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1 Introduction

Uruguay’s exposure to extreme climate events has been increasing, causing substantial

economic losses. Uruguay confronted the impact of a once-in-a-century severe drought,

which mostly affected the agricultural sector lowering agricultural output between the

last quarter of 2022 and the second quarter of 2023 by 25 percent on a year-on-year

basis. Rain and floods are also becoming more frequent, forcing vulnerable groups to

relocate (3 percent of the population in 2015-19) and impacting livelihoods. Uruguayan

agricultural sectors are increasingly exposed to weather events impacting negatively crop

yields and food production more broadly (Figure 1). As La Niña conditions prevailed for

four consecutive years since 2020,1 Uruguay confronted the impacts of one of the worst

dry spells in the last century (Figure 2). While the overall rainfall deficit was the largest

in 2020, the primary sector direct losses were only significant in 2023, as soil moisture

anomalies were more prominent during the October – April period (Figure 3), which is

critical for soybean production.

Figure 1: Climate Events: Agriculture Losses
(1978-2019)

Figure 2: Average Annual Rainfall

Sources: BCU, FAO, MGAP; and IMF staff calculations.
Notes: Figure 1, shows average annual losses (in percent) compared to maximum losses (in percent) in
the agricultural sector due to climate events. Baseline refers to the initial forecast of crop production by
MGAP. Calculations from Hernández et al. (2018).
Figure 2, displays the average annual rainfall in Uruguay compared to the historical average. Historical
average calculated from 1981-2010 using INUMET (Uruguayan Institute of Meteorology) methodology.

1Four calendar years or three consecutive seasons, giving it the name ’triple-dip’ La Niña.
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As weather events have become more frequent, the modeling of climate change impacts

has become a priority. As recurrent responses to climate shocks have put pressure on

fiscal space, the authorities have focused on enhancing the modeling of fiscal impacts

from climate change (i.e. coastal floods, excessive rainfall, droughts) and integrating them

into the national budget. This study’s approach contributes to widening the authorities’

toolkit for impact assessments. Due to similarities between New Zealand and Uruguay -

two small open economies that feature a prominent agricultural sector and are susceptible

to droughts - the empirical and theoretical framework of Gallic and Vermandel (2020)

is employed. To tailor the analysis to the Uruguayan economy we calculate a Uruguay-

specific soil moisture deficit index (a climate measure derived from granular weather station

data) and re-estimate and calibrate the Dynamic Stochastic General Equilibrium (DSGE)

model to the Uruguayan economy.

Considering the importance of the agricultural sector for Uruguay’s economy, especially

for goods exports, it is paramount to accurately measure weather shock events, which in

this work is captured through soil moisture conditions. As explained in Gallic and Ver-

mandel (2020), the soil moisture deficit index (SMDI) depicts the balance between rainfall

and temperatures - rainfall typically boosts the productivity of the land by promoting

crop growth, and higher temperatures accelerate the evapotranspiraton process reducing

land productivity. A key input for this endeavor is the soil water available (porcentaje

de agua disponible, PAD is the acronym in Spanish) indicator produced by the National

Institute of Agriculture Research (INIA). This high frequency indicator relies on INIA’s

spatially distributed hydrologic modeling and daily inputs captured through a nation-wide

grid coverage. The PAD allows for a comprehensive assessment of soil moisture conditions

as it factors in precipitations, surface runoff, infiltration, evaporation, water plant uptake

and soil properties. For the modeling of macroeconomic impacts of weather shocks, the

PAD is used to develop a soil moisture deficit indicator (SMDI) following the methodology

of Narasimhan and Srinivasan (2005). Long-term PAD reference values for each month

are obtained for period 2000-2023. As drought impacts are larger when dry conditions are
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sustained over time, the SMDI is calculated on an incremental basis. The SMDI succeeds

in capturing periods of drought-related losses and crop yield anomalies (see Figure 3 and

4).

Figure 3: Soil Moisture Anomaly and Crop Yields

Sources: INIA, MGAP; and IMF staff calculations.
Notes: Crop yield anomaly is the effective yield compared to the average yield of the crop, as measured
by OPYPA. Soil moisture anomaly between October to April (important planting and harvesting season)
is taken from INIA and is part of the first stage of the calculation of the soil moisture deficit index.

We find that a rise in the soil moisture deficit index (drought) causes a prolonged

fall in overall GDP, agricultural output and investment. According to the Structural

VAR model that includes key macroeconomic variables, an adverse weather shock, a one-

standard deviation rise in the drought variable, generates a contraction in Uruguay’s

economy, implying a contemporaneous 0.1 percent decrease in the primary activity sector

(which includes agricultural, fishing and mining output) and a peak decline in GDP of

0.3 percent after 3 quarters.2 The weather variable vanishes after one year, however its

impact on the economy is persistent – impacting primary activity output for 2 years in the

SVAR and up to 5 years in the DSGE model. In the empirical model the weather shock

2Detailed agricultural output is not available, therefore we use output in the primary activity sector.
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manifests itself through the labor market by a fall on impact of employment followed by

a rebound, which mimics the behavior of a Total Factor Productivity (TFP) shock.3 In

both the SVAR and DSGE models, the real exchange rate, which acts as a shock absorber,

depreciates driven by the depressed competitiveness of farmers, which helps to restore part

of their competitiveness. Analysis of a recent severe drought episode shows that rare, but

intense, droughts have an estimated impact of around one percent of GDP loss.

Work analyzing the impact of droughts in Uruguay through an empirical or theoretical

lens is scarce. A prominent example of recent theoretical work is Giuliano et al. (2024),

who analyze the impact of climate shocks more broadly than our focus - with the ability to

assess the impact of both floods and droughts - and for a longer time horizon - analyzing

the potential impact of climate change, which may bring more frequent weather shocks.

More broadly, our estimates are in line with the impact of droughts found by Akyapi et al.

(2022), who utilize billions of geospatial weather observations from their global dataset of

daily measurements of temperature and precipitation to estimate the macro-fiscal effect

of climate shocks. Our focus and contribution to the literature is derived from reconciling

the empirical impacts of droughts in Uruguay with a theoretical model that explains the

short-term dimension of weather shocks, focusing on the business cycle frequency. We

take an agnostic approach to the impact of weather shocks on the Uruguayan economy

and allow our empirical strategy to inform our understanding. The creation of the SMDI

for Uruguay is novel and is crucial for our exercise.

The paper is structured as follows: Section 2 explains the construction of the soil

moisture deficit index, Section 3 outlines the empirical strategy and results while Section

4 details the model used the calibration and estimation.

