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I.   INTRODUCTION 

In the aftermath of the global financial crisis, public debt sustainability has come to the 
forefront of policy discourse, as many advanced and emerging market economies 
experienced a sharp increase in public debt (as percent of GDP). Specifically, the (weighted) 
average ratio of public debt to GDP of advanced economies increased from 79 percent in 
2008 to 107 percent by 2012 and has since remained little changed (IMF, 2015). As part of 
policy efforts to counter aggregate demand shortfall, a number of major countries 
implemented large fiscal stimulus in the early stage of the crisis. But such efforts were soon 
confronted with widespread concerns about debt sustainability amid tepid economic growth, 
and rising uncertainty about the economic outlook. More recently, public debt sustainability 
has received particular attention in bailout programs of several Eurozone countries where 
debt was already high in the run-up to the global financial crisis, and spiked sharply 
afterwards. 

As such, recent debates on public debt sustainability have mostly been cast in terms of “fiscal 
space”—the degree to which countries have room for fiscal maneuver. While the concept has 
been used variously in academic literature, as well as in policy discussions, Ostry et al. 
(2010) and Ghosh et al. (2013) pin down a technical, but simple, definition—namely, as the 
difference between the current level of public debt and the debt limit implied by the country’s 
historical record of fiscal adjustment. In other words, debt limit is defined as the maximum 
amount of debt that a country can afford without defaulting. Beyond this limit, debt dynamics 
become explosive and the government necessarily defaults. Assuming one-period debt and a 
stochastic fiscal reaction function, which explicitly incorporates the possibility of fiscal 
fatigue, they provide a range of estimates of fiscal space for advanced countries.  

In this paper, we extend their framework to examine whether, and how, the debt maturity 
structure plays a role in determining the debt limit (in turn influencing the fiscal space, and 
public debt sustainability) of countries. The issue is of central importance as short-term debt 
is considered to be vulnerable to rollover risks, and governments (especially those of 
emerging market economies) are often advised to reduce the share of short-term debt in their 
debt portfolio. But standard debt sustainability analysis pays little attention to debt maturity, 
partly because of a lack of analytical foundation to link debt maturity to debt limit. 
Moreover, existing studies provide limited guidance as they mostly focus on the relationship 
between actual debt maturity and the actual level of debt (e.g., Chatterjee and Eyigungor, 
2012, Greenwood et al., 2015). Our focus on debt limit is thus intended to contribute to debt 
sustainability analysis, and inform debt management policies.  

The basic setup of our model closely follows that of Ghosh et al. (2013): investors are risk 
neutral, the primary balance is exogenously given but uncertain (subject to an i.i.d. shock), 
and default occurs solely due to insolvency (i.e., the government’s inability to pay). For 
tractability, long-term debt is introduced in the convenient form of a long-duration bond (à la 
Hatchondo and Martinez, 2009), while short-term debt is represented by one-period 
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(discount) bond. Although maturity and duration differ conceptually, they are positively 
correlated. Since debt contract is featured as bond issuance in the model, a default event is 
isomorphic to an event of bond price falling to zero. Finally, we take debt maturity as given, 
and examine how it affects the debt limit.   

Using this framework, we find that debt limit is higher for long-term debt. Simulation results 
suggest that the effect of debt maturity on debt limit could be substantial—particularly, if 
fiscal outcomes are subject to large uncertainty. Underlying the finding is the asymmetry 
between short- and long-term debts in terms of pricing in downside risks and upside 
potentials in future fiscal outcomes. Assuming that the recovery value upon default is pre-
determined at the time of debt issuance, the downside risk (of unfavorable fiscal outcomes in 
the future) is reflected in the default risk premium for short- and long-term debts alike. But 
long-term debt has an intrinsic advantage in pricing in future upside potential in fiscal 
outcomes into the current price—which is absent in short-term debt.  

The advantage of long-term debt arises from the feedback from future prices to the current 
price. The current price affects future prices as it determines the pace at which debt increases, 
thereby affecting the future default risks (given the exogenous primary balance). In turn, the 
price in the next period conditional on no default affects the pace of debt increases and 
default risks beyond the next period. Since the current price reflects default risks in all future 
periods until maturity, the expected price in the next period matters for the current price. For 
example, a higher expected price in the next period buoys the current price which, in turn, 
reduces the default risk in the future as it leads to a smaller increase in debt than otherwise. 
And the same story holds for all future prices. Given that it is the expected future price 
conditional on no default what matters for the current price, long-term debt is well positioned 
to bring forward future upside potential in fiscal outcomes into the current price. 

Such feedback is absent in short-term debt simply because short-term investors, when they 
lend, do not care about what price will prevail in the next period if no default occurs (in 
which case they are fully repaid regardless of the price). In this respect, the price of short-
term debt is only coarsely related to the underlying fundamentals, while long-term debt 
resembles equity claims at least on the upside. It is clear that the very reason why the 
feedback is at work for long-term debt but not for short-term debt is the long maturity itself, 
suggesting that the pricing advantage of long-term debt is intrinsic. It does not matter 
whether long-term debt involves coupon payment obligations or not. The same feedback 
would operate for pure discount bonds as long as the maturity is longer than one period, 
although the quantitative effects may differ depending on the specifics of the repayment 
schedule of long-term debt.  

The feedback from future prices to the current price is what makes long-term debt effectively 
cheaper than short-term debt at the margin despite that both long- and short-term debts are 
actuarially fair under the assumed risk neutrality. As long as the default probability is less 
than unity (which must be the case at the debt limit), there is always room to price in future 
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upside potential in fiscal outcomes. It is obvious that such advantage has no relevance if there 
is no uncertainty, or if debt is sufficiently low that no default risk is present for all possible 
values of the primary balance. This explains why the natural debt limit—at or below which 
no default risk exists for all possible values of the primary balance—is identical for all 
maturities. We conjecture that these findings hold for a broad class of long-term debt because 
the basic intuition for the results is not specific to the assumed specification of long-duration 
bond.  

The model is incomplete in that it addresses only solvency risk while ignoring other legs of 
default risk—liquidity risk in particular—and no welfare analysis is made available. By 
switching off other risks, however, it provides a clearer picture on how solvency risk and 
debt maturity interact. It also provides a good basis to think through how other risks matter 
for determining the debt maturity in the real world. It has been claimed that long-term debt is 
safer but more expensive than short-term debt if term premium is positive. Our finding 
suggests that long-term debt is not as costly as implied by positive term premium itself, and 
by implication the tradeoff between safety and cost of debt servicing is in fact more favorable 
to long-term debt than implied by the term premium alone. 

Our paper is related to but distinct in focus from the existing literature on sovereign default 
where debt maturity or the decision to default is modeled as an optimal choice of the 
government. The early literature on debt maturity highlights debt or moral hazard in the 
determination of debt maturity. For example, Missale and Blanchard (1994) develop a 
reputational equilibrium model of the maximum debt maturity in which the borrowing 
government would want to shorten debt maturity to signal its commitment not to inflate debt 
away. Jeanne (2009) presents a model of the maturity of international sovereign debt in 
which the need to roll over external debt disciplines the policies of debtor countries but 
makes them vulnerable to unwarranted debt crises due to bad shocks. 

More recent studies on sovereign debt maturity focus on the tradeoff between the rollover 
risk and the borrowing cost or service yields that public debt offers. Broner et al. (2013) 
highlight the trade-off between safer longer-term debt and cheaper short-term debt and find 
empirical evidence that EMEs pay a positive term premium and debt issuance shifts towards 
shorter maturities during crises. Greenwood et al. (2015) abstract from the default risk 
(assuming debt sustainability is always ensured) and focus on the comparative advantage of 
debts of different maturities—i.e., lower rollover risk and correspondingly smaller welfare 
loss of long-term debt and larger monetary service yields of short-term debt. Their model 
implies a positive correlation between debt maturity and debt level as observed in the US 
historical data.  

