reserves on macro dynamics & output volatility (in the paper also public debt and both reserves and debt)
- Counterfactual comparisons:

Scenario I: Detrended $FX_{i,t}$ and $D_{p,t}$ constant (at 1991 ratios to GDP). **Scenario II:** Detrended $FX_{i,t}$ take **observed** values & $D_{p,t}$ constant at 1991 GDP ratio

- Simulations: 10k 130-year simulations (random ℓ_t draws), last 30 years represent 1991-2020
- Calibration: Common parameters $(\beta, \gamma, \tau, \nu, \lambda, \eta, g)$ set to standard values or data averages; country-specific parameters (z_i, κ_i, ϕ_i) set so that simulated 1991 cross-sectional averages match 1991 data targets (GDP, private credit, NFA in AEs and U.S. real interest rate)
- Output volatility: Diff. between 95th and 5th percentile of each year's GDP in the cross section of 10k simulations (in percent of each cross-sectional mean)

Counterfactual simulation: Effect of surge in reserves

(actual reserves v. reserves constant at 1991 GDP ratio, AE's debt constant)

Surge in EMEs reserves increased volatility everywhere

Why did the surge in EMEs reserves increase volatility?

Welfare effects of surge in EMEs reserves

	ΔFs		FN	
	Hous.	Entr.	Hous.	
Impact FX Reserves	0.34	-1.82	-0.71	
Actual ResConstant Debt v. Constant ResConstant Debt				

• Advanced economies:

- Households gain: lower interest rate induces lower taxes to service public debt
- Entrepreneurs lose: reduced bond income and higher volatility offset higher profits

• Emerging economies:

- Households lose: FX akin to forced savings paid with taxes
- Entrepreneurs gain: higher profits offset reduced bond income and higher volatility (lower m than in AEs).

EXTENSION The stabilizing role of reserves

(why individual EMEs would like to accumulate reserves)

Using reserves to bailout entrepreneurs

• Entrepreneurs' losses in a financial crisis

$$Loss_{j,t} = (1 - \delta_{1,t})B_{1,j,t} + (1 - \delta_{2,t})B_{2,j,t}.$$

• Reserves pay for transfers to entrepreneurs for a fraction of their losses

$$Bail_{j,t} = Loss_{j,t} \cdot \left[1 - e^{-\alpha \left(\frac{FX_{j,t}}{Loss_{j,t}}\right)}\right].$$

Using reserves for bailouts reduces output volatility

CONCLUDING REMARKS

Concluding remarks: Surge in EMEs reserves

- Reserves global externality:
 - EMEs do not internalize that reserves reduce the world interest rate resulting in higher leverage and volatility (over-accumulation of reserves).
 - Similar to externality under currency mis-match (Das, Gopinath, Hall, Kim, Stein (23))
- Is the surge in EMEs reserves desirable for the world economy?
 - Reserves externality lowers interest rate and increases macro instability,
 - ...but also increases supply of assets (liquidity), improving efficiency in good times
 - Accordingly, welfare effects on households and entrepreneurs differ
 - Answer requires quantitative cost/benefit analysis.
- Argument for global coordination of liquidity provision (CLAAF's EMF proposal)

Concluding remarks: Surge in AEs Public Debt

• AEs public debt global externality:

- AEs do not internalize that their public debt provides liquidity to EMEs and increases efficiency (under-issuance of public debt).
- Higher liquidity also reduces leverage and instability
- Similar to Azzimonti, de Francisco, Quadrini (14).

• Is increase in AEs public debt desirable?

- Similar question and logic (in opposite direction) as for reserves
- ...but not all AEs debt are equal in terms of liquidity (exorbitant privilege)
- ...and debt sustainability and efficiency/distributional costs of taxation need to be considered (see D'Erasmo, Mendoza & Zhang (16))
- Answer requires quantitative cost/benefit analysis.

Common parameters

Description	Parameter	Value	Target	
Discount factor	eta	0.930	std. value	
Share of labor in production	γ	0.600	std. value	
Depreciation rate	au	0.080	std. value	
Elasticity of labor supply	u	1.000	std. value	
Probability of crises ($\varepsilon_{j,t} = 0$)	λ	0.040	freq. of fin. cri	
Borrowing cost	η	0.100	initial value	
Long-run productivity growth	g	0.010	mean prod. growt	

In the long-run, productivity grows at rate g in both regions, and the implied long-run growth rate of capital and output is $(1+g)^{1/\gamma} - 1$.

wth AEs

rises

Country-specific parameters

Model Parameters

Productivity Working capital coeffs. Crash liq. prices $z_1 = 0.474, z_2 = 0.205$ $\phi_1 = 1.658, \phi_2 = 0.543$ $\kappa_1 = 0.422, \kappa_2 = 0.184$

Targeted 1991 Data Moments

Gross Domestic Product AEs & EMEs Private Domestic Credit AEs & EMEs Net Foreign Asset position AEs US Real Interest Rate

Counterfactual simulation Public debt $D_{p,t}$ remains constant

Public debt issuance by AEs reduced volatility

Why did public debt reduce volatility?

Counterfactual simulation Reserves $FX_{1,t}$, $FX_{2,t}$, and Public debt $D_{p,t}$ remain constant

Combined effects of reserves & public debt reduce volatility