3Increase in employment following a positive technology shock is discussed further in Gali (1999).
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2 Soil Moisture Deficit Index

The construction of the soil moisture deficit index lies at the heart of our paper. To

produce our weather variable we use spatial data on the soil water available (PAD -

Porcentaje de Agua Disponible) from INIA-GRAS, who publish detailed soil moisture data

every 10 days for nation-wide grids (30km x 30km approximately). The PAD allows for a

comprehensive assessment of soil moisture conditions as it factors in precipitations, surface

runoff, infiltration, evaporation, water plant uptake and soil properties. We construct

our index following the principals of Narasimhan and Srinivasan (2005), such that the

drought index must be able to reflect short-term dry conditions, the index should not

feature seasonality and the drought index should be spatially comparable.

Figure 3 highlights the correlation between soil moisture anomaly during the important

planting and harvesting season for economically important crops for Uruguay (soybean and

rice are planted between October and December and harvested in late March-April) and

the resulting fall in crop yields.

To create the index we need to aggregate along the time dimension, to produce a

quarterly index that can be used as a weather variable alongside quarterly macroeconomic

variables, and spatially so that we capture one index that is representative of the most

important rain-fed areas for the agricultural sector.4 For the latter, maps for Uruguay’s

crop production from the U.S. Department of Agriculture are used to aggregate relevant

grids, covering around 80 percent of the national soybean production. Therefore, we start

by computing the monthly soil water deficit, which is derived from the average of the daily

data provided by INIA and for each month m and each year y the soil moisture deficit

SDy,m is calculated following Equation 1. The soil water in each grid for a particular

month and year is compared against its historical median soil water for that month (MSW)

- removing seasonality and providing a measure of soil moisture deficit. This calculation

is outlined below:

4Section A.1 contains an alternative SMDI, which has countrywide coverage. Our results are robust
to this alternative index.
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SDy,m =
SWy,m −MSWm

MSWm −minSWm

× 100, if SWy,m ≤ MSWm,

SDy,m =
SWy,m −MSWm

maxSWm −MSWm

× 100, if SWy,m > MSWm.

(1)

The soil water deficit is then accumulated to capture the drought severity into a singular

index, the soil moisture deficit index. In any given time period the SMDI will range

from -4 to +4 representing wet to dry conditions.5 The normalization procedure of the

SMDI allows it to be comparable to similar indices created for other countries such as in

Narasimhan and Srinivasan (2005) and Gallic and Vermandel (2020).

SMDIy,m = 0.5× SMDIy,m−1 +
SDy,m

50
(2)

The SMDI succeeds in capturing periods of drought-related losses (see Figure 4).

Drought-related loss period defined by Oficina de Programación y Poĺıtica Agropecuaria

(OPYPA) are shown by the gray bars. The SMDI peaks during these periods and most

notably, and recently, for the severe drought of 2022-2023 where it reaches above 3.

5This is achieved by dividing the soil moisture deficit SDy,m by 50 as shown in Equation 2 and is
outlined in Narasimhan and Srinivasan (2005).
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Figure 4: Soil Moisture Deficit Index

Sources: INIA-GRAS, OPYPA, and IMF staff calculations.
Notes: Quarterly Soil Moisture Deficit Index is derived from INIA-GRAS data and compared against
drought-related loss periods from OPYPA. Positive values signify dry conditions, whereas negative
values show periods of wet conditions.

3 Empirical Analysis

To estimate the response of the Uruguayan economy to weather shocks we follow the em-

pirical strategy outlined in Gallic and Vermandel (2020), and analyze the impulse response

functions from a drought shock. Our analysis is conducted at the macroeconomic level,

using data available at the quarterly frequency starting in 2005Q2 until 2023Q2.6 We

transform the data used to a per-capita nature and seasonally adjust series that are not

already seasonally adjusted using the X-13 seasonal adjuster in R.7 The weather variable

used for our analysis is the SMDI that we have derived for Uruguay, which is outlined in

6Due to the nature of the statistical accounting of contributions to growth from the agricultural sector
we do not include 2023Q3 and 2023Q4 data in our analysis as agricultural output in these quarters are
estimations of the future yields from the crops planted. Therefore primary activity in these quarters are
estimates. The same sample period is used for the VAR and DSGE analysis.

7Annual population data are converted into quarterly using spline interpolation.
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Section 2. The Rest of the World GDP uses the weighted average GDP of Uruguay’s main

trading partners and updates their weights each quarter according to Uruguay’s exports

and imports.8

• Gross Domestic Product: Real per capita output, expenditure approach, season-

ally adjusted. Source: Banco Central del Uruguay.

• Rest of the World Gross Domestic Product: Weighted average of GDP of main

trading partners. Seasonally Adjusted. Source: Haver and IMF staff calculations.

• Agricultural Output (Primary Activity): Primary sector per capita output

(agriculture, fishing and mining). Seasonally Adjusted. Source: Banco Central del

Uruguay.

• Consumption: Household final consumption expenditure, seasonally adjusted.

Source: Banco Central del Uruguay.

• Investment: Gross fixed capital formation, seasonally adjusted. Source: Banco

Central del Uruguay.

• Employment: Labor force status for people aged 15 to 64 years. Employment

Rate. Source: Instituto Nacional de Estad́ıstica de Uruguay.

• Real Effective Exchange Rate: Global real effective exchange rate for Uruguay

Source: Banco Central del Uruguay.

• Weather: Soil moisture deficit index for Uruguay. Source: INIA-GRAS and IMF

staff calculations.

8Results are robust to assuming fixed weights for Uruguay’s main trading partners, by using the average
weight over the sample period.

8



3.1 Identification Strategy

The identification strategy is a two stage procedure. In the first stage, a restricted VAR

model is estimated to reflect the small open economy assumption that we use for Uruguay.

This small open economy assumption reflects the idea that Uruguay’s macroeconomic

variables may react to foreign shocks, but domestic shocks do not significantly impact the

rest of the world. Therefore, the foreign variables (rest of the world GDP) is assumed to

be exogenous. A similar assumption is made for our weather variable, such that changes

in the weather may impact the Uruguayan economy but movements in domestic variables

do not impact the weather.9 Following the Hannan-Quinn and Schwarz criteria a lag of

one is chosen for the restricted VAR and SVAR estimation.

In the second stage, once the restricted VAR is estimated, similar restrictions are

imposed in the SVAR model outlined in Equation 3, where the restrictions placed on the

A0 matrix can be seen in Equation 4. The SVAR of order p, is written below such that

Xt is the n × 1 vector of variables at time t, where n is 8, and is formed of a domestic

weather block, a foreign economy block and a domestic economy block. The vector of

variables, Xt, is assumed to be a linear function of its past values Xt−l with l being the

number of lags l = 1, ..., p. Al is the n × n matrix of lagged parameters and C is the n

vector of constants. The n× 1 disturbances ηt are assumed to be normally distributed as

ηt ∼ N(0,
∑

η).