Although different in the underlying motivation for default, our paper is closely related to 
several studies pioneered by Aguiar and Gopinath (2006) that incorporate sovereign debt in a 
quantitative model of interest rate spreads, business cycles, and endogenous default. Alfaro 
and Kanczuk (2007) compare different rationales for or against short-term debt including 
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maturity premium, sustainability, and service smoothing and take their model to the Brazil 
data to find that short-term debt offers higher welfare. Hatchondo and Martinez (2009) and 
Chatterjee and Eyigungor (2012) find that incorporating long-maturity or long-duration 
bonds enables their model to better replicate business cycle properties when calibrated for 
Argentine data. Their results also suggest that EM governments would have an incentive to 
issue short-term debt because the latter decreases the default frequency (and associated 
output cost) by weakening debt dilution incentives.  

While these two studies take debt maturity as given, Arellano and Ramanarayanan (2012) 
develop a dynamic model that can account for the observed patterns of the term structure of 
spreads and debt issuances by emerging markets within an optimizing framework. At the 
heart of their model lies the tradeoff between benefits of long- and short-term debts—i.e., 
long-term debt provides a hedge against volatility in spreads whereas short-term debt is less 
vulnerable to the borrower’s disincentives to repay. 

The rest of the paper is structured as follows. Section II sets up the model by introducing 
long-duration bond into the model developed by Ghosh et al (2013). Section III sketches the 
determination of the debt limit in a non-stochastic setting—which offers useful insight as to 
the equilibrium solutions of the model under uncertainty. Section IV solves the model in a 
stochastic setting to establish equilibrium conditions that can be used to pin down the debt 
limit for long- and short-term debt, and discusses policy implications of the model. Section V 
presents numerical solutions of the model. Section VI concludes.      

II.   THE MODEL 

Consider a long-duration bond that promises to pay an infinite stream of coupons which 
decay geometrically at a constant rate 𝛿𝛿 ∈ [0, 1]. Specifically, a bond issued in period t 
promises to pay one dollar in period t+1 and (1 − 𝛿𝛿)𝑘𝑘−1 dollars in period t+k for 𝑘𝑘 ≥ 2. The 
Macaulay duration of such a bond is given by (1 + 𝑟𝑟)/(𝛿𝛿 + 𝑟𝑟) where r is the one-period 
risk-free interest rate. Thus, the duration is inversely related to 𝛿𝛿 and one-period (discount) 
bond corresponds to 𝛿𝛿 = 1. With this structure, the law of motion for coupon payment 
obligations, denoted by d, is characterized by   

(1)                                                 𝑑𝑑𝑡𝑡+1 = (1 − 𝛿𝛿)𝑑𝑑𝑡𝑡 + 𝑛𝑛𝑡𝑡    

where 𝑛𝑛𝑡𝑡 is the number of bonds newly issued (or purchased) in period t.  

The government issues bond in each period to meet the gross financing need (GFN), x, which 
is comprised of coupon payment obligations (henceforth, outstanding debt) and primary 
deficit. Then,  

(2)                                              𝑛𝑛𝑡𝑡 = 𝑞𝑞𝑡𝑡−1𝑥𝑥𝑡𝑡 = 𝑞𝑞𝑡𝑡−1(𝑑𝑑𝑡𝑡 − 𝑠𝑠𝑡𝑡) 
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where 𝑞𝑞𝑡𝑡 and 𝑠𝑠𝑡𝑡 are the bond price and the primary balance, respectively. The primary 
balance (or the fiscal reaction function) is stochastic and characterized by 

(3)                                                          𝑠𝑠𝑡𝑡 = 𝑠𝑠∗ + 𝑒𝑒𝑡𝑡,  

where 𝑠𝑠∗ > 0 and 𝑒𝑒𝑡𝑡 is an i.i.d. shock distributed according to G(e) over a finite support 
[−𝑒𝑒, 𝑒𝑒 ].1   

Investors are risk neutral and, for simplicity, assumed to recover nothing upon default. The 
bond price satisfies the zero-profit condition, which is given by   

(4)                                𝑞𝑞𝑡𝑡 = [(1 − 𝑝𝑝𝑡𝑡+1)/(1 + 𝑟𝑟)][1 + (1 − 𝛿𝛿)𝑞𝑞𝑡𝑡+1𝑒𝑒 ] 

where 𝑝𝑝𝑡𝑡+1 is the one-period-ahead default probability perceived in period t and 𝑞𝑞𝑡𝑡+1𝑒𝑒 =
𝐸𝐸𝑡𝑡[𝑞𝑞𝑡𝑡+1| 𝑞𝑞𝑡𝑡+1 > 0]  is the expected value of the bond price that would prevail in the next 
period conditional on no default. Note that 𝑞𝑞𝑡𝑡 ≤ 𝑞𝑞𝑓𝑓 = 1/(𝛿𝛿 + 𝑟𝑟) where 𝑞𝑞𝑓𝑓 is the risk-free 
bond price. In case where there are multiple bond prices that satisfy (4), we assume the 
highest such price is the equilibrium solution.  

The model is closed by setting the default rule. We define default as an event in which the 
bond price falls to zero and hence the government cannot meet the GFN. We also assume a 
cross-default rule in which a failure to meet the GFN in any given period triggers default on 
entire debt obligations. The default rule states that the government defaults (and the bond 
price falls to zero) if and only if the GFN exceeds the unadjusted debt limit (see below for 
further discussion). Denoting by 𝑥𝑥𝑡𝑡 the possibly time-varying unadjusted debt limit, the 
default rule formally takes the form:  

(5)                                                  𝐷𝐷𝑡𝑡 = �1 iff  𝑥𝑥𝑡𝑡 > 𝑥𝑥𝑡𝑡  
0 otherwise  

 

where D is an indicator function for the default event.  

Given this setup, the model is stationary in the sense that each period is fully characterized 
by two state variables, Ω𝑡𝑡 = {𝑑𝑑𝑡𝑡, 𝑠𝑠𝑡𝑡}. Consequently, period t and period t+j are identical in all 
respects if Ω𝑡𝑡 = Ω𝑡𝑡+𝑗𝑗. Moreover, the primary balance is exogenous and subject to an i.i.d. 
shock which is the only source of uncertainty in the model. This structure of the model 
suggests that in equilibrium the bond price should be a time-invariant function of the state 
variables. Specifically, 

(6)                                       𝑞𝑞𝑡𝑡 = 𝑞𝑞(𝑑𝑑𝑡𝑡, 𝑠𝑠𝑡𝑡),   𝑞𝑞1 ≤ 0  and  𝑞𝑞2 ≥ 0 

                                                 
1 The autonomous component of the primary balance (𝑠𝑠∗) is assumed to be constant only for simplicity. This 
specification of the primary balance satisfies the technical restrictions for fiscal fatigue in Ghosh et al. (2013). 
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The signs of 𝑞𝑞1 and 𝑞𝑞2 are implied by the fact that in the model default occurs solely due to 
the government’s inability to pay. For given primary balance, a larger coupon payment 
obligation should be associated with a higher default probability and hence a lower bond 
price. A better outturn of the primary balance improves the government’s debt servicing 
capacity and thus should support a higher bond price in equilibrium. 

Before solving the model, we need to make sure that the comparison of debt limit between 
long- and short-term bonds is made on the same conceptual basis. To this end, it is important 
to recognize that outstanding debt (𝑑𝑑) refers to a flow of coupon payment obligations for 
long-duration bond while it is the nominal value of the stock of outstanding debt (before the 
primary balance) for one-period bond. Likewise, the gross financing need (𝑥𝑥) as defined in 
the model is a flow variable for long-duration bond while it is essentially a stock variable for 
one-period bond. It would thus be wrong if one compares these two variables between long- 
and short-term debts as they stand in the model.  
 
For this reason, we solve the model as it is but make adjustments on the variables of our 
interest to make them comparable between long-duration and one-period bonds. Specifically, 
we define adjusted outstanding debt and gross financing need for long-duration bond 
(dropping time subscript) as follows:  
  
(7)                             𝑑𝑑𝐴𝐴 = [1 + (1 − 𝛿𝛿)𝑞𝑞]𝑑𝑑      and       𝑥𝑥𝐴𝐴 = 𝑑𝑑𝐴𝐴 − 𝑠𝑠 

Conceptually, 𝑑𝑑𝐴𝐴 is the present value or buy-back value of the infinite stream of coupon 
payment obligations and hence corresponds to a stock variable comparable to 𝑑𝑑 of one-
period bond.2 Similarly, 𝑥𝑥𝐴𝐴 is comparable to 𝑥𝑥 of one-period bond.  
 
