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I.   INTRODUCTION 

Cointegration methods have been very popular tools in applied economic work since their 
introduction about twenty years ago. However, the strict unit-root assumption that these 
methods typically rely upon is often not easy to justify on economic or theoretical grounds. 
For instance, variables such as inflation, interest rates, real exchange rates and 
unemployment rates all appear to be highly persistent, and are frequently modelled as unit 
root processes. But, there is little a priori reason to believe that these variables have an exact 
unit root, rather than a root close to unity. In fact, these variables often show signs of mean 
reversion in long enough samples.1 Since unit-root tests have very limited power to 
distinguish between a unit-root and a close alternative, the pure unit-root assumption is 
typically based on convenience rather than on strong theoretical or empirical facts. This has 
led many economists and econometricians to believe near-integrated processes, which 
explicitly allow for a small (unknown) deviation from the pure unit-root assumption, to be a 
more appropriate way to describe many economic time series; see, for example, Stock 
(1991), Cavanagh et al., (1995) and Elliott (1998).2 
 
Near-integrated and integrated time series have implications for estimation and inference that 
are similar in many respects. For instance, spurious regressions are a problem when variables 
are near-integrated as well as integrated, and therefore, it is also relevant to discuss 
cointegration of near-integrated variables; see Phillips (1988) for an analytical discussion 
regarding these issues. Unfortunately, inferential procedures designed for data generated by 
unit-root processes tend not to be robust to deviations from the unit-root assumption. For 
instance, Elliott (1998) shows that large size distortions can occur when performing inference 
on the cointegration vector in a system where the individual variables follow near-unit-root 
processes rather than pure unit-root processes. 
 
The purpose of this paper is to investigate the effect of deviations from the unit-root 
assumption on the determination of the cointegrating rank of the system using Johansen’s 
(1988, 1991) maximum eigenvalue and trace tests. Unlike inference regarding the 
cointegrating vectors, this issue has not been investigated much in the literature. The first 
contribution of the current paper is therefore to document the rejection rates for standard tests 
of cointegration, using the Johansen framework, in a system where the variables are near-
integrated. Through extensive Monte Carlo simulations, we show that the probability of 
                                                 
1 For studies relying on cointegration methods, see, for instance, Wallace and Warner (1993), Malley and 
Moutos (1996), Cardoso (1998), Bremnes et al. (2001), Jonsson (2001), Khamis and Leone (2001) and Bagchi 
et al. (2004). Studies arguing the stationarity of these variables include Song and Wu (1997, 1998), Taylor and 
Sarno (1998), Wu and Chen (2001) and Basher and Westerlund (2006). 

2 Phillips (1988) considers both processes that have roots smaller than unity (“strongly autoregressive”) and 
larger than unity (“mildly explosive”) in his analysis of near-integrated processes. In this paper, however, we 
only consider the empirically most relevant case of processes with roots less than unity. 
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reaching an erroneous conclusion regarding the cointegrating rank of the system is generally 
substantially higher than the nominal size. That is, the nominal size of the test can vastly 
understate the risks of finding a spurious relationship between unrelated near-integrated 
variables. In a simple bivariate system, the spurious rejection rate can approach 20 and 40 
percent for the maximum eigenvalue and trace tests respectively, using a nominal size of five 
percent. Even higher rejection rates are found in a trivariate system. The second contribution 
is to show how a sequence of additional tests on the cointegrating vector(s) can help improve 
the performance of the tests and reduce the spurious rejection rate. However, even after 
taking these extra steps, the rejection rate of the test is still considerably larger than the 
nominal size. This is particularly true for the trivariate system where spurious rejection rates 
between 15 and 20 percent are documented for nominal five percent tests.  
 
Overall, the performance of the trace test appears worse than that of the maximum 
eigenvalue test. Both tests, however, have large enough deviations from the nominal size that 
practitioners should be aware of the problems associated with Johansen’s procedures under 
these circumstances. The proposed sequence of additional tests helps alleviate some of the 
sensitivity of the Johansen procedures to deviations from the strict unit-root assumption. 
They do not, however, eliminate the problem.  
 