A0Xt = C +

p∑
l=1

AlXt−l + ηt, (3)

The restrictions placed on A0 outlined in Equation 4 help us identify the orthogonal

structural disturbances contained in vector ηt. Variables are written with a hat to denote

that the data is logged and detrended - except the real effective exchange rate, which is in

log differences and the SMDI which is not transformed. The weather variable ω̂t is ordered

first, followed by foreign real output ŷ⋆t such that these variables are contemporaneously

9Since our analysis period in on the shorter term basis and spans the business cycle we feel that this
assumption is justified.
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affected by themselves only, following the exogeneity assumptions previously outlined.

Domestic real GDP ŷt is assumed to be the most exogenous domestic variable and is

therefore ordered third. The domestic variables (ŷt, ŷ
A
t , ĥt, ĉt, ît, ˆrert) are able to respond

contemporaneously to changes in the weather and foreign output. Agricultural output

(primary activity) ŷAt is assumed to contemporaneously respond to the weather, foreign

output and domestic GDP. The employment rate ĥt is assumed to respond to the weather,

foreign output, domestic GDP and agricultural output (primary activity). Consumption ĉt

and investment ît respond to weather, foreign output, GDP, agricultural output (primary

activity), employment and for investment it is also able to respond to consumption. The

most endogenous variable in our model is the real exchange rate ˆrert, which is ordered

last.

A0Xt =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

b31 b32 1 0 0 0 0 0

b41 b42 b43 1 0 0 0 0

b51 b52 b53 b54 1 0 0 0

b61 b62 b63 b64 b65 1 0 0

b71 b72 b73 b74 b75 b76 1 0

b81 b82 b83 b84 b85 b86 b87 1



·



ω̂t

ŷ⋆t

ŷt

ŷAt

ĥt

ĉt

ît

ˆrert



(4)

The coefficients of the restricted VAR in Equation 4 are depicted in Section A.1.

3.2 Empirical Results

Following the estimation of the SVAR we now present the empirical results obtained from

an adverse weather shock of one standard deviation of the SMDI variable. This simulates

the impact of a drought on the Uruguayan economy.

According to the Structural VAR model, an adverse weather shock, a one-standard

deviation rise in the drought variable (Figure 5), generates a contraction in Uruguay’s
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economy. The dashed red lines are responses to the shock, while the gray areas show

the 95% error bands obtained from 10,000 Monte-Carlo simulations. Impulse responses

are shown at the quarterly frequency for 20 periods (5 years). A rise in soil moisture

deficits implies a contemporaneous 0.1 percent decrease in the agricultural sector (primary

activities: agricultural, fishing and mining) and a peak decline in GDP of 0.3 percent

after 3 quarters. The weather variable vanishes after one year, however its impact on the

economy is persistent – impacting primary activity for 2 years in the SVAR. The weather

shock manifests itself through the labor market by a fall on impact of employment followed

by a rebound, which mimics the behavior of a TFP shock, where a fall in productivity of

the worker leads the firm to hire more workers to sustain output.

11



Figure 5: SVAR Impulse Response from a drought shock in Uruguay

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a one standard deviation shock to the Soil Moisture
Deficit Index (weather shock). Time series is quarterly. The red dashed line is the Impulse Response
Function, the gray band represents the 95% confidence intervals obtained from 10,000 Monte-Carlo
simulations. The time horizon is plotted on the x-axis while the percent deviation from the steady state
is plotted on the y-axis.
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4 The Model

The model follows the setup from Gallic and Vermandel (2020) and is replicated here for

exposition and to highlight the differences in calibration and estimation of the Uruguayan

economy compared to New Zealand. The model is a two-sector, two-good economy in

a small open economy setup with a flexible exchange rate regime. The home economy,

Uruguay, is populated by households and firms that work in the agricultural and non-

agricultural sectors of the economy. The agricultural sector is the model counterpart to

the primary sector (agriculture, fishing and mining) in the data - quarterly primary sector

activity data will be used in the estimation of the model. The agricultural sector faces

weather shocks, modelled through a cost function that impacts the productivity of land

in a land-capital-labor Cobb-Douglas production function. The non-agricultural sector,

which does not require land to produce, is not directly impacted by weather shocks but is

impacted indirectly through the changes in the relative price of consumption goods and

supply of labor. Households work and consume a bundle of domestic and foreign goods,

giving importance to the real exchange rate and a foreign economy.

4.1 Agricultural Sector (Primary Activity)

The economy is populated by a unit mass of i ∈ [0, 1] firms where a fraction of the firms

i ∈ [0, nt] belong to the agricultural sector and the remaining fraction 1−nt belong to the

non-agricultural sector.10

Production from the agricultural sector follows a Cobb-Douglas production function

with land, which is further augmented to include a cost function for weather that impacts

land productivity. Agricultural output by firm i is given by yAit , which is a combination

of the land used that firm li,t−1, the physical capital kA
i,t−1 and labor demanded hA

it. The

parameter ω ∈ [0, 1] is the elasticity of output to land and α ∈ [0, 1] governs the share of

10Firms can switch from one sector to another with the assumption that the number of agricultural
firms follows a stochastic AR(1) process on the fixed portion of agricultural firms (nt = n × εNt ) with
standard deviation parameter σN .
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physical capital in the production process. Technology parameter κA > 0 is also included

to help endogenously determine the steady state of the model. Motivated by the SVAR

we assume that agricultural production is impacted by the weather shock, such that an

increase in the weather shock (drought) causes a fall in agricultural output through a

temporary drop in land productivity. The impact of weather enters the model through a

cost function defined by Ω
(
εWt
)
and described in more detail below. Capital and labor are

subject to an economy-wide technology shock εZt , which follows a standard AR(1) process

impacting both the agricultural and non-agricultural sectors.

yAit =
[
Ω
(
εWt
)
ℓit−1

]ω [
εZt
(
kA
it−1

)α (
κAh

A
it

)1−α
]1−ω

, (5)

Damage of the weather shock to land productivity depends on the estimated parameter

θ that forms part of the weather cost function: Ω
(
εWt
)
=
(
εWt
)−θ

. When θ = 0 the

impact of weather on the business cycle is shut down. The weather shock is assumed to

follow an AR(1) process:

log
(
εWt
)
= ρW log

(
εWt−1

)
+ σWηWt , ηWt ∼ N (0, 1), (6)

with persistence ρW ∈ [0, 1) and standard deviation σW ≥ 0. Although the weather

shock may not be persistent it can have persistent impact on agricultural output and

throughout the economy.

