Monetary Policy Regimes and Capital Account Restrictions in a Small Open Economy¹

Zheng Liu and Mark M. Spiegel^a

^aFederal Reserve Bank of San Francisco

BOK IMF Conference on Asia Challenges of Stability and Growth Seoul, Korea September 26, 2013

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System. ⋄ ⋄ ⋄

Low global rates following crisis encouraged EME inflows

- Relatively higher yields, combined with superior growth prospects
- Concerns expressed by EME policy makers about capital inflows
 - Western central banks maintained policies appropriate
 - Also important for EMEs to ensure Western recovery [e.g. Bernanke (2012)]
- Surges led to reconsideration of capital flow restrictions and other policies aimed at stemming inflows [Ostry, et al (2010)]
 - Mitigate excessive booms and exposure to sudden stops
- When possible, central banks also engaged in sterilization to mitigate real impact of inflows

Introduction Model Optimal policy Simple policy Conclusion

In low interest rate environments, sterilization can be costly

- Policy problems faced by PBOC [Chang, Liu, and Spiegel (2012)]
 - To maintain closed capital account, PBOC purchased export proceeds with domestic assets
 - Profitable when foreign interest rates were high
 - Sterilization costly when global rates are low
- Many parallels for Asian small open economies
 - Pressures from low global rates through capital inflow surges
 - Under imperfect asset substitutability, central bank can sterilize inflows
 - But likely to be costly
- Costly sterilization ⇒ tradeoff between stabilizing inflation and capital account

We consider 2 types of capital account restrictions and 3 alternative monetary regimes

- Capital account restrictions
 - Optimal time-varying tax rate on capital inflows
 - Simple constant tax on capital inflows
- Monetary policy regimes
 - Standard loss function
 - Inflation-stabilizing central banker
 - 3 Exchange-rate stabilizing central banker

Implications of capital account restrictions

- Two types of capital controls
 - Time-varying tax: Set optimally over cycle [e.g. Jeanne and Korinek (2010)]
 - Simple tax: Constant positive tax rate
 - Infrequently adjusted in practice [Chinn Ito (2002)]
- Compare welfare outcomes under these alternative capital control regimes
 - Time-varying policy
 - Very effective in smoothing foreign interest rate shocks
 - Less effective for foreign demand shocks
 - Simple policy leaves room for further stabilization through monetary policy

Implications of alternative monetary policy regimes

- Examine outcomes under each regime with simple and optimal capital controls
- "Standard" policy regime places equal weights on inflation and output and also stabilizes household portfolio compositions
- Inflation-stabilizing central banker places higher weight on inflation
 - Improves outcomes under simple controls, but provides no improvement under optimal controls
- Exchange-rate stabilizing central bank places higher weight on real exchange rate
 - Improves outcome under both capital account policies

Introduction Model Optimal policy Simple policy Conclusion

Related Literature

- Many papers have found potential role for capital account restrictions
 - Jeanne and Korinek (2010): Time-varying Pigouvian tax on borrowing can internalize externalities associated with international borrowing
 - Korinek (2013): Taxes can substitute for global policy coordination
 - Bianchi (2011): Under financial frictions, capital controls can recover constrained-efficient allocations
 - Farhi and Werning (2012): Mitigate effects of excessive capital movements
- This paper first to analyze capital account restrictions in a monetary model
 - Needed for assessing implications of sterilization
 - Important component of monetary response to capital inflows

Key features of model

- Build on NK small open-economy model
 - Imperfect international asset substitutability
 - Sticky prices
 - Sterilization policy

1. Imperfect asset substitutability

• Household maximize utility function subject to

$$C_{t} + \frac{M_{t}}{P_{t}} + \frac{B_{ht} + e_{t}B_{ht}^{*}}{P_{t}} \left[1 + \frac{\Omega_{b}}{2} \left(\frac{B_{ht}}{B_{ht} + e_{t}B_{ht}^{*}} - \bar{\psi} \right)^{2} \right]$$

$$\leq w_{t}L_{t} + \frac{M_{t-1}}{P_{t}} + \frac{R_{t-1}B_{h,t-1} + e_{t}R_{t-1}^{*}B_{h,t-1}^{*}}{P_{t}} + d_{t},$$