The remainder of this paper is organised as follows: Section II gives a brief introduction to 
Johansen’s methodology and Section III presents the Monte Carlo study. In Section IV, we 
present an empirical illustration of the problems associated with near-integrated variables 
using U.S. data on CPI inflation and the short nominal interest rate. Section V concludes. 

II.   TESTING FOR COINTEGRATION USING JOHANSEN’S METHODOLOGY 

Johansen’s methodology takes its starting point in the vector autoregression (VAR) of order 
p given by 
 

tptptt εyAyAμy ++++= −−11 ,       (1) 
 
where ty  is an nx1 vector of variables that are integrated of order one – commonly denoted 
I(1) – and tε  is an nx1 vector of innovations. This VAR can be re-written as 
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If the coefficient matrix Π  has reduced rank r<n, then there exist nxr matrices α and β  each 
with rank r such that βαΠ ′=  and tyβ′  is stationary. r is the number of cointegrating 
relationships, the elements of α are known as the adjustment parameters in the vector error 
correction model and each column of β  is a cointegrating vector. It can be shown that for a 
given r, the maximum likelihood estimator of β  defines the combination of 1−ty  that yields 
the r largest canonical correlations of tyΔ  with 1−ty  after correcting for lagged differences 
and deterministic variables when present.3 Johansen proposes two different likelihood ratio 
tests of the significance of these canonical correlations and thereby the reduced rank of the 
Π  matrix: the trace test and maximum eigenvalue test, shown in equations (4) and (5) 
respectively. 
 

( )∑
+=

−−=
n

ri
itrace TJ

1

ˆ1ln λ         (4) 

 
( )1

ˆ1ln +−−= rmax TJ λ          (5) 
 
Here T is the sample size and iλ̂  is the i:th largest canonical correlation. The trace test tests 
the null hypothesis of r cointegrating vectors against the alternative hypothesis of n 
cointegrating vectors. The maximum eigenvalue test, on the other hand, tests the null 
hypothesis of r cointegrating vectors against the alternative hypothesis of 1+r  cointegrating 
vectors. Neither of these test statistics follows a chi square distribution in general; asymptotic 
critical values can be found in Johansen and Juselius (1990) and are also given by most 
econometric software packages. Since the critical values used for the maximum eigenvalue 
and trace test statistics are based on a pure unit-root assumption, they will no longer be 
correct when the variables in the system are near-unit-root processes.4 Thus, the real question 
is how sensitive Johansen’s procedures are to deviations from the pure-unit root assumption. 
 
Although Johansen’s methodology is typically used in a setting where all variables in the 
system are I(1), having stationary variables in the system is theoretically not an issue and 
Johansen (1995) states that there is little need to pre-test the variables in the system to 
establish their order of integration. If a single variable is I(0) instead of I(1), this will reveal 
itself through a cointegrating vector whose space is spanned by the only stationary variable in 

                                                 
3 For a detailed description of the procedure, see, for example, Johansen (1995). 

4 Based on previous studies – see, for example, Elliott, 1998 – it is no far stretch to conjecture that the Brownian 
motions in the limiting distribution given in, for instance, Johansen (1988) equation (18) would simply be 
replaced by the corresponding Ornstein-Uhlenbeck process to which near-unit-root variables converge. As 
always with near-unit-root variables, the problem is that the local-to-unity parameter is unknown and thus also 
the percentiles of the limiting distribution.   
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the model. For instance, if the system in equation (2) describes a model in which 

( )′= ttt yy ,2,1y  where ty ,1  is I(1) and ty ,2  is I(0), one should expect to find that there is one 

cointegrating vector in the system which is given by ( )′= 10β . In the case where Π  has 
full rank, all n variables in the system are stationary.5 
 