In what follows, short-term debt and long-term debt refer to one-period bond (𝛿𝛿 = 1) and 
long-duration bond (𝛿𝛿 < 1), respectively. For short-term debt, debt limit refers to 𝑥𝑥 as 
directly obtained from the model. For long-term debt, debt limit refers to 𝑥𝑥𝐴𝐴 while 𝑥𝑥 is 
labeled as unadjusted debt limit. Finally, we drop time subscripts while denoting a variable in 
the next period by using a prime given the stationary structure of the model and for notational 
convenience. 
 

III.   NON-STOCHASTIC CASE 

We first solve the model assuming no uncertainty. This exercise offers useful insight as to the 
equilibrium solutions of the model under uncertainty. To this end, we assume that 𝑒𝑒 = 0, so 
that 𝑠𝑠 = 𝑠𝑠∗.  

                                                 
2 The amount of outstanding debt in period t can be thought of 𝑑𝑑𝑡𝑡 units of long-duration bond that promises to 
pay (1 − 𝛿𝛿)𝑠𝑠−𝑡𝑡 dollars for all 𝑠𝑠 ≥ 𝑡𝑡 (i.e., starting from period t). The market value of such a bond is equal to 
1 + (1 − 𝛿𝛿)𝑞𝑞𝑡𝑡. 
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As there is no uncertainty, x and 𝑑𝑑 move one for one and differ by a constant. Thus, debt 
limit defined for x is intrinsically related to whether 𝑑𝑑 is on a sustainable (i.e., non-explosive) 
path. Specifically, default occurs (and the bond price falls to zero) as soon as 𝑑𝑑 is expected to 
grow without bound in all circumstances. The law of motion for 𝑑𝑑 as shown in (1) and (2) 
implies 
  
(8)                                            𝑑𝑑′ ≤ 𝑑𝑑   ⟺   (𝑑𝑑 − 𝑠𝑠∗)/𝑞𝑞 ≤ 𝛿𝛿𝛿𝛿 

Solving the latter inequality for 𝑑𝑑 assuming 𝑞𝑞 > 0 yields, 

                                                           𝑑𝑑 ≤  𝑠𝑠∗/(1 − 𝛿𝛿𝛿𝛿) 

This inequality means that d is non-increasing whenever it remains at or below 𝑠𝑠∗/(1 − 𝛿𝛿𝛿𝛿) 
but otherwise grows without bound with certainty. Therefore, there is no default risk 
whenever the above inequality holds and therefore the corresponding bond price should be 
equal to the risk-free price. Otherwise, the bond price falls to zero.  
 
Substituting 𝑞𝑞 = 𝑞𝑞𝑓𝑓 into the above inequality yields, 
 
(9)                   𝑑𝑑 ≤ 𝑑𝑑 = [(𝛿𝛿 + 𝑟𝑟)/𝑟𝑟]𝑠𝑠∗   or, equivalently,  𝑥𝑥 ≤ 𝑥𝑥 = (𝛿𝛿/𝑟𝑟)𝑠𝑠∗ 

These are familiar results for one-period bond (𝛿𝛿 = 1). To be specific, 𝑥𝑥 = 𝑠𝑠∗/𝑟𝑟 is the 
natural debt limit of one-period debt at or below which debt is non-increasing and the 
government never defaults. The same intuition holds for long-duration bond. It is 
straightforward to show 
                                                               
(10)                          𝑑𝑑𝐴𝐴 = [(1 + 𝑟𝑟)/𝑟𝑟]𝑠𝑠∗     and       𝑥𝑥𝐴𝐴 = 𝑠𝑠∗/𝑟𝑟 

Both  𝑑𝑑𝐴𝐴 and  𝑥𝑥𝐴𝐴 are identical to their respective one-period bond counterparts that can be 
obtained by substituting 𝛿𝛿 = 1 into the expressions for 𝑑𝑑 and 𝑥𝑥 in (9). The results in (9) and 
(10) establish that debt limit, if adjusted appropriately, is identical for long- and short-term 
debts in the absence of uncertainty. This result implies that both long- and short-term debts 
are equally expensive from the perspective of the government when there is no uncertainty in 
fiscal outcomes.    
 

IV.   STOCHASTIC CASE  

We now assume that the primary balance is stochastic. We first solve the model for short-
term debt. The analytical results provide a useful basis to find equilibrium solutions for long-
term debt. 
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A.   Debt Limit of Short-term Debt (δ = 1) 

For short-term debt, the government’s budget constraint is characterized by     

(11)                                 𝑥𝑥′ = 𝑥𝑥/𝑞𝑞 − 𝑠𝑠′,        𝑞𝑞 = (1 − 𝑝𝑝′)/(1 + 𝑟𝑟) 

This is the classic case studied by Ghosh et al. (2013) where the debt limit is constant. The 
constancy of the debt limit is implied by the fact that the evolution of the GFN is a self-
generating process. We solve the model assuming a constant debt limit denoted by 𝑥𝑥. 

According to the default rule, the one-period-ahead default probability is defined as 𝑝𝑝′ =
Pr[𝑥𝑥′ > 𝑥𝑥], which can be rewritten into  

(12)                                                     𝑝𝑝′ = 𝐺𝐺(𝐻𝐻) 

where 𝐻𝐻 = 𝑥𝑥/𝑞𝑞 − 𝑠𝑠∗ − 𝑥𝑥 and 𝑞𝑞 = (1 − 𝑝𝑝′)/(1 + 𝑟𝑟). Given the dependence of H on 𝑝𝑝′ via 𝑞𝑞, 
the equality in (12) constitutes a fixed-point problem for 𝑝𝑝′. Note that 𝑝𝑝′ = 1 is always a 
(corner) solution to the fixed-point problem in which case the government defaults with unit 
probability. In equilibrium, the lowest solution to the fixed-point problem for given debt limit 
yields the one-period-ahead default probability and the equilibrium price of bond at each 
level of the GFN.  

The debt limit is determined as the maximum GFN beyond which no interior solution exists 
to the fixed-point problem in (12) so that 𝑝𝑝′ = 1 is the only (corner) solution. Denoting by 𝑝𝑝′ 
the one-period-ahead default probability at the debt limit, the pair {𝑝𝑝′, 𝑥𝑥} is essentially pinned 
down by the two equilibrium conditions given by  

(13)                                               
(i)   𝑝𝑝′ = 𝐺𝐺(𝐻𝐻)           
(ii) ∂G(𝐻𝐻)/ ∂𝑝𝑝′ = 1

 

where  𝐻𝐻 = 𝑥𝑥/𝑞𝑞 − 𝑠𝑠∗ − 𝑥𝑥  and  𝑞𝑞 = (1 − 𝑝𝑝′)/(1 + 𝑟𝑟). The second condition is the slope 
condition that ensures that 𝑝𝑝′ is the maximum interior solution to the fixed point problem. 