We assume that land is not fixed and can vary over time. This is an important

assumption in the model to better capture the impact of the drought on critical cultivation

periods that appear throughout the year. Therefore, land follows a law of motion defined

by:

ℓit = [(1− δℓ) + v (xit)] ℓit−1Ω
(
εWt
)
, (7)

where δℓ ∈ (0, 1) is the rate of decay of land productivity. As in Gallic and Vermandel

(2020) it is assumed that the marginal product of land is increasing in the accumulation of
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land productivity, which is captured by assuming that land expenditures xit yield a gross

output of new productive land ν(xitℓit−1 with ν ′(·) > 0, v′′(·) ≥ 0. Land expenditure xit

can be thought of as spending on fertilizers and water used to maintain farmland that can

be increased to offset the soil dryness caused by a drought.

The law of motion of physical capital in both the agricultural and non-agricultural

sectors are standard. For the agricultural sector, capital accumulation through investment

in capital:

iAit = kA
it − (1− δK)k

A
i,t−1, (8)

where δK ∈ [0, 1] is the depreciation rate of physical capital. The firms in the agricul-

tural sector maximize their profits, which are determined by the value of their production

(price of agricultural good multiplied by the volume of agricultural goods produced) tak-

ing into account the cost of labor, the cost of land expenditure and the convex cost of

investment as defined in Christiano et al. (2005) to provide the hump shaped response of

investment seen in the SVAR. The real profits are summarized by:

dAit = pAt y
A
it − pNt

(
iAit + S

(
εit

iAit
iAit−1

)
iAit−1

)
− wA

t h
A
it − pNt xit (9)

The investment cost includes a shock process, governed by εit, which follows an AR(1)

process and makes investment more expensive. The representative firm in the agricultural

sector is assumed to be a price taker and their maximization problem can be summarized

as follows:

max
{hA

it,i
A
it,k

A
it ,ℓit,xit}

Et

{
∞∑
τ=0

Λt,t+τd
A
it+τ

}
(10)

where Et is the expectation operator and Λt,t+τ is the household stochastic discount

factor between t and t+ τ .
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4.2 Households

There is a continuum j ∈ [0, 1] of identical households that consume, save and work in the

two production sectors. Households aim to maximize their welfare expressed as the sum

of their utility discounted by β. Household consumption is expressed as Cjt. Households

are assumed to have habit persistence, governed by the estimated parameter b ∈ [0, 1),

such that they enjoy a similar level of consumption to their past. Households also work,

with their labor effort defined as the aggregate of their work in the agricultural and non-

agricultural sectors by hjt. Degree of relative risk aversion and labor disutility is governed

by σ > 0 and σH > 0, respectively. Steady state labor supply is calibrated through a shift

parameter χ and εHt represents a labor supply shock term that follows an AR(1) process

that makes working have a greater negative impact on welfare. The utility function is

given by:

Et

∞∑
τ=0

βτ

[
1

1− σ
(Cjt+τ − bCt−1+τ )

1−σ −
χεHt+τ

1 + σH

h1+σH
jt+τ

]
, (11)

where as in Horvath (2000) there is imperfect substitutability of labor supply between

the agricultural and non-agricultural sectors to explain the co-movements in labor at the

sector level. The CES labor disutility index consists of employment in the non-agricultural

sector hN
jt and agricultural sector hA

jt. Labor reallocation between sectors is assumed to

be costly and is governed by the substitutability parameter ι ≥ 0. If the estimated

parameter ι is zero then work between the non-agricultural and agricultural sectors are

perfect substitutes. A positive value for ι mean that there is a preference by households of

work between the sectors such that employment in each sector responds less to the sector

wage differential between the sectors. The CES labor disutility index is outlined below:

hjt =
[(
hN
jt

)1+ι
+
(
hA
jt

)1+ι
]1/(1+ι)

. (12)

Households maximize their utility (Equation 11) subject to a budget constraint (Equa-
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tion 13). Expressed in real terms the household budget constraint is:

∑
s=N,A

ws
th

s
jt + rt−1bjt−1 + rer∗t r

∗
t−1b

∗
jt−1 − Tt ≥ Cjt + bjt + rer∗t b

∗
jt + pNt rer∗t rtΦ

(
b∗jt
)
. (13)

Households gain a wage for their work, defined as the real wage ws
t multiplied by

the hours worked hs
jt where s = N for the non-agricultural sector and s = A for the

agricultural sector. Households gain a return from the risk-free domestic bonds that they

hold bjt and b∗j,t−1 defined by the domestic and foreign real interest rate (rt−1 and r∗t−1,

respectively), where the latter is affected by the real exchange rate rer∗t . The real exchange

rate is defined by the nominal exchange rate adjusted for the relative price differences in

the foreign and home economies (rer∗t = e∗tP
∗
t /Pt). Taxes are assumed to be lump sum

(Tt) so that they do not distort the household’s optimization problem. The last term in

the budget constraint is the risk premium cost Φ
(
b∗jt
)
of foreign bonds which are paid for

in terms of domestic non-agricultural goods at the relative market price pNt = PN
t /Pt.

11

Household consumption is a CES bundle of agricultural and non agricultural goods

where µ ≥ 0 denotes the elasticity of substitution between the two types of consumption

goods and φ ∈ [0, 1] is the fraction of agricultural goods in the household’s consumption

basket, which is calibrated using the weights in the consumer price index. The consumer

price index, Pt, in the economy can be similarly written out as a CES bundle with φ

governing the weight of non-agricultural priced goods PN
C,t and agricultural goods PA

C,t.

The CES consumption bundle is summarized below:

Cjt =
[
(1− φ)

1
µ
(
CN

jt

)µ−1
µ + (φ)

1
µ
(
CA

jt

)µ−1
µ

] µ
µ−1

, (14)

with each index CN
jt and CA

jt being a composite consumption subindex that is composed

of domestic and foreign produced goods:

11The addition of the risk premium is used to avoid the unit root problem that emerges in open economy
models without impacting the steady state of the model. See Schmitt-Grohé and Uribe (2003) for further
discussion of this issue.
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Cs
jt =

[
(1− αs)

1
µs

(
csjt
) (µs−1)

µs + (αs)
1
µs

(
cs∗jt
) (µs−1)

µs

] µs
(µs−1)

for s = N,A. (15)

We allow for home bias in origin of consumption goods that the households consume,

given by 1 − αs ≥ 0.5 and µs > 0 denotes the elasticity of substitution between home

and foreign goods. In a similar way as the consumer price index of the CES consumption

bundle, the production price index exists for each sector is given by a CES of the price

of home and foreign goods in sector s, weighted by the home bias 1 − αs and with an

elasticity of substitution µs.

