

The Causal Effects of Global Supply Chain Disruptions on Macroeconomic Outcomes: Theory and Evidence

Xiwen Bai¹ Jesús Fernández-Villaverde² Yiliang Li ³ Francesco Zanetti⁴ November 12, 2024

¹Tsinghua University

²University of Pennsylvania

³University of International Business and Economics

⁴University of Oxford

- Lots of interest in the health of the global supply chain triggered by COVID-19 and the Red Sea crisis.
- Future wars? Geopolitical tensions?
- Question 1: What are the causal effects of global supply chain disruptions?
- Question 2: And what are the policy implications?

- 1. Data = A new machine learning algorithm to transform the satellite data from container ships into a high-frequency measure of port congestion.
- 2. Identification = A novel (and simple) model to disentangle the different shocks (supply, demand, supply chain) that drive our measure of port congestion.
- 3. Causal analysis = Data+identification+SVARs and LPs \Rightarrow inflation in 2020-2023.
- 4. State-dependent analysis = interplay between supply chain disruptions and the changes in the effectiveness of monetary policy to control inflation and output.

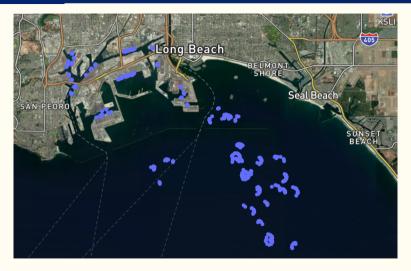
- We measure congestion at container ports.
 - Containerized trade accounts for \approx 46% of world trade.
 - Most of the rest is accounted for by bulk cargo (e.g., oil) and specialized vessels (e.g., roll-on/roll-off).
- Container ships behave as regular flights or bus lines:
 - Regular schedules picking up/delivering containers from/to feeders.
 - Seaports serve as international hubs for freight collection and distribution.
 - Routes and speed are rarely changed (e.g., speed has next-to-no relation with oil prices).
 - "Hurry up and wait."

- Port congestion: a container ship must first moor in an anchorage within the port (random areas to lower anchors) before docking at a berth (designated spots to load/unload the cargo).
- Prior to the pandemic, waiting times at ports were just a few hours. However, disruptions related to COVID-19 led to extended delays, with waiting times reaching 2-3 days at major ports.
- Even mild congestion has tremendous financial and logistic consequences.
- MSC Loreto: carries around 24,346 TEUs, with 240k tons of cargo.

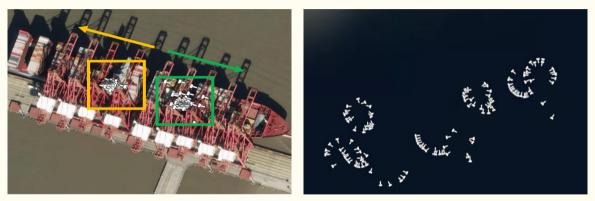
- We use movement data of container ships from the automatic identification system (AIS).
 - A real-time satellite tracking system mandated by the IMO.
 - Each data entry includes the IMO number, timestamp, current draft, speed, heading, and geographical coordinates.
 - The AIS updates information as frequently as every two seconds.
- Machine learning allows us to handle the data: situation of ships at top 50 container ports worldwide.

Raymarine AIS 4000 Class A AIS Transceiver

RAYMARINE AIS 4000 Class A AIS - Designed for commercial vessels, luxury yachts, and SOLAS high-seas shipping, the AIS4000 Automatic Identification System (AIS) transceiver delivers robust Class A AIS network capability and is engineered to withstand the harsh weather, shock, and vibration of any vessel class. Power supply: 12 to 24 VDC. Frequency: 156.025 MHz to 162.025 MHz. E70601 **Free US Shipping.**

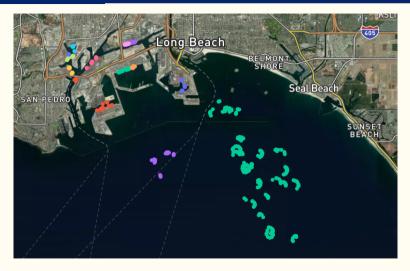

Reference: E70601

In Stock: 1


Reg Price: \$2,799.99 CPlus Price: \$2,701.99 \odot

What is Citimarine Plus Membership? Click <u>here</u> for details

Sample AIS data

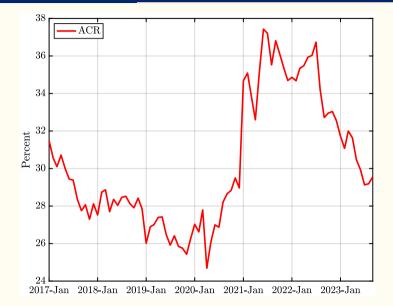

The first 50,000 AIS observations of containerships entering the Ports of Los Angeles and Long Beach since January 1, 2020.