The fact that stationary variables in a system will introduce restricted cointegrating vectors is 
something that should be kept in mind in empirical work. That is, it is good econometric 
practice to always include tests on the cointegrating vectors to establish whether relevant 
restrictions are rejected or not. If such restrictions are not tested, a non-zero cointegrating 
rank might mistakenly be taken as evidence in favour of cointegration between variables. 
This is particularly relevant when there are strong prior opinions regarding which variables 
“have to” be in the cointegrating relationship. An obvious example is the literature on real 
exchange rates, where cointegration techniques are very common. After finding support for a 
cointegrating vector in a system, it is almost always the case that the coefficient on the real 
exchange rate is normalized to one, thereby forcing it to be part of the cointegrating 
relationship. However, tests of whether all other coefficients in the cointegrating vector are 
zero are rarely performed. Even rarer are tests of whether the only cointegrating vector is due 
to the stationarity of some other variable in the system, despite the fact that the proposed 
determinants of real exchange rates in many cases can be argued to be stationary.  
 
The lack of need to a priori distinguish between I(1) and I(0) variables is based on the 
assumption that any variable that is not I(1), or a pure unit-root process, is a stationary I(0) 
process. This apparent flexibility, therefore, does not make the method robust to near-
integrated variables, since they fall into neither of these two classifications. However, the 
above specification tests of the cointegrating vector suggest a way of making inference more 
robust in the potential presence of near-unit-root variables. For instance, considering the 

bivariate case described above, explicitly testing whether ( )′= 10β  will help to rule out 
spurious relationships that are not rejected by the initial maximum eigenvalue or trace test.6 
Although we argue that such specification tests should be performed in almost every kind of 

                                                 
5 This means that the Johansen test can be used as a panel unit root test as suggested by Taylor and Sarno (1998) 
and Österholm (2004). 

6 One way of viewing tests of such restictions is as unit-root tests within the VAR. Thus, if the first stage rank 
test is a form of overall panel test of the unit-root assumption in the data, the tests on the cointegrating vector 
act as supplementary unit-root tests in the cases where either a full set of unit-roots is not found (i.e. 0=r ) or 
where stationarity of the entire system (i.e. nr = ) is not found.  
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application, they are likely to be extra useful in cases where the variables are likely to have 
near-unit-roots and the initial test of cointegration rank is biased.7 
 
 

III.   MONTE CARLO STUDY 

A.   Setup 

 
The data generating process (DGP) for the nx1 vector ty  is given by 
 

ttt T
c εyIy +⎟
⎠
⎞

⎜
⎝
⎛ += −11          (6) 

 
where c is the local-to-unity parameter that, for simplicity, is assumed to be common to all 
variables, I  is the nxn identity matrix, and tε  is an nx1 vector of normally distributed iid 
disturbances such that ( ) 0ε =tE  and ( ) Iεε =′ttE . We investigate the spurious rejection 
frequency of the Johansen maximum eigenvalue and trace tests for systems of size 

( )32=n  and set the sample size to ( )500250100=T , which covers most empirically 
relevant cases. For all combinations of n and T, we let c take on values between 0 and -60.8 
The nominal size of all tests is set to five percent. 
 
We estimate the VAR in equation (2). Given the DGP in equation (6), lag length in the VAR 
is set to the correct value of 01 =−p . Furthermore, we use the empirically most common 
specification, which allows for a constant in the cointegrating relationship but no 
deterministic trend in the data. For notational convenience, the constant term will be 
suppressed in the following analysis. 
 
Since the variables in the system are completely unrelated, the frequency with which 
evidence of a cointegrating relationship is found should ideally be equal to the nominal size. 
However, rejection of the null hypothesis, 0:0 =rH , does not automatically lead to the false 
conclusion that there is cointegration between the variables in the system. In the bivariate  
 
 
                                                 
7 It should be stressed that specification tests on the cointegrating vector are also biased when the variables have 
near-unit-roots; see Elliott (1998). This may potentially reduce the usefulness of these additional specification 
tests but does not invalidate them as robustness checks. 