Demand schedules for each type of good can be defined as a function of their relative

prices, weight in the consumption basket and home basket:

CN
jt = (1− φ)

(
PN
C,t

Pt

)−µ

Cjt and CA
jt = φ

(
PA
C,t

Pt

)−µ

Cjt, (16)

csjt = (1− αs)

(
P s
t

P s
C,t

)−µs

Cs
jt and cs∗jt = αs

(
e∗t

P s∗
t

P s
C,t

)−µs

Cs
jt for s = N,A. (17)

4.3 Non-Agricultural Sector

Production in the non-agricultural sector is similar to the agricultural sector, except firms

do not face weather shocks and the Cobb-Douglas production function does not include

land. Within the non-agricultural sector there exists a continuum of firms indexed by

i ∈ [nt, 1], with 1 − nt denoting the relative size of the non-agricultural sector. Their

Cobb-Douglas production function is given by:

yNit = εZt
(
kN
it−1

)α (
hN
it

)1−α
, (18)

where yNit is the production of the intermediate goods firms, kN
i,t−1 is the stock of physical

capital of firm i, hN
it is the labor employed in the non-agricultural sector for firm i and
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εZt is the AR(1) technology shock. The parameter α governs the elasticity of capital and

labor in the production on non agricultural goods.

Similarly to the agricultural firms, the non-agricultural firms also need to invest iNit to

accumulate physical capital. This is given by:

iNit = kN
it − (1− δK) k

N
it−1, (19)

where δK ∈ [0, 1] is the depreciation rate of physical capital. Real profits are given by:

dNit = pNt y
N
it − pNt

(
iNit + S

(
εit

iNit
iNit−1

)
iNit−1

)
− wN

t h
N
it , (20)

and firms maximize the discounted sum of profits:

max
{hN

it ,i
N
it ,k

N
it}

Et

{
∞∑
τ=0

Λt,t+sd
N
it+τ

}
. (21)

under technology and capital accumulation constraints.

4.4 Government

The government is kept purposely simple. The government consumes non-agricultural

output Git, issues debt bt at a real interest rate rt and charges lump sum taxes Tt to

households. Government consumption is assumed to be exogenous, Gt = Y N
t gεGt where

g ∈ [0, 1), and is impacted by a standard AR(1) stochastic shock process for εGt .

Gt + rt−1bt−1 = bt + Tt (22)

4.5 Foreign Economy

The Foreign economy is stylized as Uruguay is a small open economy, which by assumption

cannot impact the foreign block. The foreign country is needed in the model to determine

Uruguay’s exports and real exchange rate dynamics. The foreign country is modeled as
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an endowment economy with exogenous foreign consumption:

log
(
c∗jt
)
= (1− ρC) log

(
c̄∗j
)
+ ρC log

(
c∗jt−1

)
+ σCη

C
t , ηCt ∼ N (0, 1), (23)

where 0 ≤ ρC < 1 determines the return to steady state of foreign consumption. The

parameters σC and ρC are estimated to match foreign demand.

Each period, foreign households solve the following optimization scheme:

max
{c∗jt,b∗jt}

Et

{
∞∑
τ=0

βτεEt+τ log
(
c∗jt+τ

)}
,

s.t. r∗t−1b
∗
jt−1 = c∗jt + b∗jt.

(24)

where variable εEt is a time-preference shock defined as follows:

log
(
εEt
)
= ρE log

(
εEt−1

)
+ σEη

E
t (25)

4.6 Equilibrium and Aggregation Equations

The market clearing condition for non-agricultural goods is determined by equating ag-

gregate demand and aggregate supply:

(1− nt)Y
N
t = (1−φ)

[
(1− αN)

(
PN
t

PN
C,t

)−µN
(
PN
C,t

Pt

)−µ

Ct + αN

(
1

e∗t

PN
t

PN∗
C,t

)−µN
(
PN∗
C,t

P
P ∗
∗

t

)−µ

C∗
t

]
+Gt + It + ntxt + Φ(b∗t ) , (26)

where aggregate real production is given by:

Yt = (1− nt) p
N
t Y

N
t + ntp

A
t Y

A
t . (27)
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In addition, the equilibrium of the agricultural goods market is given by:

ntY
A
t = φ

[
(1− αA)

(
PA
t

PA
C,t

)−µA
(
PA
C,t

Pt

)−µ

Ct + αA

(
1

e∗t

PA
t

PA∗
C,t

)−µA
(
PA∗
C,t

P ∗
t

)−µ

C∗
t

]
(28)

GDP is given by :

gdpt = Yt − pNt ntXt (29)

The law of motion for the total amount of real foreign debt is:

b∗t = r∗t−1

rer∗t
rer∗t−1

b∗t−1 + tbt, (30)

where the trade balance is:

tbt = pNt
[
(1− nt)Y

N
t −Gt − It − ntXt − Φ(b∗t )

]
+ pAt ntY

A
t − Ct. (31)

4.7 Calibration and Estimation

The model is calibrated using standard parameters from the literature and Uruguay-

specific parameters calculated using historical averages. Table 1 summarizes the calibra-

tion of the model. The discount factor β, capital depreciation rate δK , the share of capital

in output α, hours worked H̄N = H̄A and international portfolio cost are all standard.12.

The share of public spending in GDP g = 0.216 is derived by taking the average of the

share of public consumption and public investment of GDP between 2016-2022. The share

of agricultural goods in the consumption basket φ = 0.17 is calculated by aggregating the

weights of the agricultural related products in Uruguay’s consumer price index. Uruguay’s

land-to-employment ℓ̄ = 1.30 parameter is derived from the World Bank’s World Develop-

ment Indicators (WDI) and estimates of the population and persons employed - the final

12The portfolio adjustment cost of foreign debt is taken from Schmitt-Grohé and Uribe (2003) and is
chosen to be extremely small.
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result is the average of land-to-employment between 2005 to 2021. Land-to-employment is

where the largest discrepancy with respect to Gallic and Vermandel (2020) arises regarding

the calibration of parameters, who calibrate their model with ℓ̄NZ = 0.4 for New Zealand.

This discrepancy arises as Uruguay has around a five times larger rate of arable land per

capita than New Zealand.13. The openness of non-agricultural market αN and agricultural

market αA are determined by the average value of non-agricultural exports as a share of

non-agricultural GDP and share of agricultural exports as the share of agricultural GDP

(primary sector GDP) between 2016 to 2022.

Table 1: Model Calibration

Variable Interpretation Value
β Discount factor 0.9883
δK Capital depreciation rate 0.025
α Share of capital in output 0.33
g Share of spending in GDP 0.216
φ Share of agricultural goods in consumption basket 0.17
H̄N = H̄A Hours worked 1/3
ℓ̄ Land per capita 1.30
αN Openness of non-agricultural market 0.10
αA Openness of agricultural market 0.50
χB International portfolio cost 0.0007

Sources: Banco Central del Uruguay, National Statistics Agency (INE), World Bank; and IMF staff
calculations.

