Optimal Devaluations

Constantino Hevia World Bank Juan Pablo Nicolini Minneapolis Fed and Di Tella

April 2012

- Which is the optimal response of monetary policy in a small open economy, following a shock to commodity prices?
- For many countries, exports of **commodities** are a sizeable fraction of GDP.
- Shocks to commodity prices are very large.

Panel A	Principal commodity exports (monthly averages since Jan 2000)			Share in good exports (%)			
	<i>C1</i>	<i>C</i> 2	<i>C3</i>	<i>C1</i>	<i>C2</i>	<i>C3</i>	Total
Argentina	Soybean and products	Petroleum and products	Wheat	23	9	4	36
Australia	Coal	Iron ore	Gold	14	9	5	28
Brazil	Soybean and products	Petroleum and products	Iron oxides	9	8	7	24
Chile	Copper	Marine products		45	7	-	52
Iceland	Marine products	Aluminium		53	25	-	78
New Zealand	Diary produce	Meat and edible offal	Wood and products	19	13	7	39
Norway	Petroleum and products	Marine products		57	5	-	62
Peru	Copper	Gold	Marine products	20	19	8	47
Panel B		Aggregate shares (%)					
	Goods/Total Exports		Total Exports/GDP	(Goods/GDF	D	
Argentina	87		22	-	6.7%	_	
Australia	78		20		4.4%		
Brazil	87		13		2.7%		
Chile	83		39		16.8%		
Iceland	65		37		18.7%		
New Zealand	74		30		8.6%		
Norway	76		44		20.7%		
Peru	87		22		9.0%		

 TABLE 1. Principal commodity exports in selected countries

Sources: National statistics agencies. Columns labeled *C1-C3* report the most important commodities and their shares in total exports of goods. Column labeled *Total* reports the share of the three principal commodities on total good exports. Commodity exports data are monthly and the last observation varies by country: Argentina, Jan2000 - Jun2010; Australia, Jan2000 - Oct2010; Brazil, Jan2000 - Oct2010; Chile, Jan2000 - Nov2010; Iceland, Jan2000 - Oct2010; New Zealand, Jan2000 - Oct2010; Norway, Jan2000 - Oct2010; and Peru, Jan2000 - Sep2010.

- Implications for monetary and exchange rate policy when there are price rigidities?
- In recent years, there has been a move towards inflation targeting.
- By now, all countries in the Table with the exception of Argentina became inflation targeters.
- The exchange rate freely floats.
- Evidence on exchange rate movements in inflation targeting countries.

HP-Filtered Exchange Rate and Commodity Price Data shown as percentage deviation from trend

Note: Series are first logged and then HP-filtered with a smoothing parameter of 14400

	In US dollars		In H	In Euros		
	Std. Deviation	Correlation	Std. Deviation	Correlation		
Chile						
Exchange Rate	0.0506	0 4720	0.0580	0 5122		
Price of Copper	0.1241	-0.4729	0.1266	-0.3132		
Norway						
Exchange Rate	0.0559	0 5/138	0.0316	0 4332		
Price of Oil	0.1459	-0.5430	0.1374	-0.4332		

Summary Statistics Exchange Rate and Commodity Price

Note: Data is first logged and then HP-filtered with a smoothing parameter of 14400

- There is still "fear of floating" (Calvo and Reinhart).
- Chile intervened twice since 2000
 - April 2008: announced a program to gradually buy reserves for an amount equivalent to 40% of stock of reserves. Value of peso: 450.
 - January 2011: announced a similar program when the value of the peso was at 475.
- Justification for interventions: Exchange rate too low. Terms of trade too high.

- Are these good reasons to abandon price stability?
- Gali-Monacelli (2005): No, price stability is optimal, let the exchange rate float.
- Qualifications: De Paoli (2008), Faia Monacelli (2008),
- But.....

- 1. There are no commodities in the model. Main feature of the "old" SOE tradition (Dornbusch 1975 plus...) is absent.
- 2. Cannot justify the observed volatility of the exchange rate. Does the observed volatility justify the fear of floating?
- 3. Increases in the foreign price of the importable (negative shocks to the terms of trade) are expansionary in the existing models.

- In this paper we explicitly model commodities. In line with the SOE tradition.
- In addition, we allow for flexible fiscal instruments. (Correia, Nicolini and Teles 2004, Adao, Correia and Teles 2009, Correia, Farhi, Nicolini and Teles 2010, Farhi, Gopinath and Itskhoki, 2011)
- Advantage of making explicit all existing distortions.
- The transmission mechanism of exchange rate movements changes substantially.
- The model has the potential to reproduce the volatility of the nominal exchange rate and the commovements with the terms of trade.