Figure 1 illustrates the determination of the one-period-ahead default probability for short-
term debt as an interior solution to the fixed point problem in (12). In the Figure, 𝐺𝐺(𝐻𝐻(𝑝𝑝′)) is 
monotonically increasing in 𝑝𝑝′ before it becomes flat at unity, and shifts upward with an 
increase in the GFN (∆𝑥𝑥 > 0). For a given debt limit (𝑥𝑥), there would in general be two or 
more interior solutions (obtained at the intersection of 𝐺𝐺(𝐻𝐻(𝑝𝑝′)) and the 45-degree line 
denoted by 𝑝𝑝′ = 𝑝𝑝′), the lowest of which is by assumption the equilibrium solution for 𝑝𝑝′ 
(which yields the highest bond price). As 𝑥𝑥 increases from some initial level below 𝑥𝑥, the 
lowest interior solution increases (while the upper interior solution decreases). It should be 
noted that the fixed-point problem has always a corner solution which is given by 𝑝𝑝′ = 1. 
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Figure 1. Determination of Default Probability: Short-term Debt 

 

The maximum interior solution for 𝑝𝑝′ obtains at the tangency point between 𝐺𝐺(𝐻𝐻(𝑝𝑝′)) and 
the 45-degree line, and the corresponding level of 𝑥𝑥 is the largest GFN that the given debt 
limit can sustain. Any further increase in 𝑥𝑥 will lead to the corner solution  𝑝𝑝′ = 1 in which 
case the bond price collapses to zero and the government necessarily defaults. But this is the 
very definition of debt limit according to the default rule. At the tangency point, therefore, 
actual GFN must coincide with the given debt limit (i.e., 𝑥𝑥 = 𝑥𝑥) and the corresponding 
default probability must be the default probability at the debt limit (i.e., 𝑝𝑝′ = 𝑝𝑝′). The 
tangency point is completely pinned down by the equilibrium conditions in (13).        

Several equilibrium properties of the debt limit and the price of short-term debt are worth 
summarizing for future references. First, the bond price is uniquely determined by 𝑥𝑥 given 
the constant debt limit. Formally,  

(14)                       𝑞𝑞 = 𝑞𝑞(𝑥𝑥) > 0   and   𝑞𝑞(𝑥𝑥1) ≥ 𝑞𝑞(𝑥𝑥2)  if 𝑥𝑥1 ≤ 𝑥𝑥2   

Second, the bond price falls below the risk-free price over a short range of the GFN less than 
the support of the primary balance shock. More specifically, there exists 𝑥𝑥0 < 𝑥𝑥 such that 
𝑝𝑝′ = 0 if 𝑥𝑥 ≤ 𝑥𝑥0 and 𝑝𝑝′ > 0 otherwise. It can be easily shown that 𝑥𝑥0 ≥ 𝑥𝑥 − 2𝑒𝑒.3 Third, the 
maximum outstanding debt consistent with the debt limit is given by 𝑑𝑑 = 𝑥𝑥/𝑞𝑞 (see the 
Appendix for the proof).   

                                                 
3 See the Appendix in Ghosh et al. (2013) for the proof.  
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B.   Debt Limit for Long-term Debt (δ < 1) 

Identifying debt limit for long-term debt is complicated by the interdependence of bond 
prices across time periods. The current price affects future price via its effect on the pace at 
which debt increases which in turn affects the default risk in the future. Conversely, future 
prices matter for the current price as the latter reflects default risk in all future periods until 
maturity. Such interdependence introduces enormous complications into the model making it 
virtually intractable. Given the complexity of the model, it is beyond the scope of this paper 
to present a full-fledged solution for the debt limit of long-term debt. As shown later, we 
focus instead on a specific debt limit of long-term debt which is most interesting and relevant 
for fiscal space and debt sustainability assessment.     

If the government issues long-term debt (𝛿𝛿 < 1), its budget constraint is given by 

(15)         𝑥𝑥′� = 𝑞𝑞−1𝑥𝑥 + (1 − 𝛿𝛿)𝑑𝑑 − 𝑠𝑠′�,      𝑞𝑞 = [(1 − 𝑝𝑝′)/(1 + 𝑟𝑟)][1 + (1 − 𝛿𝛿)𝑞𝑞𝑒𝑒] 

Unlike in case of short-term debt, the evolution of the GFN is governed not only by itself but 
also outstanding debt (𝑑𝑑). As such, debt limit of long-term debt is not constant but varies 
depending on 𝑑𝑑. This also implies that the bond price would no longer be uniquely 
determined by x alone. For this reason, we conjecture that (unadjusted) debt limit is 
characterized by  

                                              𝑥𝑥 = 𝑥𝑥(𝑑𝑑)   and   𝜕𝜕𝑥𝑥(𝑑𝑑)/𝜕𝜕𝜕𝜕 ≤ 0    

Given this conjecture, the one-period-ahead default probability is then defined as 

                                                     𝑝𝑝′ = Pr [𝑥𝑥′ > 𝑥𝑥(𝑑𝑑′)] 

Let us first look into the evolution of 𝑑𝑑 and its implication for q. As discussed earlier, the law 
of motion for 𝑑𝑑 implies,   

(16)                                 𝑑𝑑′ ≤ 𝑑𝑑     ⟺     𝑞𝑞−1(𝑑𝑑 − 𝑠𝑠) ≤ 𝛿𝛿𝑑𝑑 

Let us define 𝜋𝜋(𝑑𝑑) = Pr[𝑑𝑑′ > 𝑑𝑑] which refers to the probability that 𝑑𝑑 increases between 
two adjacent periods. It is then straightforward to find 𝑑𝑑∗ > 0 such that 𝜋𝜋(𝑑𝑑) = 0 if 𝑑𝑑 ≤ 𝑑𝑑∗ 
and 𝜋𝜋(𝑑𝑑) > 0 otherwise. If 𝑑𝑑 is never increasing, there would be no default risk and hence 
the bond price should equal the risk-free price. Substituting 𝑞𝑞 = 𝑞𝑞𝑓𝑓 and  𝑠𝑠 = 𝑠𝑠∗ − 𝑒𝑒 (i.e., the 
worst possible primary balance) into the latter inequality in (16) and rearranging terms yield, 

(17)       𝑑𝑑 ≤ 𝑑𝑑∗ = [(𝛿𝛿 + 𝑟𝑟)/𝑟𝑟](𝑠𝑠∗ − 𝑒𝑒) or, equivalently, 𝑥𝑥 ≤ 𝑥𝑥∗ = (𝛿𝛿/𝑟𝑟)(𝑠𝑠∗ − 𝑒𝑒) 

As discussed in Section III, these results suggest that the natural debt limit is identical for 
both long- and short-term debts and is given by 𝑥𝑥∗(1) = 𝑥𝑥𝐴𝐴∗(𝛿𝛿) = (𝑠𝑠∗ − 𝑒𝑒)/𝑟𝑟. 
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If 𝑑𝑑 > 𝑑𝑑∗, default risk rises above zero because 𝜋𝜋(𝑑𝑑) > 0 and the bond price 
correspondingly falls below the risk-free price. Formally,  

(18)                                 𝜋𝜋(𝑑𝑑) > 0   and   𝑞𝑞 < 𝑞𝑞𝑓𝑓   iff  𝑑𝑑 > 𝑑𝑑∗ 

Note that 𝜋𝜋(𝑑𝑑) > 0 implies that the probability that 𝑑𝑑 grows without bound is positive. This 
in turn implies that default risk begins to rise above zero as soon as the natural debt limit is 
passed and, therefore, 𝑞𝑞𝑒𝑒 < 𝑞𝑞𝑓𝑓 must also hold if 𝑑𝑑 > 𝑑𝑑∗.  