• Ω_b represents cost of portfolio adjustment

1. Imperfect asset substitutability (cont'd)

• Let ψ_t denote the domestic bond share:

$$\psi_t \equiv \frac{B_{ht}}{B_{ht} + e_t B_{ht}^*}$$

• Optimal choices of B_{ht} and B_{ht}^* satisfy

$$\Omega_b(1+\psi_t)(\psi_t-\bar{\psi})=\mathrm{E}_t\frac{\beta\Lambda_{t+1}}{\Lambda_t}\frac{1}{\pi_{t+1}}\left[R_t-R_t^*\frac{e_{t+1}}{e_t}\right],$$

- If $\Omega_b = 0$, reduces to the standard UIP condition.
- Foreign demand for domestic bonds

$$\frac{B_{ft}}{Z_t^p P_t} = f\left(E_t(1-\tau_t)R_t\frac{e_t}{e_{t+1}} - R_t^*\right),\,$$

where $f'(\cdot) > 0$ and τ_t represents taxes on foreign-held bonds

2. Sticky prices

- Monopolistic competition in product markets
- Quadratic price adjustment costs (Rotemberg, 1982)

$$\frac{\Omega_p}{2} \left(\frac{P_t(j)}{\pi P_{t-1}(j)} - 1 \right)^2 C_t,$$

where Ω_p represents price adjustment costs

Phillips curve relation:

$$v_{t} = \frac{\epsilon - 1}{\epsilon} + \frac{\Omega_{\rho}}{\epsilon} \frac{C_{t}}{Y_{t}} \left[\left(\frac{\pi_{t}}{\pi} - 1 \right) \frac{\pi_{t}}{\pi} - \beta E_{t} \left(\frac{\pi_{t+1}}{\pi} - 1 \right) \frac{\pi_{t+1}}{\pi} \right]$$

3. Sterilization policy

Foreign capital flows

$$ca_t = e_t \frac{B_t^* - B_{t-1}^*}{P_t} - \frac{B_{ft} - B_{f,t-1}}{P_t}$$

Government flow-of-funds constraint

$$e_t(B_{gt}^* - R_{t-1}^* B_{g,t-1}^*) \le B_t - R_{t-1} B_{t-1} + M_t^s - M_{t-1}^s + \tau_t R_t B_{ft},$$

where B_{gt}^{*} denotes central bank holdings of foreign bond

External shocks

Export demand schedule

$$X_t = \left(\frac{P_t}{e_t P_t^*}\right)^{-\theta} \tilde{X}_t^* Z_t^p = q_t^{\theta} \tilde{X}_t^* Z_t^p,$$

where Z_t^p allows for balanced growth.

Foreign interest rate and aggregate demand are exogenous

$$\ln \tilde{R}_t^* = (1 - \rho_r) \ln \tilde{R}^* + \rho_r \ln \tilde{R}_{t-1}^* + \sigma_r \varepsilon_{rt}$$

$$\ln \tilde{X}_t^* = (1 - \rho_x) \ln \tilde{X}^* + \rho_x \ln \tilde{X}_{t-1}^* + \sigma_x \varepsilon_{xt}$$

Optimal policy

- Two inefficiency sources: nominal rigidities and imperfect asset substitutability
- Imperfect asset substitutability implies imperfect risk sharing
 - Inefficient even if monopolistic distortions removed [Corsetti, Dedola, and Leduc (2012)]
- Monetary policy alone cannot restore efficient allocations

Policy objective

Loss function nests 3 alternative monetary regimes

$$\mathcal{L} = \sum_{t}^{\infty} L_t, \quad L_t = \lambda_{\pi} \hat{\pi}_t^2 + \lambda_y g \hat{d} p_t^2 + \lambda_b \hat{b}_{yt}^2 + \lambda_q \hat{q}_t^2,$$

where b_{yt} represents ratio of foreign-held bonds to GDP, and λ_b captures desire for financial stability