- Still, there are cases in which price stability is optimal.
- The interaction between fiscal and monetary instruments is at the core of the argument.

The Model

- Discrete time, stochastic, cashless economy.
- Ramsey Government: exogenous expenditures.
- Fiscal policy: labor τ^n_t , consumption τ^c_t , final good exports τ^h_t , final good import taxes τ^f_t .
- Complete markets.

Preferences

$$E_{0}\sum_{t=0}^{\infty}\beta^{t}U\left(H\left(C_{t}^{h},C_{t}^{f}\right),N_{t}\right)$$

- $H\left(C_t^h, C_t^f\right)$ is a function homogeneous of degree one.
- The optimality conditions are

$$\frac{H_{C^{h}}(t)}{H_{C^{f}}(t)} = \frac{P_{t}^{h}}{P_{t}^{f}}$$
$$\frac{U_{C}(t) H_{C^{h}}(t)}{-U_{N}(t)} = \frac{P_{t}^{h}(1+\tau_{t}^{c})}{W_{t}(1-\tau_{t}^{n})}$$
$$\frac{U_{C}(t) H_{C^{h}}(t)}{P_{t}^{h}(1+\tau_{t}^{c})} = \beta Q_{t,t+1}^{*} \frac{S_{t}}{S_{t+1}} \frac{U_{C}(t+1) H_{C^{h}}(t+1)}{P_{t+1}^{h}(1+\tau_{t+1}^{c})}$$

Final good firms

$$Y_t^h = \left[\int_0^1 y_{it}^{\frac{\theta-1}{\theta}} di \right]^{\frac{\theta}{\theta-1}},$$

where $\theta > 1$

• The firm's problem implies the cost minimization condition

$$y_{it} = Y_t^h \left(\frac{P_{it}^h}{P_t^h}\right)^{-\theta}$$

Commodities sector

- Commodity z is imported
- Commodity x is produced according to the technology

$$X_t = A_t \left(n_t^x \right)^{\rho},$$

• Set $\rho = 1$.

• Profit maximization then requires

$$P_t^x A_t = W_t.$$

 Because the two commodities can be freely traded, the law of one price holds:

$$P_t^x = S_t P_t^{x*}$$
$$P_t^z = S_t P_t^{z*}.$$

• P_t^{x*} and P_t^{z*} denote the foreign currency prices of the x and z commodities.

Intermediate good firms

- Technology is Cobb-Douglas on labor and the two commodities.
- The nominal marginal cost function is

$$MC_t = \frac{(P_t^x)^{\eta_1} (P_t^z)^{\eta_2} W_t^{\eta_3}}{Z_t}.$$

where Z_t is a productivity shock.

• Using the solution for factor prices

$$MC_{t} = S_{t}MC^{*}\left(\mu^{t}\right) = S_{t}\frac{(P_{t}^{x*})^{\eta_{1}+\eta_{3}}(P_{t}^{z*})^{\eta_{2}}A_{t}^{\eta_{3}}}{Z_{t}}.$$

• Note the exponent on P_t^{x*} .

Price setting

- We assume Calvo price rigidity.
- In each period, intermediate good firms are able to reoptimize nominal prices with a constant probability $0 < \alpha < 1$.
- Those that get the chance to set a new price will set it according to

$$p_t^h = \frac{\theta}{\theta - 1} E_t \sum_{j=0}^{\infty} \eta_{t,j} \frac{\left(P_{t+j}^x\right)^{\eta_1} \left(P_{t+j}^z\right)^{\eta_2} W_{t+j}^{\eta_3}}{Z_{t+j}},$$

where $\eta_{t,j}$ are weights associated to state contingent prices.

Implications of price stability

- A monetary policy that successfully stabilizes the domestic price of the final good must stabilize the marginal cost.
- But

$$MC = S_t \frac{(P_t^{x*})^{\eta_1 + \eta_3} (P_t^{z*})^{\eta_2} A_t^{\eta_3}}{Z_t}$$

so stabilizing marginal costs implies

$$S_t = \frac{1}{MC} \frac{Z_t}{(P_t^{x*})^{\eta_1 + \eta_3} (P_t^{z*})^{\eta_2} A_t^{\eta_3}}$$

• Thus, the volatility of the nominal exchange rate depends on the volatility of the exogenous shocks $(P_t^{x*}, P_t^{z*}, A_t, Z_t)$

- In addition, the correlation between S_t and P_t^{x*} will be negative, as in Table 2.
- Fluctuations on the exchange rate depend on movements on commodity prices and productivity shocks, as well as on properties of the input-output matrix (η^1, η^2, η^3) .
- This is the main transmission mechanism of exchange rate movements.