As 𝑑𝑑 grows further, the bond price declines toward zero since 𝑞𝑞1 ≤ 0 while 𝜋𝜋(𝑑𝑑) increases 
toward unity. A natural extension of this argument is that there must exist 𝑑𝑑 > 𝑑𝑑∗ such that 

(19)                                        𝑞𝑞 = �> 0 iff  𝑑𝑑 ≤ 𝑑𝑑      
= 0 otherwise    

 

Conceptually, 𝑑𝑑 is the upper bound of 𝑑𝑑 above which 𝜋𝜋(𝑑𝑑) = 1 for all possible values of 𝑥𝑥 
so that 𝑑𝑑 grows without bound with certainty and, as a result, the bond price necessarily falls 
to zero.4  

The bond price as characterized in (19) implies that if 𝑑𝑑 < 𝑑𝑑, there is always room for 𝑑𝑑 to 
increase up to 𝑑𝑑 without triggering default. This intuition can be used to characterize the debt 
limit schedule, 𝑥𝑥(𝑑𝑑). Specifically, substituting 𝑑𝑑′ = 𝑑𝑑 and 𝑥𝑥 = 𝑥𝑥(𝑑𝑑) into (1) and (2) and 
rearranging terms yields,   

(20)                                   𝑥𝑥(𝑑𝑑) = 𝑞𝑞(𝑑𝑑)[𝑑𝑑 − (1 − 𝛿𝛿)𝑑𝑑]    if  𝑑𝑑 ≤ 𝑑𝑑      

where 𝑞𝑞(𝑑𝑑) = 𝑞𝑞(𝑥𝑥(𝑑𝑑)) is the bond price evaluated at the debt limit. It can be easily shown 
that  

(21)           𝜕𝜕𝑥𝑥(𝑑𝑑)/𝜕𝜕𝜕𝜕 = −(1 − 𝛿𝛿)𝑞𝑞(𝑑𝑑)/[1 − (𝜕𝜕𝑞𝑞/𝜕𝜕𝑥𝑥){𝑑𝑑 − (1 − 𝛿𝛿)𝑑𝑑}]  ≤  0      

where the inequality follows from 𝜕𝜕𝑞𝑞/𝜕𝜕𝑥𝑥 < 0. This result has intuitive appeal. As 𝑑𝑑 
approaches to 𝑑𝑑 from below, the bond price falls while fiscal space measured by 𝑑𝑑 − 𝑑𝑑 
shrinks. Declining bond price means that a larger volume of debt issuance is required to meet 
a given amount of GFN while shrinking fiscal space means that the affordable volume of 
debt issuance is decreasing. Thus, 𝑥𝑥(𝑑𝑑) must decline as 𝑑𝑑 increases. 

 

                                                 
4 It is easy to show that 𝑑𝑑 ≤ 𝑑̂𝑑 = [(𝛿𝛿 + 𝑟𝑟)/𝑟𝑟](𝑠𝑠∗ + 𝑒𝑒) where 𝑑̂𝑑 is the largest 𝑑𝑑 that can be sustained if the 
primary balance remains at the best possible value and the bond price equals the risk-free price (despite positive 
default risk) at all times. 
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Figure 2. Determination of Debt Limit for Long-term Debt 

 

Figure 3. Bond Price and Default Probability by Region of Debt 

 
 

Figure 2 provides a graphic illustration of the schedule 𝑥𝑥(𝑑𝑑) and the feasible set of the gross 
financing need. In the Figure it is assumed without loss of generality that the worst possible 
primary balance is positive. The area bounded by 𝑥𝑥𝑈𝑈(𝑑𝑑) and 𝑥𝑥𝐿𝐿(𝑑𝑑) represents the feasible set 
of 𝑥𝑥 for each level of 𝑑𝑑 where 𝑥𝑥𝑈𝑈(𝑑𝑑) and 𝑥𝑥𝐿𝐿(𝑑𝑑) are defined as follows: 

𝑥𝑥𝑈𝑈(𝑑𝑑) = 𝑑𝑑 − (𝑠𝑠∗ − 𝑒𝑒)    and    𝑥𝑥𝐿𝐿(𝑑𝑑) = 𝑑𝑑 − (𝑠𝑠∗ + 𝑒𝑒) 

In the Figure, point A is on the debt limit schedule and lies above point B which corresponds 
to the (unadjusted) natural debt limit shown in (17). It is important to recall that 𝑑𝑑 grows with 
positive probability (𝜋𝜋(𝑑𝑑) > 0) and default risk rises above zero as soon as 𝑑𝑑 exceeds 𝑑𝑑∗. 
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Consider next point C which is the intersection of 𝑥𝑥(𝑑𝑑) and 𝑥𝑥𝑈𝑈(𝑑𝑑). At point C, the one-
period-ahead default probability 𝑝𝑝′ is positive (see the Appendix).  

Although not shown in Figure 2, there exists 𝑑𝑑0 ∈ (𝑑𝑑∗, 𝑑𝑑∗∗) such that 𝑝𝑝′ = 0 if 𝑑𝑑 ≤ 𝑑𝑑0 and  
𝑝𝑝′ > 0 otherwise.5 For 𝑑𝑑 > 𝑑𝑑∗∗, debt limit begins to bind with positive probability because it 
lies within the feasible set of 𝑥𝑥. Point E is the intersection of 𝑥𝑥(𝑑𝑑) and 𝑥𝑥𝐿𝐿(𝑑𝑑) at which 
default occurs with certainty because 𝑥𝑥(𝑑𝑑) ≤ 𝑥𝑥. As such, point E cannot be a legitimate debt 
limit. 6 This requires that 𝑑𝑑 must lie between 𝑑𝑑∗∗ and 𝑑𝑑+. Point D is such a point which 
corresponds to the unadjusted debt limit associated with 𝑑𝑑. 

Figure 3 summarizes how the bond price and the one-period-ahead default probability evolve 
across regions of 𝑑𝑑 demarcated by several thresholds discussed above. Both 𝑞𝑞 and 𝑞𝑞𝑒𝑒 are 
equal to 𝑞𝑞𝑓𝑓 until 𝑑𝑑∗ and then fall below 𝑞𝑞𝑓𝑓 but remain positive between 𝑑𝑑∗ and  𝑑𝑑, before 
falling discretely to zero if 𝑑𝑑 > 𝑑𝑑. In contrast, 𝑝𝑝′ remains at zero until 𝑑𝑑0 after which it 
becomes positive and then reaches to unity if 𝑑𝑑 > 𝑑𝑑. Since the adjusted natural debt limit of 
long-term debt is identical to that of short-term debt, default risk begins to rise above zero 
earlier for long-term debt.  

Let us now return to the model. As noted earlier, we are unable to identify the entire 
(unadjusted) debt limit schedule 𝑥𝑥(𝑑𝑑) because the model is not fully tractable. However, we 
are able to find equilibrium conditions that can be used to determine  𝑥𝑥(𝑑𝑑). Our focus on 
𝑥𝑥(𝑑𝑑) is well justified because it is associated with the maximum amount of outstanding debt 
(𝑑𝑑) a country can afford without defaulting and therefore most relevant for fiscal space and 
debt sustainability analysis.  

At 𝑑𝑑 = 𝑑𝑑, the fixed-point problem for 𝑝𝑝′ is characterized by   

(22)                                                    𝑝𝑝′ = 𝐺𝐺(𝑍𝑍)    

where 𝑍𝑍 = 𝑞𝑞−1𝑥𝑥 + (1 − 𝛿𝛿)𝑑𝑑 − 𝑠𝑠∗ − 𝑥𝑥(𝑑𝑑′). There are four unknowns in this fixed point 
problem which are given by {𝑝𝑝′, 𝑑𝑑 , 𝑞𝑞𝑒𝑒, 𝑑𝑑′} where 𝑞𝑞𝑒𝑒 is the expected bond price conditional 
on no default in the next period which evaluated at 𝑥𝑥 = 𝑥𝑥(𝑑𝑑). Once these unknowns are 
determined, 𝑥𝑥(𝑑𝑑) can be uncovered by using (20). Thus, we need four equilibrium conditions 
to pin down 𝑥𝑥(𝑑𝑑).  

 

                                                 
5 Conceptually, point C corresponds to 𝑥𝑥0 of short-term debt as discussed in Section IV.A. 
6 𝑥𝑥(𝑑𝑑) is drawn using a dotted line beyond point D in order to highlight that it is not well defined for 𝑑𝑑 > 𝑑̂𝑑.  
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The first equilibrium condition is characterized by  

(23)                                                   𝑥𝑥(𝑑𝑑)/𝑞𝑞 = 𝛿𝛿𝑑𝑑  

This condition is equivalent to requiring that 𝑑𝑑′ = 𝑑𝑑 when 𝑥𝑥 = 𝑥𝑥(𝑑𝑑) (see (1) and (2)). To 
understand this requirement, it is important to note that all variables that appear in (23) are 
known at the time of debt issuance and hence no uncertainty is involved. With this 
understanding, suppose that 𝑑𝑑′ > 𝑑𝑑. According to (19), 𝑞𝑞′ = 0 with certainty. This in turn 
implies that 𝑞𝑞 = 0 because no investor would lend to the government knowing that it will 
certainly default in the next period. This result contradicts the definition of debt limit at 
which the bond price must be positive. Suppose alternatively that 𝑑𝑑′ < 𝑑𝑑. Then there always 
exists 𝜀𝜀 > 0 such that 𝑑𝑑′ = 𝑑𝑑 and 𝑞𝑞 > 0 at 𝑥𝑥 = 𝑥𝑥(𝑑𝑑) + 𝜀𝜀. This means that no default occurs 
in the current period even if 𝑥𝑥 > 𝑥𝑥(𝑑𝑑). Again, this result contradicts the definition of debt 
limit and violates the default rule. Thus, in equilibrium, the condition in (23) must hold. Note 
that the same condition implies that 𝑥𝑥(𝑑𝑑′) = 𝑥𝑥(𝑑𝑑). 