- Monetary policy regimes:
 - **1** Standard policy sets $\lambda_y = 1$, $\lambda_\pi = 1$, $\lambda_b = 0.1$, and $\lambda_q = 0$
 - 2 Inflation-stabilizing regime: same as standard except $\lambda_{\pi}=3$
 - \odot Exchange-rate stabilizing regime: same as standard except $\lambda_q = 0.1$

Welfare measure

Second-order approximation to household period utility function

$$U_t = \hat{C}_t + \Phi_m \hat{m}_t - \Phi_I \left(L^{\eta} \hat{L}_t + \frac{\eta}{2} L^{\eta - 1} \hat{L}_t^2 \right).$$

Welfare defined as

$$(1-\beta)V = (1-\beta)\mathrm{E}\sum_{t=0}^{\infty}\beta^{t}U_{t} = -\Phi_{I}\frac{\eta}{2}L^{\eta-1}var(\hat{L}),$$

where $var(\hat{L})$ denotes the unconditional variance of labor hours

• We evaluate household welfare in terms $var(\hat{L})$

Calibration highlights

- Non-standard parameters
 - Portfolio adjustment cost $\Omega_b = 0.117$ [Chang, et al (2012)]
 - ullet SS dom bond share $ar{\psi}=$ 0.9 [Coeurdacier and Rey (2011)
 - Price adjustment cost $\Omega_p=30$ (3 qtr contracts [Nakamura (2008)])
 - ullet Average tax rate on capital inflows au=0.3
 - \bullet Persistence of external shocks $\rho_{r}=0.98$ and $\rho_{\rm x}=0.95$
- Standard parameters
 - Discount factor $\beta = 0.998$
 - ullet Technology growth rate $\lambda_z=1.01$
 - Set $\Phi_m = 0.06$ [Chari, et al (2000)]
 - $\eta = 2$, so Frisch elasticity of labor supply is 0.5
 - ullet Cost share of intermediate goods $\phi=0.5$
 - Elasticity substitution $\theta = 1.5$ [Feenstra (2012)]
 - \bullet $\alpha = 0.756$, implies 20% steady state import-to-GDP ratio
 - Set $\epsilon = 10$ so steady-state markup is 11%

Optimal time-varying capital account restrictions

- ullet First consider optimal time path for tax (au_t) on capital inflows
 - Given imperfect capital mobility, optimal monetary policy alone cannot achieve first-best
 - Evaluate implications of capital account restrictions for macro and financial stability
- Solve the Ramsey optimal policy problem for each monetary regime
 - ullet Planner chooses all endogenous variables, including au_t

troduction Model **Optimal policy** Simple policy Conclusion

Optimal tax on foreign-held bonds following foreign interest rate shock

troduction Model **Optimal policy** Simple policy Conclusion

Optimal tax on foreign-held bonds following export demand shock

Optimal tax responds to R^* shock but not to X^* shock

- Tax rate increases in response to declines in R^*
 - R* shock raises spread between domestic and foreign rates
 - \bullet Adjusting τ mitigates the spread, insulating domestic economy from shock
 - Responses do not depend on monetary regime (irfs not shown to save space)
- ullet Changes in au do not stabilize against foreign demand shock
 - ullet Optimal policy calls for very small change in au_t
 - Results in interesting dynamics

troduction Model **Optimal policy** Simple policy Conclusion

Export demand shock: Standard case, optimal capital account policy

- Current account goes into deficit
- Monetary authority lowers interest rate
- Surprisingly, real exchange rate appreciates
 - Central bank stabilizes capital account by buying domestic bonds from domestic citizens (foreign holdings unchanged)
 - With less domestic assets, modified UIP condition allows for real exchange rate appreciation
- Real appreciation \to marginal cost \downarrow and markup \uparrow \to employment declines
- Optimal policy insulates inflation and GDP from shock, but decline in employment leads to welfare losses