Foreign sector and feasibility

• The demand for the home final good is

$$C_t^{h*} = (K_t^*)^{\gamma} \left(P_t^{h*} \right)^{-\gamma}$$

where $\gamma > 1$

• The law of one price on domestic and foreign final goods then requires

$$P_t^h \left(\mathbf{1} + \tau_t^h \right) = S_t P_t^{h*}$$
$$P_t^f = S_t P_t^{f*} \left(\mathbf{1} + \tau_t^m \right)$$

• Other equilibrium conditions: country budget constraint, labor, domestic production. The second best solution

- By Diamond and Mirlees homogenous taxation result, the margin between domestic and foreign consumption will not be distorted.
- In addition, as the elasticity of demand for the final domestic good is constant, the optimal mark up will be constant.
- Therefore, the taxes au_t^h, au_t^m are constant, satisfying

$$egin{array}{rcl} \displaystyle rac{ heta}{ heta-1} &=& (1+ au_t^m) \ \displaystyle \left(1+ au_t^h
ight) \displaystyle rac{ heta}{ heta-1} &=& \left(\displaystyle rac{\gamma}{\gamma-1}
ight) \end{array}$$

 In general, time and state varying labor income taxes will move to satisfy

$$\frac{U_C(t) H_{C^h}(t)}{-U_N(t)} = \frac{P_t^h (1 + \tau_t^c)}{W_t (1 - \tau_t^n)}$$

while consumption taxes will move to satisfy the parity condition

$$\frac{U_C(t) H_{C^h}(t)}{P_t^h(1+\tau_t^c)} = \beta Q_{t,t+1}^* \frac{S_t}{S_{t+1}} \frac{U_C(t+1) H_{C^h}(t+1)}{P_{t+1}^h(1+\tau_{t+1}^c)}$$

- Price stability is a feature of the second best.
- In general, labor and consumption taxes must move with shocks.

• Thus, the nominal exchange rate must move so as to stabilize domestic marginal costs, as discussed above

$$S_t = \frac{1}{MC} \frac{Z_t}{(P_t^{x*})^{1-\eta_2} (P_t^{z*})^{\eta_2} A_t^{\eta_3}}$$

• For example, in the particular case of $\ln P_t^{z*} = \ln P^{z*}$, and ignoring productivity shocks $(A_t = A, Z_t = Z)$, then

$$\ln S_t = k - (1 - \eta_2) \ln P_t^{x*}$$

SO

$$V(\ln S_t) = (1 - \eta_2)^2 V(\ln P_t^{x*})$$
$$Cov(\ln S_t, \ln P_t^{x*}) = -(1 - \eta_2) V(\ln P_t^{x*})$$

A particular case

- The previous result requires flexible tax instruments.
- It is standard in the recent monetary policy literature to impose the restriction $\tau_t^j = \tau^j$ for all j.
- We show that if

$$U(C, N, m) = \frac{C^{1-\sigma}}{1-\sigma} - \frac{N^{1+\psi}}{1+\psi}, \quad \sigma, \psi > 0$$

the optimal values for τ_t^c, τ_t^n are constant across states and periods.

Numerical Solutions

- Can the model reproduce the behavior of the nominal exchange rate in Chile?
- We numerically solve the model and show the answer is Yes!
- Are the parameters reasonable?
- Preferences such that price stability is optimal
- Parameters of the cost function in the sector with the price frictions.

Parameters in numerical experiment

Symbol	Description	Value
ω	Preferences	0.6
κ	Preferences	20
ψ	Preferences	1
eta	Discount factor	0.987
ho	Technology commodity	0.1
η_1	Technology intermediate	0.01
η_2	Technology intermediate	0.29
η_3^-	Technology intermediate	0.70
G^h	Government consumption	0.30
K^*	Foreign demand	1
γ	Foreign demand elasticity	2
P_t^{f*}	Foreign final good price	1
$a^{\check{x}}$	Parameter home commodity price	0.16
b^x	Parameter home commodity price	0.96
σ^x	Sd deviation shock home commodity price	0.15
$ ho\left(arepsilon_{t}^{x},arepsilon_{t}^{z} ight)$	Correlation shock home commodity vs bundle shock	0.1

Volatility and correlation in numerical experiment

	Model	Norway	Chile
Standard deviation of $\log S_t$	0.064	0.056	0.051
Correlation of log S_t with log P_t^{x*}	-0.49	-0.47	-0.54

Conclusions:

- We developed a model with commodities where the transmission mechanism is very different from the standard SOE model.
- Details that matter: preferences and the input-output matrix.
- Variations on the model of this paper can be applied to specific countries to take into account the specific features.
 - Sticky wages
 - Different sectors.

- Better coordination of fiscal and monetary policy in SOE for stabilization policy?
- Old K versus New K.
- From dependence (past), to independence (present), to partners (future?).