Headings at a berth.

Headings at an anchorage.

Results

Identification of anchorages (cyan and purple) and berths (other colors) in Los Angeles and Long Beach 10

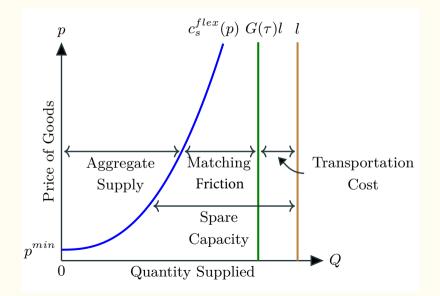


Singapore.

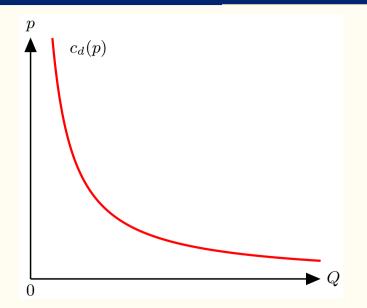
Rotterdam.

Ningbo-Zhoushan.

Average congestion rate (ACR)

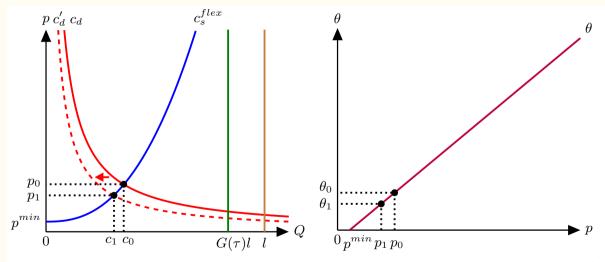

- Extensions:
 - Canals and other choke points.
 - Regional indices.
 - Indices for bulk, specialized, and liner.
- Comparison with Harper Peterson Time Charter Rates Index (HARPEX), New York Fed's Global Supply Chain Pressure Index (GSCPI), and the Supply Disruptions Index (SDI).
- Webpage: https://zhongjunma.github.io/port-congestion/congestion.html

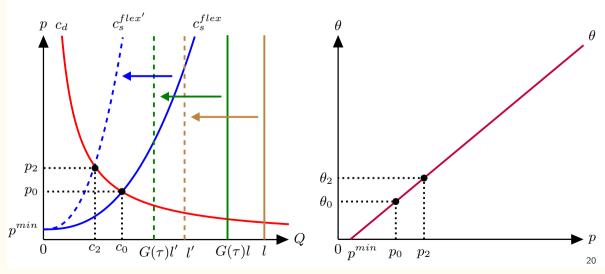
Why a model?

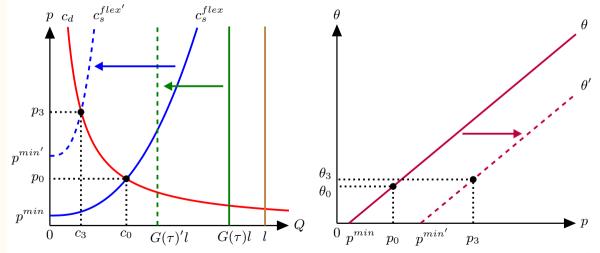

- Identification restrictions for standard causality assessment methods: ACR index is driven by many shocks.
- Desiderata:
 - 1. The model can generate high spare production capacity jointly with supply scarcity in the retail market.
 - 2. The model must have demand, productive capacity, and global supply chain shocks.
- Three ways to go:
 - 1. A network model: hard to handle with shocks (although I am working on such a model right now).
 - 2. A New Keynesian model with suppliers.
 - 3. A search and matching model.
- The last two classes of models can be mapped into each other in terms of identification, but, for today, a search and matching model is more transparent.

- Producers:
 - Produce goods with a capacity determined by labor inputs and subject to stochastic transportation costs.
 - Supply goods to retailers, yet matching frictions prevent full capacity utilization.
- Retailers:
 - Purchase goods by visiting producers (at a cost), yet not all visits would result in a match due to matching frictions.
 - Sell goods to the representative household.
- Representative household: consumes, supplies labor inputs inelastically, and holds money.