8 This range for c covers most of the plausible values documented in the literature; see, for example, Stock 
(1991) and Campbell and Yogo (2006).  
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case, rejecting 0:0 =rH  will not lead to a rejection of the null hypothesis of no 
cointegration if: 
 

a) 1:0 =rH  is also rejected. For the DGP considered above, this implies that 
both variables are stationary as the matrix Π  has full rank. 

b) 1:0 =rH  cannot be rejected but the restriction i) ( )01=′β  or ii) ( )10=′β  
cannot be rejected either. In either of these cases, we would conclude that 
there is no cointegration between ty1  and ty2 . If the restriction in i) is judged 
valid, the conclusion is that ty1  is stationary and that it does not have a long-
run relationship with ty2 . If the restriction in ii) is instead judged valid, the 
conclusion drawn would be symmetric. 

 
In the trivariate case, rejecting 0:0 =rH  will not lead to a rejection of the null hypothesis of 
no cointegration if: 
 

c) 1:0 =rH  and 2:0 =rH  are also rejected. For the DGP considered above, 
this implies that all three variables are stationary as the matrix Π  has full 
rank. 

d) 1:0 =rH  cannot be rejected but the restriction iii) ( )001=′β , iv) 
( )010=′β  or v) ( )100=′β  also cannot be rejected. Similar to the 

bivariate case b), we would conclude that the only cointegrating vector in the 
system is due to a stationary variable rather than cointegration between 
variables. 

e) 1:0 =rH  is rejected but 2:0 =rH  is not, at the same time as the restrictions 

vi) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

010
001

β , vii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

100
001

β  or viii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

100
010

β  cannot be 

rejected. Just like in b) and d), we would conclude that there is no 
cointegration between variables and that the cointegrating vectors are due to 
stationary variables. 

 
The interpretation of the restrictions on the cointegrating vector offered above––that 
variables may be integrated of different orders––is clearly not strictly correct since we know 
that all variables are near-integrated with the same local-to-unity parameter. However, it is 
the interpretation that an applied researcher, working within the implicit assumptions of the 
Johansen framework, would draw. Finally, it should be pointed out that the above testing 
scheme raises some concerns regarding the properties of the tests under the alternative of 
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cointegration. In particular, when the matrix Π  is found to have full rank––and all n 
variables in the system accordingly are judged stationary––the ability to actually detect 
cointegration among stationary near-integrated variables is limited. Although outside the 
scope of this paper, such issues clearly need to be addressed in a formal extension of the 
Johansen framework to near-integrated variables.      
 

B.   Results 

Figures 1 and 2 show the spurious rejection frequencies for the bivariate and trivariate 
systems respectively. The left columns in both figures show the spurious rejection 
frequencies when the cointegrating rank of the system alone is taken as evidence of 
cointegration between variables. This is simply when we conclude that 1=r  in the bivariate 
case and either 1=r  or 2=r  in the trivariate case. Recall that 0=r  or nr =  both imply 
that a correct conclusion has been drawn since the variables in the systems here are 
completely unrelated. In the right column, on the other hand, the additional tests in b), d) or 
e) are also conducted. This means that the correct conclusion of no cointegration between 
variables can be drawn also for 1=r  in the bivariate case and for 1=r  or 2=r  in the 
trivariate case and not only for 0=r  or nr = . 
 
