Global Financial Cycle and Liquidity Management

Olivier Jeanne, Johns Hopkins University Damiano Sandri, IMF

International Monetary Fund Annual Research Conference November 2-3 2017

Introduction

Gross capital flows in emerging markets (EM)

Figure: Capital flows (in percent of trend GDP), average across EMs

Introduction

- Demand for EM assets fluctuates with global financial cycle
- Calls for managing capital flows with capital controls (IMF, 2012; Rey, 2015)
- In practice EMs buffer inflows with outflows
 - private and public interventions
- Existing theory (Korinek, 2010; Bianchi, 2011 etc.) is about *net* flows: Is there a case for managing *gross* flows?

Introduction

What we do in the paper

- We provide stylized facts about the behavior of gross flows to EMs
- We provide a *tractable* three-period model for positive and normative analysis of gross flows
- In the model the private sector tends to offset inflows with outflows
- But there is a gap between private and social valuation of gross flows, so a case for public intervention

Stylized facts

Five stylized facts

- Countries with larger foreign liabilities tend to experience more volatile capital inflows
- Countries with larger foreign liabilities tend to experience a higher covariance between capital inflows and outflows
- Ocuntries tend to experience a positive correlation between capital flows and realized international borrowing spreads
- Countries with larger foreign liabilities tend to have lower international borrowing spreads
- Countries with larger foreign liabilities tend to have a lower share of official reserves in foreign assets

Stylized facts

Example: Stylized fact 4

Table: International borrowing spreads over size of foreign liabilities

	(1)	(2)	(3)	(4)	(5)	(6)	
	Annual data			Quarterly data			
	Without outliers				Without outliers		
	All	All	EMs	All	All	EMs	
Liabilities	-0.020***	-0.033**	-0.040***	-0.042	-0.081***	-0.128***	
	(0.005)	(0.014)	(0.014)	(0.120)	(0.022)	(0.039)	
Constant	5.189***	5.299***	6.674***	24.491	10.172***	15.154***	
	(1.056)	(1.454)	(1.231)	(23.415)	(2.428)	(4.172)	
Countries	90	81	33	44	38	19	
R-squared	0.155	0.062	0.202	0.003	0.283	0.394	

^{***} p<0.01, ** p<0.05, * p<0.1

Theory

- Three-period model, t = 0, 1, 2
- EM private borrowers finance investment with long-term debt
- ullet Global financial conditions have impact on the price of long-term debt in t=1
- EM borrowers can accumulate liquid foreign assets ("private reserves") and intervene in the market for EM debt in period 1

Borrowers

Lenders

- Two rounds of investors
- Global financial tightening in t = 1: high SDF m and financial constraint

Laissez-faire

- ullet EM borrowers spend all the reserves in t=1 when global financial conditions are tight
- Demand for private reserves in t = 0

$$a = \frac{m_L}{m_H}b - \phi$$

(equates expected benefit of reserves with opportunity cost)

BOP equation

$$k = \pi_L m_L (b - a) + \pi_H m_H \phi$$

• This determines unique equilibrium with positive level of reserves $a^{LF}>0$ if ϕ small enough and $\hat{p}=m_L/m_H$ (Proposition 1)

Financial development and capital flows

• Financial development

$$b \leq \overline{b}$$

• The model explains stylized facts 1 to 4

1.0

Sterilized interventions

Assume separate constraint for private sector and government

$$b^{p} \leq \overline{b}^{p}$$

 $b^{g} \leq \overline{b}^{g}$

- Sterilized interventions: $a^g = pb^g$
- The model explains stylized fact 5 (Proposition 2)

Social planner

- Constrained EM social planner sets a and b subject to same financial frictions as private borrowers
- Result: the social planner maximizes level of reserves subject to $b \leq \bar{b}$ (Proposition 3)
- The social planner increases the level, variance and covariance of gross capital flows above the laissez-faire level
- Unlike private borrowers, the social planner internalizes that the price of EM debt increases with level of reserves
- The social planner transfers rent from foreign investors to domestic borrowers
 - no true externality, laissez-faire is constrained efficient

Capital controls

- Assume variable capital, y = f(k) and convex cost g(b) of issuing bonds
- Proposition 4. The EM social planner allocation has larger gross capital inflows and outflows but smaller net capital inflows that under laissez-faire

$$a^{SP} > a^{LF}, \ b^{SP} > b^{LF}, \ k^{SP} < k^{LF}$$

The social planner allocation can be implemented with a subsidy on reserves accumulation combined with a tax on capital inflows (the tax rate on inflows being smaller than the subsidy rate on outflows)

$$\tau^b > 0, \ \tau^a < -\tau^b$$

- The EM social planner reduces global welfare (lower k)
- Capital flow management less efficient than outside liquidity provision by institution such as IMF (leads to first-best with f'(k) = 1)

Conclusion

Conclusions

- Simple model but captures several stylized facts and yields nontrivial normative implications
- Quantitative implications could be explored in DSGE model

THANK YOU!