The second and third equilibrium conditions are akin to those in (13) for short-term debt. 
Evaluating Z in (22) at 𝑥𝑥 = 𝑥𝑥(𝑑𝑑) while imposing (23) yields, 

(24)                                         𝑍𝑍 =  𝑥𝑥(𝑑𝑑)/𝛿𝛿𝑞𝑞 − 𝑠𝑠∗ − 𝑥𝑥(𝑑𝑑)  

It should be highlighted that 𝑍𝑍 does not involve 𝑑𝑑 as a separate conditioning variable. This 
special feature enables us to apply the same solution technique as used for short-term debt. 
Specifically, the second and third equilibrium conditions are characterized by  

(25)                                             
(i)   𝑝𝑝′ = 𝐺𝐺(𝑍𝑍)           
(ii) ∂G(𝑍𝑍)/ ∂𝑝𝑝′ = 1 

 

These conditions determine uniquely the pair {𝑝𝑝′, 𝑥𝑥(𝑑𝑑)} for given 𝑞𝑞𝑒𝑒.    

The last equilibrium condition obtains by requiring that 𝑞𝑞𝑒𝑒 be a rational expectations 
equilibrium solution. Specifically, it is characterized by  

(26)                           𝑞𝑞𝑒𝑒 = (1 − 𝑝𝑝′)−1 ∫ 𝑞𝑞(𝑑𝑑, 𝑠𝑠)𝑒𝑒
𝑍𝑍 𝑔𝑔(𝑒𝑒)𝑑𝑑𝑑𝑑 >   𝑞𝑞  

where 𝑔𝑔(𝑒𝑒) is the densitiy function of the primary balance shock. Since 𝑑𝑑′ = 𝑑𝑑 in 
equilibrium, it follows that 𝑞𝑞′(𝑑𝑑′, 𝑠𝑠′) = 𝑞𝑞(𝑑𝑑, 𝑠𝑠) if 𝑠𝑠′ = 𝑠𝑠. Moreover, 𝑞𝑞𝑒𝑒 must be greater than 
𝑞𝑞 in equilibrium because 𝑞𝑞𝑒𝑒 is the expected value of 𝑞𝑞′ conditional on no default. 
Consequently, the lower limit of the integral is equal to 𝑍𝑍.  
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These four equilibrium conditions characterized by (23), (25) and (26) can jointly pin down 
the equilibrium values of {𝑝𝑝′, 𝑥𝑥(𝑑𝑑), 𝑞𝑞𝑒𝑒, 𝑑𝑑}. Although no closed form solution is available, 
these conditions can be used to characterize the adjusted debt limit of long-term debt. For 
clarity of comparison and notational convenience, we use the notation 𝑥𝑥(𝛿𝛿) for 𝑥𝑥(𝑑𝑑) of long-
term debt and denote the debt limit of short-term debt discussed earlier by 𝑥𝑥(1). 

By using (7) and (23), it straightforward to show that the adjusted debt limit of long-term 
debt can be expressed as 

(27) 𝑥𝑥𝐴𝐴  =  𝑑𝑑𝐴𝐴 − 𝑠𝑠  =  𝑥𝑥(𝛿𝛿)/𝛿𝛿 

Utilizing this result, we can show that (adjusted) debt limit is higher for long-term debt. 
Formally,  

(28) 𝑥𝑥𝐴𝐴 >  𝑥𝑥(1) 

The Appendix provides formal proof of this result. 

What drives this result is an intrinsic advantage of long-term debt over short-term debt in 
pricing in future upside potential in fiscal outcomes (i.e., possibility of favorable shocks to 
the primary balance in the future) into the current price. Indeed, central to the proof of (28) is 
the strict inequality given by 𝑞𝑞𝑒𝑒 > 𝑞𝑞. This inequality implies that there always exists future 
upside potential in fiscal outcomes to be priced in as long as the default probability is less 
than unity. For example, all else equal, a higher expected price in the next period buoys the 
current price which, in turn, reduces the default risk in the future as it leads to a smaller 
increase in debt than otherwise. Given that it is the expected future price conditional on no 
default that matters for the current price, long-term debt is well positioned to bring forward 
future upside potential into the current price. 

Such feedback from future prices to the current price is, however, absent in short-term debt. 
Short-term investors do not care about what price will prevail in the next period if no default 
occurs, simply because it does not matter for the return on their investment.7 In this respect, 
the price of short-term debt is only coarsely related to the underlying fundamentals while 
long-term debt resembles equity claims at least on the upside. This implies that the very 
reason why the feedback is at work for long-term debt but not for short-term debt is the long 
maturity itself. It does not matter whether long-term debt involves coupon payment 

7 Technically, this is why the price of short-term debt (𝛿𝛿 = 1) does not involve 𝑞𝑞𝑒𝑒 as can be seen from (4). 
While the downside risk (of unfavorable shocks to the primary balance in the future) is reflected in the default 
probability for short- and long-term debts alike, the future upside potential in fiscal outcomes is priced in only 
for long-term debt.   
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obligations or not. The same feedback operates for a pure discount bond as long as the 
maturity is longer than one period.  

The pricing advantage of long-term debt is intrinsic because it arises from the long maturity 
itself. And it is what makes long-term debt effectively cheaper than short-term debt at the 
margin despite that both debts are actuarially fair under the assumed risk neutrality. It is 
obvious that such advantage has no relevance if there is no uncertainty or if debt is low 
enough so that no default risk is present for all possible values of the primary balance. This 
explains why the natural debt limit—at or below which no default risk is present for all 
possible realizations of the primary balance shock—is identical for all maturities. We 
conjecture that these findings hold for a broad class of long-term debt because the basic 
intuition for the results is not specific to the assumed specification of long-duration bond.  

The model has several policy implications that can shed light on the existing empirical 
evidence as to the maturity structure of sovereign debt and debt sustainability analysis.  

First, higher debt limit for long-term debt under risk neutrality does not necessarily imply 
that long-term debt should dominate short-term debt in real data. Rather it suggests that other 
legs of default risk than solvency risk should matter for the determination of actual debt 
maturity. In fact, the average public debt maturity varies significantly among advanced 
economies and tends to be shorter for emerging market economies. If term premium is 
negligible, our finding suggests that long-term debt would likely dominate short-term debt as 
the former is more resilient to solvency risk. This may explain why the average debt maturity 
is longer for advanced economies than for emerging market economies. If term premium is 
positive and large, however, long-term debt may become more expensive than short-term 
debt despite its resilience to solvency risk and, as a result, the average debt maturity would 
likely be shorter than otherwise (Broner et al., 2013). 

Second, a country would be able to reap the benefit of fiscal reforms earlier than later if debt 
maturity is longer. In the context of our model, fiscal reforms to strengthen debt 
sustainability can be mapped into an expected permanent increase in the autonomous part of 
the primary balance (∆𝑠𝑠∗ > 0). A permanently higher primary balance in the future will 
affect the current price of long-term debt given the feedback discussed above. Assuming that 
fiscal reforms are credible, for example, long-term bond yields would fall immediately at an 
announcement of fiscal reforms (that will take time to implement) while short-term yields are 
less likely to respond to such news. By the same token, the price of long-term debt would 
also respond by more than that of short-term debt to a bad news about future fiscal 
performance (e.g., (∆𝑠𝑠∗ < 0). For example, long-term bond yields may rise by more than 
short-term bond yields in response to a downward revision in the medium-term projections of 
the fiscal balance.   