The remaining parameters of the model are estimated using Bayesian methods utilizing

the same dataset that was used in the VAR model - spanning 2005Q2 to 2023Q2. Section 3

outlines the 8 variables that are used. In order to map non-stationary data to a stationary

model we follow the same procedure as in Gallic and Vermandel (2020). Observable

variables that typically have a trend are divided by working age population to calculate

the per-capita terms, logged and then detrended using a quadratic trend. This allows us

to detract from modeling a trend in the home and foreign economies - similar to Justiniano

13See WDI for further information regarding arable land per capita.
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and Preston (2010).

The vector of observable is given by:

Yobs
t = 100×

[
ŷt, ĉt, ît, ĥt, ŷAt , ŷ∗t , ∆r̂ert, ω̂t

]′
, (32)

where ŷt is the output gap, ĉt is the consumption gap, ît is the investment gap, ĥt is an

index of employment, ŷAt is the agricultural production gap, ŷ∗t is the foreign production

gap, r̂ert is the real exchange rate and ω̂t the soil moisture deficit index.

The corresponding measurement equations are given by:

Yt = 100×
[
g̃dpt, C̃t, p̃Nt + Ĩt, H̃t, ñt + p̃At + Ỹ A

t , C̃∗
t , −∆r̃er∗t+1, ε̃Wt

]′
,

(33)

Table 2 reports the prior and posterior distributions, estimated mean parameters and

posterior density intervals around the estimated parameters. To evaluate the marginal

likelihood of the model the Metropolis-Hastings algorithm is used.14 Priors are taken from

Gallic and Vermandel (2020), which use Smets andWouters (2007) as a starting point. The

standard deviations of the innovations are assumed to follow a Weibull distribution with

mean 1 and standard devation 2 as the Weibull distribution is more diffuse than the Inverse

Gamma distribution. Substitutability parameters follow a Gamma distribution with mean

2 and a standard deviation of 1 to have a support that lies between 0 and 5. The posterior

mean of the risk aversion parameter we assume follows a Normal distribution with mean of

1 and standard deviation of 0.35 (σC), which notably produces a lower parameter estimate

than Gallic and Vermandel (2020).

For the agricultural sector parameters the land decay rate δℓ is assumed to follow an

uninformative prior using a Beta distribution of mean 0.2 and standard deviation 0.1. We

find a slightly higher land decay rate than Gallic and Vermandel (2020). For the damage

function parameter θ, which drives the impact of weather shocks on the agricultural sector,

14We compute the posterior moments of the parameters using a total generated 1,000,000 draws (two
parallel chains of 500,000) discarding the first 25 percent of the draws. The model is estimated and
simulated in Dynare (Adjemian et al. (2011)).
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we take as the prior mean the posterior mean in Gallic and Vermandel (2020) and assume

it follows a Normal distribution with a large standard deviation to allow the data to be

informative about the value of this parameter. Our posterior mean of θ = 5.25, which is

below the prior mean and contains negative values for θ within the 90% posterior density

interval. One reason behind this finding is the occurrence of floods and flood damage

to the agricultural sector and economy of Uruguay. The excess of water may also lead

to economic damage, which could be behind the possibility of the land-weather elasticity

entering negative territory. The model does not allow for weather damages to the capital

stock nor direct costs to the non-agricultural sectors such as manufacturing and retail,

both of which can be related to flood damage as found by Ashizawa et al. (2022). Despite

the lower weather cost parameter value we find similar impacts on overall output to Gallic

and Vermandel (2020), albeit with lesser impact on the agricultural sector, suggesting a

more indirect transmission mechanism of droughts for Uruguay.
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Table 2: Model Estimation

Prior distributions Posterior distributions
Shape Mean Std. Mean [5% : 95%]

Shock Process AR(1)
Economy-wide TFP (SD) σZ × 100 W 1 2 2.41 [2.00 : 2.81]
Hours supply (SD) σH × 100 W 1 2 3.86 [2.50 : 5.16]
Spending (SD) σG × 100 W 1 2 6.38 [5.21 : 7.58]
Investment (SD) σI × 100 W 1 2 8.17 [6.07 : 10.18]
Sector reallocation (SD) σN × 100 W 1 2 18.77 [13.16 : 24.21]
Weather (SD) σW × 100 W 1 2 1.21 [1.02 : 1.41]
Foreign time-preference (SD) σE × 100 W 1 2 4.14 [3.20 : 5.05]
Foreign consumption (SD) σC × 100 W 1 2 1.20 [1.00 : 1.40]
Economy-wide TFP (AR term) ρZ B 0.5 0.2 0.84 [0.75 : 0.94]
Labour supply (AR term) ρH B 0.5 0.2 0.78 [0.65 : 0.92]
Spending (AR term) ρG B 0.5 0.2 0.67 [0.49 : 0.86]
Investment (AR term) ρI B 0.5 0.2 0.26 [0.07 : 0.43]
Sector reallocation (AR term) ρN B 0.5 0.2 0.28 [0.10 : 0.45]
Weather (AR term) ρW B 0.5 0.2 0.44 [0.26 : 0.63]
Foreign time-preference (AR term) ρE B 0.5 0.2 0.21 [0.07 : 0.35]
Foreign consumption (AR term) ρC B 0.5 0.2 0.69 [0.56 : 0.83]
Structural Parameters
Risk consumption σC N 1 0.35 0.28 [0.10 : 0.45]
Labor disutility σH N 2 0.75 1.90 [1.11 : 2.68]
Land expenditure cost ϕ N 1 1 1.72 [1.25 : 2.20]
Share of land in agricultural output ω B 0.2 0.08 0.11 [0.02 : 0.19]
Consumption habits b B 0.7 0.1 0.66 [0.50 : 0.82]
Labor sectoral cost ι N 1 0.75 2.48 [1.65 : 3.27]
Substitutability by type of goods µ G 2 1 3.35 [2.06 : 4.57]
Substitutability home/foreign µA G 2 1 1.97 [1.27 : 2.62]
Substitutability home/foreign µN G 2 1 1.46 [0.75 : 2.17]
Land efficiency decay rate δℓ B 0.2 0.1 0.07 [0.03 : 0.11]
Investment cost κ N 4 1.5 2.43 [0.44 : 4.72]
Land-weather elasticity θ N 20.59 8 5.25 [−2.97 : 14.22]
Marginal log-likelihood -1014.94

Sources: Prior distributions derived from Gallic and Vermandel (2020) with underlying data from Banco
Central del Uruguay and the National Statistics Agency; and IMF staff calculations.
Note: The column entitled ”Shape” indicates the prior distributions using the following acronyms: N
describes a normal distribution, G a gamma, B a Beta, and W a Weibull.

4.8 Results

As with the SVAR model we simulate a one standard deviation weather shock in the

DSGE model to analyze the impact of droughts on the Uruguayan economy. Figure 6
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summarizes the results from both models, overlaying the SVAR (red dashed line) with

the DSGE model results (shown as the solid blue line). The weather shock acts as a

negative supply shock through a combination of rising employment and falling output.