Considering the bivariate system in Figure 1, it is clear from the left column that if one relies 
exclusively on the estimated rank of the system for inference, there is a large risk of 
spuriously concluding that completely unrelated variables are cointegrated. When c is small 
in absolute value, the rejection frequency is close to the nominal size. However, it is evident 
already for 10−=c  that the tests are severely over rejecting; in particular, the trace test has 
very poor properties with a spurious rejection frequency of approximately 18 percent. The 
problem reaches a peak for a value of 17−=c , where the maximum eigenvalue and trace 
tests reach spurious rejection frequencies of approximately 21 and 38 percent respectively, 
regardless of sample size. As c becomes even larger in absolute value, the rejection 
frequency falls and approaches zero for 40−=c . The reason for this is that both the 
maximum eigenvalue and trace test correctly conclude that 2=r ; that is, that both variables 
are stationary. The top row of Figure A1 in the Appendix further illustrates this phenomenon 
by showing the results for the individual rank tests in the case of 500=T . Turning to the 
right column in Figure 1, it can be seen that if tests of ( )01=′β  and ( )10=′β  are 
conducted, after failing to reject that 1=r , the spurious rejection frequency falls 
dramatically for both tests. However, while the problem is alleviated, it is still concluded that 
there is a cointegrating relationship around ten percent of the time when c is in the 
neighbourhood of -17;  this is the case regardless of the test used. 
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The results for the trivariate system shown in Figure 2 are qualitatively very similar to those 
from the bivariate system, but the problem of spurious rejection is quantitatively worse for 
the larger system. There is a large interval of values for c, for which both the maximum 
eigenvalue and trace tests have very high spurious rejection frequencies, regardless of 
whether we look solely at the rank (left column) or conduct the additional tests after 
determining the rank (right column). For a c of approximately -18 to -20, the rejection 
frequency is at its highest. Even if the additional tests on the cointegrating vectors are 
conducted, the maximum eigenvalue and trace tests have unacceptably high rejection rates: 
16 and 21 percent respectively regardless of sample size. Finally, for 40−=c  or smaller, the 
spurious rejection frequency is virtually zero as both tests always conclude that the rank of 
Π  is equal to three. This is again further illustrated in the bottom row of Figure A1 in the 
Appendix. 
 
Summing up, neither the maximum eigenvalue nor the trace test is reliable in terms of 
assessing whether variables are cointegrated when the data do not have exact unit roots. For 
reasonable values of c, the spurious rejection frequency can be several times higher than the 
nominal size. 
 

IV.   AN EMPIRICAL ILLUSTRATION 

We next turn to an empirical application where it can be argued that the DGP underlying the 
series is potentially near-integrated. Given the high persistence of nominal interest rates and 
inflation in many countries, a popular approach to test the Fisher hypothesis in more recent 
years has been to employ cointegration techniques; see, for example, MacDonald and 
Murphy (1989), Wallace and Warner (1993), Crowder and Hoffman (1996) and Junttila 
(2001). This makes sense to some extent as it has been pointed out that the Fisher hypothesis 
is better interpreted as a long-run equilibrium condition (Summers, 1983). However, much 
research has questioned the implicit or explicit assumption in these papers that inflation and 
the nominal interest rate are I(1); see, for example, Wu and Zhang (1996), Culver and Papell 
(1997), Lee and Wu (2001), Wu and Chen (2001) and Basher and Westerlund (2006). The 
existence of exact unit-roots in either inflation or nominal interest rates is thus far from 
certain, and it is interesting to revisit the question of cointegration between them in the light 
of the above Monte Carlo study. 
 
We use monthly data on US nominal interest rate, denoted ti , and CPI inflation, tπ , from 
January 1974 to October 2006. Data were provided by the Board of Governors of the Federal 
Reserve System and are shown in Figure 3 below. 
 
Table 1 shows the results from the Augmented Dickey-Fuller (Said and Dickey, 1984) unit 
root test, where lag length has been established using the Akaike (1974) information 
criterion. As can be seen, the null hypothesis of a unit root cannot be rejected for either 
variable. In addition, Table 1 shows the 95% confidence intervals for the local-to-unity 
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parameter c and the corresponding autoregressive root ρ=1+c/T, for each of the variables. 
These are obtained by inverting the ADF test statistic as described in Stock (1991). The range 
of possible values for c clearly covers the values for which the largest spurious rejection rates 
were recorded in the Monte Carlo study. 
 

Figure 3. Data 
              

 

Table 1. Results from Augmented Dickey-Fuller Test 
 

 ADFτ  95% confidence 
interval for c 

95% confidence 
interval for ρ 

tπ   -2.271 
(0.182) [-18.019, 2.776] [0.954, 1.007] 

ti  -2.722 
(0.071) [-24.144, 1.680] [0.939, 1.004] 

              Note: p-value in parentheses (). 
 