Third, debt stress warnings may arrive earlier for long-term debt. The model suggests that for 
long-term debt, default risk begins to rise above zero and the bond price correspondingly 
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falls below the risk-free price as soon as the natural debt limit is passed. For short-term debt, 
however, the bond price remains at the risk-free price even after debt passes the same natural 
debt limit. Thus, an earlier detection of debt stress may be possible for long-term debt. Last 
but not least, standard debt sustainability analysis undertaken by assuming one-period debt 
would likely be too conservative if the average debt maturity is significantly longer than one 
period. 

V.   SIMULATION RESULTS

In this section, we simulate the model to get a feel for the effects of debt maturity on debt 
limit. The model can be solved numerically to find the debt limit of one-period bond but not 
for long-duration bond because major technical challenges arise with regard to the 
equilibrium condition in (26). Simply speaking, the functional form of 𝑞𝑞(𝑑𝑑, 𝑠𝑠) is unknown. 
As a result, we are unable to obtain exact numerical solutions for long-duration bond.   

For this reason, we take  𝑞𝑞𝑒𝑒 as given when simulating the model for long-duration bond. To 
be specific, simulation is undertaken in two steps. In the first, the model is numerically 
solved to find the value of 𝑞𝑞𝐿𝐿

𝑒𝑒 such that 𝑞𝑞𝐿𝐿
𝑒𝑒 = 𝑞𝑞(𝑞𝑞𝐿𝐿

𝑒𝑒). In the second, the model is simulated to
generate a sample of 200 simulated debt limits by varying 𝑞𝑞𝑒𝑒 incrementally over the interval 
[𝑞𝑞𝐿𝐿

𝑒𝑒, 𝑞𝑞𝑓𝑓] in which the equilibrium value of  𝑞𝑞𝑒𝑒 must lie. Since in equilibrium 𝑞𝑞 < 𝑞𝑞𝑒𝑒 < 𝑞𝑞𝑓𝑓,
the considered interval of 𝑞𝑞𝑒𝑒 includes non-permissible values. Therefore, the simulated range 
of debt limits is correspondingly wider than should be. 

In the simulation, a positive recovery value is introduced. This does not affect the qualitative 
results but produces more discernible quantitative variations in debt limits. To this end, the 
zero-profit condition in (4) is modified as follow:  

      𝑞𝑞𝑡𝑡 = [(1 − 𝑝𝑝𝑡𝑡+1)/(1 + 𝑟𝑟)][1 + (1 − 𝛿𝛿)𝑞𝑞𝑡𝑡+1𝑒𝑒 ] + 𝑝𝑝𝑡𝑡+1𝜃𝜃𝑞𝑞𝑡𝑡,    0 < 𝜃𝜃 < 1/(1 + 𝑟𝑟) 

which states that investors recover upon default a fraction (1 + 𝑟𝑟)𝜃𝜃 of the market value of 
their investment. For the baseline simulation, we set the values of key parameters as follows: 

𝑟𝑟 = 0.02,     𝑠𝑠∗ = 4.0,      𝑒𝑒 = 2.0,     𝜃𝜃 = 0.9 

For sensitivity check with regard to the risk-free interest rate and the underlying uncertainty 
as to the primary balance, we also experiment with 𝑟𝑟 = 0.03 and 𝑒𝑒 = 3.0 both of which are 
expected to lower the debt limit. Finally, we assume the triangular density function for the 
primary balance shock. 
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Table 1. Simulated Debt Limits 

It should be reminded that any inferences from the simulation results are suggestive rather 
than conclusive because the reported debt limits for long-term debt are not the exact 
numerical solutions. With this understanding, Table 1 presents the simulation results 
undertaken for four different values of 𝛿𝛿 ranging from 0.1 to 1.0. These values of 𝛿𝛿 are 
chosen as their implied duration is broadly matched with popular maturities observed in real 
data for advanced economies. For instance, 𝛿𝛿 = 0.1 and 𝛿𝛿 = 0.2 correspond approximately 
to maturities of 10 and 5 years respectively if time period is measured in annual frequency. 
For long-term debt (𝛿𝛿 < 1), the reported debt limit (𝑥𝑥𝐴𝐴) refers to the adjusted debt limit and 
corresponds to the median of 200 simulated debt limits whose range is shown in the last 
column. 

Simulation results are suggestive of potentially large gain in debt limit when debt maturity is 
lengthened. Several regularities emerge from the Table. First, the debt limit ratio 𝑥𝑥𝐴𝐴/𝑥𝑥(1) is 
greater than unity for all 𝛿𝛿 < 1. Second, all else equal, the same ratio is inversely related to 𝛿𝛿 

r Range

1.0 0.98 0.98 108.9 1.00 …

0.5 1.92 1.91 112.2 1.03 [108.9, 115.8]

0.2 4.55 4.41 118.3 1.09 [108.9,  129.4]

0.1 8.33 7.73 123.2 1.13 [108.9,  141.0]

1.0 0.98 0.97 76.9 1.00 …

0.5 1.92 1.88 83.3 1.08 [76.9,  91.1]

0.2 4.55 4.21 91.7 1.19 [76.9, 113.0]

0.1 8.33 7.11 98.3 1.28 [76.9, 128.4]

1.0 0.97 0.97 75.0 1.00 …

0.5 1.89 1.86 77.8 1.04 [75.0,  80.9]

0.2 4.35 4.14 82.3 1.10 [75.0,  91.0]

0.1 7.69 6.92 85.5 1.14 [75.0,  98.3]

1.0 0.97 0.96 56.6 1.00 …

0.5 1.89 1.83 61.4 1.09 [56.6,  67.2]

0.2 4.35 3.92 67.2 1.19 [56.6,  82.0]

0.1 7.69 6.10 69.2 1.22 [56.6,  87.6]

0.02

2.0

3.0

0.03

2.0

3.0

𝑞𝑞 𝛿𝛿 𝑥𝑥𝐴𝐴 𝑥𝑥𝐴𝐴/𝑥𝑥(1) 𝑒𝑒 𝑞𝑞𝑓𝑓  
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suggesting that debt limit would likely be higher the longer is debt maturity. The reported 
ratios are ranged between 1.03 and 1.28 depending on debt duration. To put these results in 
perspective, one can imagine that a country can afford about 30 percent larger debt if it issues 
10-year treasury than in case where all debt is issued in 1-year treasury.  

Third, all else equal, the effect of debt maturity on debt limit is larger the larger is the 
uncertainty as to fiscal outcomes (i.e., the larger is the support of the primary balance shock) 
suggesting that government facing larger uncertainty in their fiscal performance would likely 
benefit more by issuing long-term debt. Given the nature of debt contract in which the 
downside risk matters more for the price of debt than the upside potential, an increase in 
uncertainty in fiscal outcomes—represented as a mean-preserving spread of the primary 
balance shock—would likely lead to a decline in debt limit for both short- and long-term 
debts. But the decline should be expected to be less in relative terms for long-term debt 
whose price is buoyed in part by grater upside potential in fiscal outcomes. The simulated 
debt limits are suggestive of this conjecture. For instance, in the upper panel of Table 1, 
simulated debt limit falls by 30 percent for short-term debt when 𝑒𝑒 is increased from 2 to 3 
while it falls by 20 percent for long-term debt with 𝛿𝛿 = 0.1. 

VI. CONCLUSION

We develop a model of sovereign debt default and show that debt limit is higher for long-
term debt, and that the effect of debt maturity on debt limit could be substantial if the 
underlying uncertainty in fiscal outcomes is large. Key to these findings is the pricing 
advantage of long-term debt over short-term debt in terms of bringing forward upside 
potential in future fiscal outcomes into the current price. Such advantage makes long-term 
debt effectively cheaper than short-term debt at the margin. This result is interesting as it 
obtains under risk neutrality, and is in stark contrast to the findings of many existing 
quantitative models of endogenous sovereign default (which also assume risk neutrality) that 
short-term debt yields higher welfare unless some additional mechanism is introduced to 
make it particularly vulnerable to rollover risk (e.g., Chatterjee and Eyigungor, 2012).  

