Discussion of *Optimal Devaluations* C. Hevia and J.P. Nicolini

Tommaso Monacelli - Università Bocconi, IGIER and CEPR

IMF ER Conference Istanbul, 6-7 April 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Nice paper that goes to the heart of open economy dimension of policy
- Right methodological approach
- Important insights for both monetary (exchange rate) and fiscal policy

Optimal monetary policy in open economies

Is it fundamentally different from its closed economy counterpart?

Divine coincidence in NK sticky price models

markup stabilization \iff efficiency

 $\rightarrow Notice:$ stabilizing markups equivalent to replicating allocation under flex prices

Closed economy: divine coincidence holds

(ロ)、(型)、(E)、(E)、 E) の(の)

- Closed economy: divine coincidence holds
- > Open economy: divine coincidence breaks down

- **Closed** economy: divine coincidence holds
- Open economy: divine coincidence breaks down

 \rightarrow Via variations in **international** relative prices (terms of trade and/or real exchange rate) can **improve** upon the **flexible-price** allocation

- **Closed** economy: divine coincidence holds
- Open economy: divine coincidence breaks down

 \rightarrow Via variations in **international** relative prices (terms of trade and/or real exchange rate) can **improve** upon the **flexible-price** allocation

 \rightarrow Why? Can influence consumption for any given level of output (labor effort)

Why result is important

1. General nature of openness

Why result is important

- 1. General nature of openness
- 2. Implied optimal degree of exchange rate volatility

Why result is important

- 1. General nature of **openness**
- 2. Implied optimal degree of exchange rate volatility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \rightarrow Is fear of floating optimal?

Closed economy

Imperfect competition and price stickiness

$$MPN_{t} = \underbrace{W_{t}/P_{t}}_{CPI \text{ wage}} = MRS_{t} \underbrace{\mu_{t}}_{markup}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\rightarrow \mathsf{Markup/real}\xspace$ marginal cost movements distort the equality between MPN and MRS

イロト イポト イヨト イヨト

э

m. cost

$$Q_t = rac{P_{F,t}}{P_{H,t}} \equiv ext{terms of trade}$$

イロト イポト イヨト イヨト

э

$$Q_t = rac{P_{F,t}}{P_{H,t}} \equiv ext{terms of trade}$$

 \Rightarrow Efficiency requires some combination of **domestic markup** volatility and **terms of trade** volatility

$$Q_t = rac{P_{F,t}}{P_{H,t}} \equiv ext{terms of trade}$$

⇒ Efficiency requires some combination of **domestic markup** volatility and **terms of trade** volatility Openness "per se" breaks the divine coincidence

Openness breaks divine coincidence

- Result depends on preferences
- Divine coincidence restored in the special case of
 Cobb-Douglas preferences on consumption: C = C_H^{1-α}C_F^α

 \rightarrow Idea: **income** and **substitution** effects of terms of trade movements exactly balanced

Open economy II: "production openness"

Production function

$$Y_t = A_t N_t^{1-\gamma} \underbrace{X_t^{\gamma}}_{input}$$

$$Z_t \equiv \frac{S_t P_{X,t}^*}{P_{H,t}} \equiv$$
 relative price of imported inputs

Open economy II: "production openness"

Production function

$$Y_t = A_t N_t^{1-\gamma} \underbrace{X_t^{\gamma}}_{imported}$$

$$Z_t \equiv \frac{S_t P_{X,t}^*}{P_{H,t}} \equiv$$
 relative price of imported inputs

 $\rightarrow \mathsf{Rewrite}$

$$Z_{t} = \frac{S_{t}P_{Z,t}^{*}}{P_{H,t}} = \underbrace{\overbrace{S_{t}P_{F,t}^{*}}^{=P_{F,t}}}_{P_{H,t}} \underbrace{P_{Z,t}^{*}}_{P_{F,t}^{*}} \underset{\substack{\text{if LOP} \\ \text{holds on} \\ \text{imported} \\ \text{C goods}}}^{=P_{F,t}} Q_{t} \frac{P_{Z,t}^{*}}{P_{F,t}^{*}}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

ヘロン 人間と 人口と 人口と

э

Same logic applies

- 1. Efficiency requires some combination of markup and terms of trade movements
- 2. Divine coincidence restored in the Cobb-Douglas special case
- \rightarrow Main result of this paper

Implications

1. Production openness isomorphic to consumption openness

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Implications

- 1. Production openness isomorphic to consumption openness
- 2. Under special preferences, replicating flex price allocation is optimal and **free floating** is optimal

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Implications

- 1. Production openness isomorphic to consumption openness
- 2. Under special preferences, replicating flex price allocation is optimal and **free floating** is optimal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Interesting dimension is quantitative

Is fear of floating optimal?