Next, we turn to the issue of determining the cointegrating rank of the system, which is done 

by estimating equation (2) with ( )′= ttt iπy . Lag length is set to 101 =−p  based on the 
Akaike information criterion and the constant is restricted to allow for an intercept in the 
cointegrating relationship but no deterministic trend in the data. Table 2 shows the results 
from the cointegration tests. Both tests reject the null of zero cointegrating vectors. The 
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hypothesis that there is one cointegrating vector cannot be rejected on the other hand; that is, 
based on the cointegration test, there is no support for both variables in the system being 
stationary. Based solely on the evidence in Table 2, we would conclude that there exists a 
cointegrating relationship. 
 

                             Table 2. Results from Cointegration Test 
 

Null hypothesis traceJ  maxJ  
0=r   22.045 

(0.028) 
16.402 
(0.042) 

1=r  5.642 
(0.220) 

5.642 
(0.220) 

                             Note: p-value in parentheses (). 
 
 
                              Table 3. Results from Hypothesis Tests on the Cointegrating Vector 
 

Restriction Test statistic 
( )10=′β  6.911 

(0.009) 
( )01=′β  0.391 

(0.532) 
                                              Note: p-value in parentheses (). 
 
Typically, finding that the rank of Π  is one in the system above is taken as evidence for 
cointegration between the nominal interest rate and inflation. Following good econometric 
practice, we should, however, also test whether the cointegrating vector satisfies either the 
restriction ( )10=′β  or ( )01=′β . As shown in the Monte Carlo study above, these 
additional tests also substantially reduce the risk of spuriously concluding that near-
integrated variables are cointegrated. The results are given in Table 3 and, as can be seen, 

( )10=′β  is rejected whereas the restriction ( )01=′β  is not. Our conclusion is hence that 
the above finding of a cointegrating vector does not lend support for cointegration between 
the nominal interest rate and inflation. Instead, based on conducted tests, the empirical 
evidence points to the nominal interest rate and inflation being integrated of different orders. 
In such a case, no long-run equilibrium relationship can exist between the two.9 
 

                                                 
9 Stationary inflation but integrated nominal interest rate is consistent with a unit root in the real interest rate. 
Support for a unit root in the real interest rate can be found in, for example, Rose (1988). 
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V.   CONCLUSION 

This paper has investigated the properties of Johansen’s maximum eigenvalue and trace tests 
for cointegration under the empirically relevant situation of near-integrated variables. 
Overall, the results show that there is a substantial probability, much larger than the nominal 
size of the test, of falsely concluding that completely unrelated series are cointegrated. We 
find that a systematic check of additional tests on the cointegrating vector(s)––based on 
Johansen’s claim that there is little need to pre-test variables for unit roots––helps reduce the 
spurious rejection frequency. However, the spurious rejection frequency remains large and 
appears to increase with the number of variables in the system, even after applying such 
specification tests. 
 
The results are obtained in a Monte Carlo simulation under perfect circumstances. That is, 
the data are normally distributed and the lag-length in the VAR in levels is known and equal 
to one. In practice, we do not have the benefit of being given the correct model––neither in 
terms of the variables in the system nor the lag length––and the problems shown in this paper 
are likely to be exacerbated. 
 
The findings in this paper further illustrate the sensitivity of cointegration methods to 
deviations from the pure unit-root assumption, as originally noted by Elliott (1998) in regards 
to inference on the cointegrating vectors. Since unit-root tests cannot easily distinguish 
between a unit root and close alternatives, this raises a precautionary note to the 
interpretation of results from cointegration studies. In particular, it raises questions regarding 
the conclusions drawn in previous studies that have relied on cointegrating methods despite 
having found evidence of stationarity of the included variables; see, for example, Crowder 
and Hoffman (1996) and Granville and Mallick (2004). One way of making the Johansen 
procedure more robust to near-unit-roots may be through a Bonferroni type bounds procedure 
as proposed by Cavanagh et al. (1995) for inference on the cointegrating vector and by 
Hjalmarsson and Österholm (2007) for residual-based tests of cointegration.  
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APPENDIX 

 
  Figure A1. Frequency with which the Rank Tests Conclude that the Cointegrating Rank is r 
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               Note: Sample size is T=500. Nominal size is 5%. 
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