The fact that long-term debt is cheaper than short-term debt under risk neutrality neither 
suggests that long-term debt should dominate short-term debt in actual debt maturity 
composition, nor that the optimal debt maturity should never be short. Rather, it underscores 
the importance of other legs of default risk than solvency risk in the determination of actual 
debt maturity. It also suggests that long-term debt may not be as expensive as implied by 
positive term premium itself. Another implication of our finding is that fiscal space estimates 
obtained by assuming one-period debt may be too conservative if the average maturity of 
public debt is significantly longer than one period.  

The model can be further extended in several ways. First, the specification of the primary 
balance can be enriched by allowing fiscal fatigue more explicitly as studied by Ghosh et al 
(2013). Such an extension would not complicate the analysis by much as long as the primary 
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balance is modeled as a (nonlinear) function of the gross financing need. Second, the primary 
balance shock could be allowed to be serially correlated although this would complicate the 
analysis significantly. Finally, the possibility of multiple equilibria can be studied explicitly. 
In our model, the possibility of multiple equilibria arises from two sources. First, the fixed-
point problem for the one-period-ahead default probability has in general two or more 
interior solutions. We simply rule out multiple equilibria by assuming that the best bond 
price would prevail if there are multiple prices that solve the fixed-point problem. Second, 
multiple equilibria may emerge in debt dynamics in case of long-term debt given the 
feedback from future prices into the current price (Lorenzoni and Werning, 2014). This 
possibility could be incorporated and explored. 
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APPENDIX 

A.   Proof of  𝒅𝒅 = 𝒙𝒙/𝒒𝒒 for Short-term Debt 

By definition, the maximum outstanding debt (before the primary balance), 𝑑𝑑, consistent 
with the debt limit is characterized by 
 
(A.1)                                                    𝑑𝑑 = 𝑥𝑥 − 𝑠𝑠 
 
The first condition in (13) implies that 𝑠𝑠 is given by  
 
(A.2)                                            𝑠𝑠 = 𝐻𝐻 + 𝑠𝑠∗ = (1 − 𝑞𝑞)𝑥𝑥/𝑞𝑞 
 
Substituting (A.2) into (A.1) yields 𝑑𝑑 = 𝑥𝑥/𝑞𝑞. This completes the proof.  
 
B.   Proof of  𝒑𝒑′ > 𝟎𝟎 at Point C in Figure 1 

First note that the debt limit that matters for 𝑝𝑝′ at point C in Figure 1 is 𝑥𝑥(𝑑𝑑′) and not 𝑥𝑥(𝑑𝑑∗∗). 
Therefore, it suffices for the proof to show that 𝑑𝑑′ > 𝑑𝑑∗∗ because  𝑥𝑥(𝑑𝑑′) < 𝑥𝑥𝑈𝑈(𝑑𝑑′) if 𝑑𝑑′ >
𝑑𝑑∗∗ as can be seen from Figure 1. The relations in (16) indicate that  
 
(A.3)                                         𝑑𝑑′ > 𝑑𝑑     ⟺     𝑞𝑞−1𝑥𝑥 > 𝛿𝛿𝛿𝛿 
 
At point C, 𝑑𝑑 = 𝑑𝑑∗∗ and 𝑥𝑥 = 𝑥𝑥(𝑑𝑑∗∗) = 𝑞𝑞[𝑑𝑑 − (1 − 𝛿𝛿)𝑑𝑑∗∗] where the last expression follows 
from (20). Substituting these values into (A.3) yields, 
 
                                          𝑞𝑞−1𝑥𝑥(𝑑𝑑∗∗) = (𝑑𝑑 − 𝑑𝑑∗∗) + 𝛿𝛿𝑑𝑑∗∗ > 𝛿𝛿𝑑𝑑∗∗ 
 
This completes the proof.  
 
C.   Proof of  𝒙𝒙𝑨𝑨(𝜹𝜹) >  𝒙𝒙(𝟏𝟏) 

We use for clarity the notation 𝑧𝑧(𝛿𝛿) and 𝑧𝑧(1) to denote variables associated with long-
duration and one-period bonds, respectively. The result in (27) indicates that it suffices for 
the proof to show that 𝑥𝑥(𝛿𝛿)/𝛿𝛿 > 𝑥𝑥(1). To this end, let us compare 𝑍𝑍 with 𝐻𝐻:   

(A.4)                                
𝐻𝐻 = [(𝑟𝑟 + 𝑝𝑝′(1))/(1 − 𝑝𝑝′(1))]𝑥𝑥(1) − 𝑠𝑠∗    
𝑍𝑍 = [(1 − 𝛿𝛿𝑞𝑞(𝛿𝛿))/𝑞𝑞(𝛿𝛿)](𝑥𝑥(𝛿𝛿)/𝛿𝛿) − 𝑠𝑠∗      

   

 
where 𝑞𝑞(𝛿𝛿) = [(1 − 𝑝𝑝′(𝛿𝛿))/(1 + 𝑟𝑟)][1 + (1 − 𝛿𝛿)𝑞𝑞𝑒𝑒(𝛿𝛿)]. It is straightforward to show that 

(A.5)                                                    𝜕𝜕𝑍𝑍/𝜕𝜕𝑥𝑥(𝛿𝛿) > 0  
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Since 𝑞𝑞𝑒𝑒(𝛿𝛿) > 𝑞𝑞(𝛿𝛿) must hold in equilibrium as discussed in Section IV, we posit that   
𝑞𝑞𝑒𝑒(𝛿𝛿) = (1 + 𝛼𝛼)𝑞𝑞(𝛿𝛿), 𝛼𝛼 > 0 with the understanding that 𝛼𝛼 depends on 𝑞𝑞(𝛿𝛿) and 𝑥𝑥(𝛿𝛿) in 
equilibrium. Then,  

(A.6)            𝑞𝑞(𝛿𝛿) = (1 − 𝑝𝑝′(𝛿𝛿))/[(1 + 𝑟𝑟) − 𝜆𝜆(1 − 𝑝𝑝′(𝛿𝛿))],    𝜆𝜆 = (1 − 𝛿𝛿)(1 + 𝛼𝛼) 

Substituting (A.6) in 𝑍𝑍 in (A.4) yields, 

(A.7)           𝑍𝑍 = [(𝑟𝑟 + 𝑝𝑝′(𝛿𝛿))/(1 − 𝑝𝑝′(𝛿𝛿))](𝑥𝑥(𝛿𝛿)/𝛿𝛿) − 𝑠𝑠∗ − 𝛼𝛼(1 − 𝛿𝛿)(𝑥𝑥(𝛿𝛿)/𝛿𝛿) 

Comparing (A.7) with 𝐻𝐻 in (A.4) immediately suggests that if 𝛼𝛼 = 0, the maximum interior 
solution to the fixed-point problem 𝑝𝑝′ = 𝐺𝐺(𝑍𝑍) is characterized by: 

(A.8)                                   𝑥𝑥(𝛿𝛿)/𝛿𝛿 = 𝑥𝑥(1)    and     𝑝𝑝′(𝛿𝛿) = 𝑝𝑝′(1)    

Since 𝜕𝜕𝑍𝑍/𝜕𝜕𝜕𝜕 < 0, it readily follows that if 𝛼𝛼 > 0,  

(A.9)                        𝑝𝑝′(𝛿𝛿) > 𝐺𝐺(𝑍𝑍)  at  {𝑥𝑥(𝛿𝛿)/𝛿𝛿, 𝑝𝑝′(𝛿𝛿)} = {𝑥𝑥(1), 𝑝𝑝′(1)} 

This result, together with (A.5), implies that 𝑥𝑥(𝛿𝛿)/𝛿𝛿 > 𝑥𝑥(1) must hold in order for 𝑥𝑥(𝛿𝛿) to 
be the maximum interior solution to the fixed-point problem, 𝑝𝑝′(𝛿𝛿) = 𝐺𝐺(𝑍𝑍). This completes 
the proof.  
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