Impulse responses negative demand shock, optimal policy

Export demand shock: Exchange rate stabilizing, optimal policy

- Exchange-rate targeting central bank has different dynamics
 - ullet Real GDP falls o central bank eases to smooth output
 - Inflation picks up, offset by temporary nominal depreciation in exchange rate
 - Foreign agents' holdings of domestic bonds fall \uparrow domestic rates \uparrow
 - Real exchange rate stabilized
- Overall, exchange-rate targeting regime yields smaller fluctuations than standard case

Simple capital account restrictions

- In practice, do not observe time-varying (and state-contingent) tax policies
 - \bullet Examine macroeconomic implications of constant τ subject to the two types of external shocks
- Standard case with decline in foreign interest rate
 - \bullet Increased foreign demand for domestic bonds \to domestic rate falls and real exchange rate appreciates
 - \bullet Terms of trade improve \to inflation \downarrow and output \uparrow and current account deficit \uparrow

Impulse responses foreign interest rate shock, simple tax

Introduction Model Optimal policy Simple policy Conclusion

Foreign interest shock and simple tax: Alternative monetary regimes

- Inflation stabilization policy
 - Central banker does not intervene as aggressively
 - ullet More capital inflows o bigger boom
 - Results in higher GDP and less deflation than standard case
- Exchange-rate targeting policy
 - To mitigate real exchange rate appreciation, central bank sells domestic bonds
 - Foreign bond holdings rise more rapidly
 - Less of a decline in domestic interest rates

Export demand shock under simple controls

- Standard case
 - Current account deficit ↑ and output ↓
 - Monetary policy eases by lowering domestic nominal rates
 - ullet Foreign demand for domestic bonds \downarrow
 - Lowers output, inflation stabilizes
- Inflation stabilizing case quite similar

Impulse responses to negative export demand shock under simple controls

Export demand shock: Real exchange rate targeting, simple controls

- With real exchange rate stabilized don't get expected depreciation that prevailed in standard case
- Foreign bond holdings do not decline as much, and terms of trade improvement is not as large, as standard case
- Inflation is higher, nominal rates rise
- GDP falls more steeply

Introduction Model Optimal policy Simple policy Conclusion

Both shocks

- Optimal capital account policy
 - Optimal policies very effective at stabilizing external shocks
 - Inflation and output almost completely stabilized
 - ullet Welfare losses 1/3 percent of steady-state consumption
 - Little consequence of moving to inflation-stabilizing regime
 - However, smaller losses under exchange rate stabilizing regime
- Simple capital account policy
 - Under simple capital account policy, the monetary regime matters more for welfare
 - Inflation stabilizing regime a substantive improvement over standard policy
 - Exchange rate stabilizing does even better; almost as well as under optimal policy

troduction Model Optimal policy **Simple policy** Conclusion

Welfare and macroeconomic volatilities under alternative policy regimes

	Optimal capital controls			Simple capital controls		
	Benchmark	Hawkish	ER-targeting	Benchmark	Hawkish	ER-targeting
Welfare	-0.35	-0.35	-0.10	-3.21	-1.83	-0.11
σ_{π}	0	0	0.0006	0.0025	0.0012	0.0012
σ_{v}	0	0	0.0014	0.0047	0.0049	0.0022
σ_{ca}	0.0077	0.0077	0.0055	0.0163	0.0161	0.0224
σ_{b_f}	0	0	0.0014	0.0456	0.0464	0.0493
σ_{l}	0.0036	0.0036	0.0019	0.0109	0.0082	0.0020

Introduction Model Optimal policy Simple policy Conclusion

Conclusion

- Compare effectiveness of monetary policy and capital controls in smoothing external shocks
 - As environment is one of imperfect risk sharing, potential for policies to improve welfare
 - Consistent model with comparable steady states allows for coherent welfare comparisons
 - To our knowledge, paper is first to examine issues in full monetary model that allows for sterilization
- Optimal capital control policies smooth external shocks well
- However, as complicated policies not observed in practice, also examine simple capital controls
 - Simple controls allow monetary policy to improve welfare
 - Welfare substantively improved by inflation stabilizing regime
 - Real exchange rate stabilizing regime best: Little enhancement from optimal capital policies