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Motivation

• Lots of interest in the health of the global supply chain triggered by COVID-19 and the Red Sea crisis.

• Future wars? Geopolitical tensions?

• Question 1: What are the causal effects of global supply chain disruptions?

• Question 2: And what are the policy implications?
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Our paper

1. Data = A new machine learning algorithm to transform the satellite data from container ships into a

high-frequency measure of port congestion.

2. Identification = A novel (and simple) model to disentangle the different shocks (supply, demand,

supply chain) that drive our measure of port congestion.

3. Causal analysis = Data+identification+SVARs and LPs ⇒ inflation in 2020-2023.

4. State-dependent analysis = interplay between supply chain disruptions and the changes in the

effectiveness of monetary policy to control inflation and output.
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Why containerized trade?

• We measure congestion at container ports.

• Containerized trade accounts for ≈ 46% of world trade.

• Most of the rest is accounted for by bulk cargo (e.g., oil) and specialized vessels (e.g., roll-on/roll-off).

• Container ships behave as regular flights or bus lines:

• Regular schedules picking up/delivering containers from/to feeders.

• Seaports serve as international hubs for freight collection and distribution.

• Routes and speed are rarely changed (e.g., speed has next-to-no relation with oil prices).

• “Hurry up and wait.”
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Why port congestion?

• Port congestion: a container ship must first moor in an anchorage within the port (random areas to

lower anchors) before docking at a berth (designated spots to load/unload the cargo).

• Prior to the pandemic, waiting times at ports were just a few hours. However, disruptions related to

COVID-19 led to extended delays, with waiting times reaching 2-3 days at major ports.

• Even mild congestion has tremendous financial and logistic consequences.

• MSC Loreto: carries around 24,346 TEUs, with 240k tons of cargo.
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The AIS system

• We use movement data of container ships from the automatic identification system (AIS).

• A real-time satellite tracking system mandated by the IMO.

• Each data entry includes the IMO number, timestamp, current draft, speed, heading, and geographical

coordinates.

• The AIS updates information as frequently as every two seconds.

• Machine learning allows us to handle the data: situation of ships at top 50 container ports worldwide.
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Sample AIS data

The first 50,000 AIS observations of containerships entering the Ports of Los Angeles and Long Beach

since January 1, 2020. 8



A machine learning, spatial clustering algorithm

Headings at a berth. Headings at an anchorage.
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Results

Identification of anchorages (cyan and purple) and berths (other colors) in Los Angeles and Long Beach

ports. 10



Other ports

Singapore. Rotterdam. Ningbo-Zhoushan.
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Average congestion rate (ACR)

12



Discussion

• Extensions:

• Canals and other choke points.

• Regional indices.

• Indices for bulk, specialized, and liner.

• Comparison with Harper Peterson Time Charter Rates Index (HARPEX), New York Fed’s Global

Supply Chain Pressure Index (GSCPI), and the Supply Disruptions Index (SDI).

• Webpage: https://zhongjunma.github.io/port-congestion/congestion.html
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Why a model?

• Identification restrictions for standard causality assessment methods: ACR index is driven by many

shocks.

• Desiderata:

1. The model can generate high spare production capacity jointly with supply scarcity in the retail market.

2. The model must have demand, productive capacity, and global supply chain shocks.

• Three ways to go:

1. A network model: hard to handle with shocks (although I am working on such a model right now).

2. A New Keynesian model with suppliers.

3. A search and matching model.

• The last two classes of models can be mapped into each other in terms of identification, but, for

today, a search and matching model is more transparent.
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A model of congestion and sparse capacity

• Producers:

• Produce goods with a capacity determined by labor inputs and subject to stochastic transportation costs.

• Supply goods to retailers, yet matching frictions prevent full capacity utilization.

• Retailers:

• Purchase goods by visiting producers (at a cost), yet not all visits would result in a match due to

matching frictions.

• Sell goods to the representative household.

• Representative household: consumes, supplies labor inputs inelastically, and holds money.
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Supply sideGraphical Representation
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Figure 4: Supply Side of the Economy
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Demand sideDemand side
Aggregate Demand
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Equilibrium
Flexible-Price Equilibrium (cont.)
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An adverse shock to aggregate demand

An Adverse Shock to Aggregate Demand
Yiliang: in this slide we need to make sure the audience understands where the graph on the right-hand-side
comes from. Should you have an earlier version of the RHS figure when you introduce the relevant equation
earlier in the presentation?
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An adverse shock to productive capacity

An Adverse Shock to Labor Supply
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Figure 7: An Adverse Shock to Labor Supply, i.e., Labor Supply (Or Equivalently, Productive Capacity) l ↓
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An adverse shock to supply chain
An Adverse Shock to Supply Chain
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Figure 8: An Adverse Shock to Supply Chain, i.e., Scale Parameter of G(z) γ ↑
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Identification restrictions on structural shocks

Table 1: Comparative Statics

Effects On:

Adverse Shock To:

Consumption Price Product Market Wholesale Matching Spare Capacity

(or Output) Tightness Price Cost (or Unemployment)

c p θ r AG(τ)
1−(1−A)G(τ) l − c l − c

Aggregate Demand (µ ↓ or χ ↓) − − − − + +

Productive Capacity (l ↓) − + + + − −
Supply Chain (γ ↑) − + Undetermined Undetermined Undetermined +

Supply Chain (A ↓) − + + + Undetermined +
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A SVAR model with sign and zero restrictions

• Approach based on Uhlig (2005), Rubio-Raḿırez et al. (2010), and Arias et al. (2018):

y ′
tA0 = x ′

tA+ + ϵ′t , ∀t ∈ [1,T ]

• Six endogenous variables: U.S. real GDP, U.S. PCE goods price, U.S. import price, spare capacity,

product market tightness, and ACR.

• All the series are seasonally adjusted. The sample runs from 2017M1 through 2023M9.

• We set two lags in the baseline specification, but the results are robust to considering other lags.

• Key: ACR is driven by autoregressive components and all the shocks.
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Shocks and identification restrictions

• Restriction on aggregate demand shock. An adverse shock to aggregate demand leads to a

negative response of real GDP, PCE goods price, product market tightness, and import price, and a

positive response of spare capacity at k = 1. The ACR does not respond at k = 1.

• Restriction on productive capacity shock. An adverse shock to productive capacity leads to a

negative response of real GDP and spare capacity, and a positive response of PCE goods price,

product market tightness, and import price at k = 1. The ACR does not respond at k = 1.

• Restriction on supply chain shock. An adverse shock to the supply chain leads to a negative

response of real GDP, and a positive response of PCE goods price, spare capacity, and the ACR at

k = 1.
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IRFs to an adverse shock to supply chain
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Historical contribution of each shock to U.S. inflation
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The state-dependence of monetary policy shocks

Graphical Representation
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Figure 18: State-Dependent Effects of a Contractionary Monetary Policy Shock: Theoretical Prediction
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IRFs to a contractionary monetary policy shock (TVARs)
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IRFs to a contractionary monetary policy shock (LPs)
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Conclusion

• We study the causal effects and policy implications of global supply chain disruptions.

• We construct a new index, develop a novel theory, and integrate them with state-of-the-art methods

for assessing causality in time series.

• Two main results:

1. Supply chain disruptions generate stagflation accompanied by an increase in spare capacity.

2. Monetary tightening can tame inflation at reduced costs of real activity during times of supply chain

disruption.
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