1. Should evaluate the **combined** effect of consumption and production openness

Is fear of floating optimal?

- 1. Should evaluate the **combined** effect of consumption and production openness
- ${\rightarrow} \mathsf{But}$ there are other sources of fear floating
 - 2. Local currency pricing (LCP) \rightarrow Still small effect (Corsetti-Dedola and Leduc 2010) \rightarrow *Quasi divine* coincidence

3. Financial market imperfections

"dock-LCP" more pervasive

- 1. Import prices **very** sticky **at the dock** (Gopinath and Rigobon, 2007)
- 2. Stickiness of import prices higher for more **differentiated** goods (G-R, 2007)
- Import price rigidity has increased by 10 percentage points in 1994-2005 (G-R, 2007)
- 4. U.S. import prices with **high frequency** of price adjustment have a **higher long-run pass-through** (Gopinath and Itskhoki, 2009)
- Pass-through of the average good priced in dollars is 25% vs. 95% for non-dollar priced

PSL Code	Code Description	Import	Producer	Consumer
P2711	Natural and petrol gases	1.0	1.0	4.7
P2710	Processed petrol	1.0	1.0	1.5
P07	Edible vegetables	1.4	1.1	1.4
P8471	Automatic data processing machines	3.3	6.7	2.0
P20	Vegetable and fruit products	5.0	1.1	5.5
P8528	Reception apparatus for broadcast video media	6.4	10.5	4.6
P8523	Prepared unrecorded media for audiovisual machines	6.4	11.8	13.4
P6204	Women's/Girls's suits, ensembles, pants dresses	7.7	19.6	5.4
P8521	Video recording equipment	8.9	15.4	5.2
P7113	Articles of jewelry containing precious metal	10.0	23.8	8.1
P9401	Seats and parts	11.2	14.5	7.6
P6203	Men's/boys' suits, ensembles, pants	12.0	19.6	10.0
P8708	Parts and accessories for vehicles	12.0	12.0	11.2
P9405	Lamps and light fixtures	12.8	18.9	9.9
P6110	Knit/crochet sweatshirts, pullovers, vests, sweaters	13.0	19.6	8.6
P4202	Leather cases, bags, luggage	13.4	14.5	9.0
P8516	Electric portable heaters, blowdryers, house items	14.0	13.9	10.3
P8703	Passenger vehicles, capacity<10	14.5	3.4	1.3
P2208	Undenatured ethyl alcohol w/ <80 percent concentration	15.2	11.9	7.8
P6402	Partially waterproof footwear	16.8	16.7	9.9
P6403	Footwear with composite material soles and uppers.	17.6	16.7	9.9
P6205	Men's/boys' shirts	20.4	19.6	12.2

Table 4: Comparing Price Durations in Import Prices, Consumer Prices and Producer Prices

Downward Trend in the Frequency of Price Adjustment

Figure 3a: Time Trend in Frequency of Price Adjustment

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Decomposition (G-R 07)

 ΔP stickiness = $\Delta(N \text{ differ. goods}) + \Delta(P.\text{stickiness differ. goods})$

It is NOT a Compositional Story

Figure 3b: Time Trend in Frequency of Price Adjustment in Differentiated, Reference and Organized Sectors

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

- 1. Main suspect: **increased degree of stickiness** in prices of differentiated goods
- Need a **new** story linking: ↑ trade ↔ ↑price stickiness in differentiated goods

- Not true that terms of trade **depreciation** is always expansionary in standard NKSOE model: depends on income vs. substitution effect
- 2. All analysis focuses on exported commodities

 \rightarrow Does Australia set the Australian \\$ price of coal? Is degree of pass-through relevant?

Conclusions

- 1. Nice paper on a very important topic
- 2. Important to evaluate **quantitatively** the role of commodity price shocks for **fear of floating**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