Land productivity is negatively affected by the drought, weighing heavily on agricultural

output. This negative supply shock depreciates the real exchange rate, which acts as a

shock absorber, and consequently helps to restore part of the competitiveness of farmers.

In comparison to the SVAR the impact on consumption and agricultural output (primary

activity) is greater, however the model captures well the magnitude and dynamics of the

impact on investment.15 Non-agricultural output (see Annex A.2 for additional DSGE

results) rises as cost of production and therefore the relative price of non-agricultural

goods to agricultural goods falls, which helps to dampen the drought’s impact on overall

output. The persistence of the DSGE model is notable - the impact of the weather shock

lasts up to 5 years, which is 3 years longer than the SVAR results and longer than the one

year it takes for the shock to subside. This persistence is also seen in Gallic and Vermandel

(2020) and can be partly explained by the persistent reduction in land efficiency seen in the

DSGE model, which is governed by the estimated parameter δℓ that enters into the function

that governs how land evolves. The motivation of such a function form is to capture the

impact of weather shocks on land quality that is used for livestock and cultivation, with

the potential impact on livestock to be long-lived (Rosen et al., 1994). The drought has

a negative and persistent impact on land efficiency (see Annex A.2) which causes farmers

to use more non-agricultural inputs to support their land productivity. The increase in

labor on impact in the model is likely driven by the choice of utility function -there exists

a negative wealth effect from the shock that an increase in labor supply tries to offset

leading to a rise in employment.16

15During the recent severe drought of 2022-2023 real private consumption growth remained positive, as
the economy continued to recover from the Covid-19 pandemic.

16Future research avenue could explore alternative the sensitivity of the results to alternative utility
functions. such as GHH preferences Greenwood et al. (1988), which removes the wealth effect on the labor
supply. Further, adding nominal rigidities to the model may help to tame the employment response to
the weather shock in the same vein as explored in Gali (1999) and Gaĺı and Rabanal (2004).
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Although the results of the SVAR and DSGE models are similar, some differences do

arise. In Uruguay the cultivation of crops and rearing of livestock form the major activities

in the agricultural sector, with the cultivation of crops being more susceptible to droughts

than the rearing of livestock. However, to keep the model tractable, and due to data

restraints the agricultural sector is not split into separate sectors. Further, a severe drought

has the potential for far reaching consequences on the economy, which is not only felt in the

agricultural sector but also could lead to heightened water scarcity, reduced hydroelectic

electricity generation (which forms an important part of Uruguay’s electricity generation

matrix) and an increase chance of wildfires. The financial transmission channel, where

it has been shown that unusually hot days increase delinquency rates in the agricultural

sector (Aguilar-Gomez et al., 2024), is also omitted from our analysis.17

17The financial channel is expected to be muted in Uruguay as credit-to-GDP is relatively low at close
to 30 percent of GDP (IMF, 2024).
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Figure 6: DSGE and SVAR Results

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a one standard deviation shock to the Soil Moisture
Deficit Index (weather shock) in the SVAR and DSGE models. Time series is quarterly. The red dashed
line is the Impulse Response Function, the gray band represents the 95% confidence intervals obtained
from the SVAR using 10,000 Monte-Carlo simulations. The blue line is the response from the DSGE
model. The time horizon is plotted on the x-axis while the percent deviation from the steady state is
plotted on the y-axis.
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The impact of the weather shock on GDP in the DSGE model is similar between

Uruguay and New Zealand, however the transmission mechanism differs. Agricultural

output falls by 1.5 percent following a one standard deviation drought in New Zealand,

where this decrease is more muted for Uruguay (0.6 percent). The response of investment

is similar across the countries but Uruguay’s consumption falls by more and employment

rise is more muted. The more muted impacted on agricultural output with similar results

to GDP for Uruguay signals that the impact of the drought may impact other sectors of

the economy. However, part of the difference may also be explained due to the difference

in agricultural data; for Uruguay we use data on the primary sector, which includes agri-

cultural, fishing and mining activities, whereas Gallic and Vermandel (2020)’s agricultural

variable includes agriculture, fishing and forestry.

5 The Importance of Weather Shocks on the Business

Cycle

Figure 7 highlights the estimated impact of weather shocks on the Uruguayan economy,

displaying year-on-year growth rates of main macroeconomic variables. The blue line is

the result of simulating the model to all of the estimated shocks and initial conditions,

whereas the red dashed line is the result of the same simulation but only using weather

shocks. Notably the weather shocks have cyclical impacts on agricultural output (primary

activity) growth, total output growth and consumption growth. The weather shocks cause

agricultural output growth to oscillate between +3 percent and - 3 percent over the sample.

In comparison with consumption growth which moves +/- 2 percent and output growth

+/- one percent, the impact on employment is limited, likely due to the low share of labor

force working in the primary activity sector. The fall in output growth lines up with the

2008-2009, 2011, 2015 and 2022-2023 drought-related loss periods.

The spillover of the impact of weather shocks from the agricultural sector is evident, as

the shock causes weather-driven changes in consumption, co-moving with the agricultural
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output (primary activity) losses due to droughts. The loss in consumption growth and

agricultural output (primary activity) growth helps to explain the weather-driven business

cycle impacts seen on output growth.

Figure 7: The Role of Weather Shocks

Sources: IMF staff calculations.
Notes: The role of weather shocks on selected variables. All data are demeaned. Blue line and red
dashed lines are annual growth rates of selected observable variables. The blue line results of feeding the
model with all shocks (i.e., the actual data), while the red dashed line results of feeding the model only
with the weather shock. The red line depicts the contribution of the weather shock to the corresponding
deviation.
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6 The 2022-2023 Drought

To simulate the most recent drought episode faced by Uruguay we utilize the SVAR and

DSGE models. We mimic the increase in the Soil Moisture Deficit Index seen between

2022Q4 and 2023Q2, where the SMDI increased to around 2 in 2022Q4 and then peaked

above 3 in 2023Q1 before decreasing in 2023Q2 - after 2023Q2 we allow the SMDI to

revert to the steady state following its estimated autoregressive component.

The simulated increase in the SMDI, a significant drought, is estimated to provide

around a one percent fall in GDP for 2023, driven by losses in agricultural output (primary

activity) and investment. According to the Structural VAR model, the impact of the

drought should subside in 2024, while the DSGE model shows a longer lasting effect.

However, in reality, the normalization of rainfall in the second half of 2023, shown by a

fall in the SMDI (see Figure 4), is expected to bolster the primary sector recovery.