Supply side


Demand side


Equilibrium

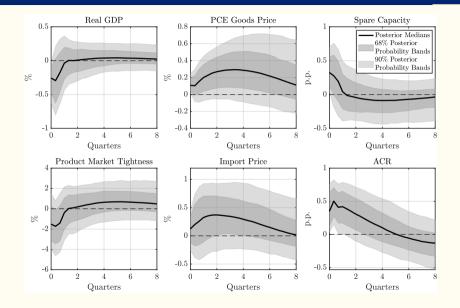

An adverse shock to aggregate demand

An adverse shock to productive capacity

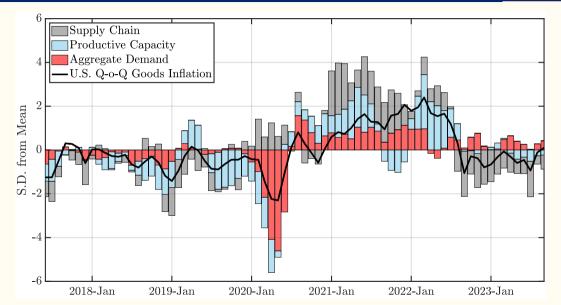
An adverse shock to supply chain

Table 1: Comparative Statics

	Effects On:					
Adverse Shock To:	Consumption (or Output)	Price	Product Market Tightness	Wholesale Price	Matching Cost	Spare Capacity (or Unemployment)
	с	p	heta	r	$rac{AG(au)}{1-(1-A)G(au)}I-c$	l-c
Aggregate Demand $(\mu \downarrow \text{ or } \chi \downarrow)$	_	_	_	_	+	+
Productive Capacity ($I \downarrow$)	—	+	+	+	_	—
Supply Chain ($\gamma \uparrow$)	_	+	Undetermined	Undetermined	Undetermined	+
Supply Chain (<i>A</i> ↓)	_	+	+	+	Undetermined	+

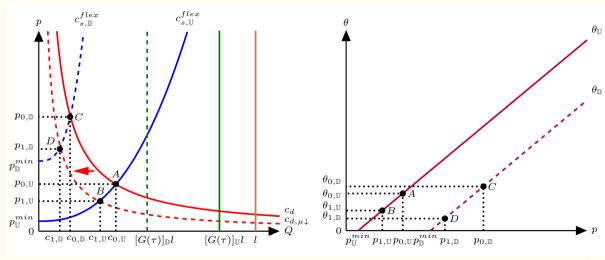

• Approach based on Uhlig (2005), Rubio-Ramírez et al. (2010), and Arias et al. (2018):

$$oldsymbol{y}_t^\prime oldsymbol{A}_0 = oldsymbol{x}_t^\prime oldsymbol{A}_+ + oldsymbol{\epsilon}_t^\prime, \quad orall t \in [1, \, \mathcal{T}]$$

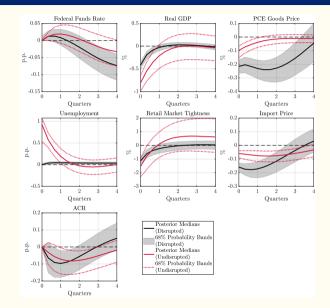

- Six endogenous variables: U.S. real GDP, U.S. PCE goods price, U.S. import price, spare capacity, product market tightness, and ACR.
- All the series are seasonally adjusted. The sample runs from 2017M1 through 2023M9.
- We set two lags in the baseline specification, but the results are robust to considering other lags.
- Key: ACR is driven by autoregressive components and all the shocks.

- Restriction on aggregate demand shock. An adverse shock to aggregate demand leads to a negative response of real GDP, PCE goods price, product market tightness, and import price, and a positive response of spare capacity at k = 1. The ACR does not respond at k = 1.
- Restriction on productive capacity shock. An adverse shock to productive capacity leads to a negative response of real GDP and spare capacity, and a positive response of PCE goods price, product market tightness, and import price at k = 1. The ACR does not respond at k = 1.
- Restriction on supply chain shock. An adverse shock to the supply chain leads to a negative response of real GDP, and a positive response of PCE goods price, spare capacity, and the ACR at k = 1.

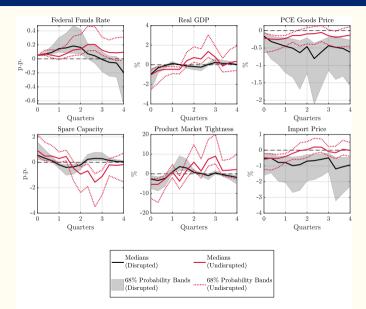
IRFs to an adverse shock to supply chain



Historical contribution of each shock to U.S. inflation



26


The state-dependence of monetary policy shocks

IRFs to a contractionary monetary policy shock (TVARs)

IRFs to a contractionary monetary policy shock (LPs)

- We study the causal effects and policy implications of global supply chain disruptions.
- We construct a new index, develop a novel theory, and integrate them with state-of-the-art methods for assessing causality in time series.
- Two main results:
 - 1. Supply chain disruptions generate stagflation accompanied by an increase in spare capacity.
 - 2. Monetary tightening can tame inflation at reduced costs of real activity during times of supply chain disruption.