Figure 8: Estimated 2022-2023 Drought Impact

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a weather shock calibrated to mimic the 2022-2023
drought episode in the SVAR and DSGE models. Time series is quarterly. The red dashed line is the
Impulse Response Function, the gray band represents the 95% confidence intervals obtained from the
SVAR using 10,000 Monte-Carlo simulations. The blue line is the response from the DSGE model. The
time horizon is plotted on the x-axis while the percent deviation from the steady state is plotted on the
y-axis.
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7 Conclusion

Uruguay has recently overcome a severe drought, with average rainfall below historical

levels, losses in output in the primary sector and a spike in the soil moisture deficit index

(derived in this paper). The soil moisture deficit index correlates well with periods of

drought and an increase in this weather variable has important economic effects. Through

the use of the SVAR and DSGE models we find that droughts impact overall production

of the economy through lowering agricultural output (primary activity), consumption

and investment. Movements in Uruguay’s real exchange rate help to offset losses to the

economy and keep agricultural exports competitive, softening the overall impact. Our

findings are in the same vein as Gallic and Vermandel (2020) from which the empirical

and theoretical framework is used. The novelty of our work derives from the use of their

framework, which analyses climate shocks in New Zealand, to analyze the impact on

Uruguay. Due to the similarities between New Zealand and Uruguay, their setup is an

ideal starting point for our analysis.

Understanding further the impact and transmission mechanism of climate shocks in

Uruguay, and in the case of our analysis, droughts in particular, is pertinent to enhance

climate adaptation efforts. The role of weather-driven business cycles for countries sus-

ceptible to climate shocks is an important research avenue, especially in the context of

climate change, which could potentially increase the frequency of climate events and there-

fore bring greater economic volatility.
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A Annex

The Annex details additional information relating to the SVAR and DSGE models. An-

nex A.1 outlines the estimation of the SVAR and impulse responses when an alternative

countrywide SMDI is used instead of the agricultural weighted SMDI. Annex A.2 shows

additional DSGE results.

A.1 Additional SVAR Results

The coefficient of the restricted VAR is given below, the estimated A0 matrix is outlined

in Equation 34.

Â0Xt =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0.12 0.04 1 0 0 0 0 0

0.14 0.12 0.09 1 0 0 0 0

0.13 0.12 0.11 0.06 1 0 0 0

0.16 0.10 0.01 0.08 0.11 1 0 0

0.14 0.14 0.07 −0.19 0.08 0.11 1 0

0.13 0.12 0.09 0.13 0.21 0.16 0.10 1



·



ω̂t

ŷ⋆t

ŷt

ŷAt

ĥt

ĉt

ît

ˆrert



(34)

The estimated coefficients of the SVAR are similar to those found by Gallic and Ver-

mandel (2020).

A.1.1 Lag selection

Table 3 outlines the lag selection test that is conducted on the SVAR. Since Hannan–Quinn

information criteria and Schwarz Information Criterion show that an SVAR of lag length

one is preferred we use this for our analysis. Robustness has been conducted using an

SVAR with higher order lags, where the results are robust to this.
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Table 3: Lag Selection

Number of Lags
1 2 3 4

AIC 11.62 11.46 12.07 11.19
HQ 12.55 13.21 14.64 14.59
SC 13.95 15.86 18.55 19.74
FPE 112988.27 102965.24 230307.11 143524.80

Sources: IMF staff calculations.
Note: Lag selection of the VAR based on Akaike information criterion (AIC), Hannan–Quinn (HQ)
information criteria, Schwarz Information Criterion (SC) and Final Prediction Error Criterion (FPE).
Lowest result (better fit) is shown in bold.

A.1.2 SVAR Results using SMDI-Countywide

As well as producing a soil moisture deficit index that focuses on areas of agricultural

importance, we construct a soil moisture deficit index for the whole country, which we

label as SMDI-Countrywide and is shown in Figure 9. This index is constructed in a

similar way to the original SMDI explained in Section 2, however it does not weight the

soil moisture deficit of each cell in the spatial-grid by its agricultural importance but

rather assigns an equal weight to each cell countrywide. Figure 9 shows that this measure

is still able to track periods of drought related losses well as the index reaches its peak (an

increase signifies dry conditions) during periods of drought.
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Figure 9: Soil Moisture Deficit Index Countrywide

Sources: INIA-GRAS, OPYPA, and IMF staff calculations.
Notes: Quarterly Soil Moisture Deficit Index is derived from INIA-GRAS data and compared against
drought-related loss periods from OPYPA. Positive values signify dry conditions, whereas negative
values show periods of wet conditions.

Figure 10 is the result of using this index as our weather variable in the SVAR. The

underlying results are robust to the type of soil moisture deficit index used (SMDI or

SMDI-Countrywide), as both measures show that droughts negatively impact the economy

through losses in primary activity, consumption and investment. In contrast to our baseline

results, which use the SMDI (weighting the cells in the grid by agricultural importance), we

see a small uptick in primary output in the second quarter following the climate shock and

a delayed response of consumption - where on impact consumption falls and then recovers

before falling again. These results may be the outcome of how the SMDI-Countrywide

is constructed, such that it picks up droughts in other parts of the country, which may

not directly negatively impact the agricultural sector. Although the SMDI described in

Section 2 is our preferred measure, as it more accurately captures the impact of droughts

on areas of agricultural importance, the SMDI-Countrywide measure proves to be robust

and requires less granular agricultural data construct.
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Figure 10: SVAR Results using an alternative index: SMDI-Countrywide

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a one standard deviation shock to the Countrywide Soil
Moisture Deficit Index (weather shock) in the SVAR model using the countrywide climate index
(SMDI-Countrywide). Time series is quarterly. The red dashed line is the Impulse Response Function,
the gray band represents the 95% confidence intervals obtained from the SVAR using 10,000
Monte-Carlo simulations. The time horizon is plotted on the x-axis while the percent deviation from the
steady state is plotted on the y-axis.
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A.1.3 SVAR Results using truncated SMDI - Positive values only

To isolate the impact of droughts on the Uruguayan economy we augment our current

SMDI variable such that negative values of the SMDI, which represents periods of excess

water, are set to 0. This augmented index can be seen in Figure 11. The results of this

in the SVAR can be seen in Figure 12. Notably the impact of a one standard deviation

drought shock has a more severe impact on agricultural output, lowering agricultural

output by 0.7 percent at the peak compared to 0.3 percent when the baseline index is

used.

Figure 11: Truncated Soil Moisture Deficit Index

Sources: INIA-GRAS, OPYPA, and IMF staff calculations.
Notes: Quarterly Soil Moisture Deficit Index is derived from INIA-GRAS data and compared against
drought-related loss periods from OPYPA. Series has been truncated to show positive values only, which
signify dry conditions.
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Figure 12: SVAR Results using a Truncated Soil Moisture Deficit Index

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a one standard deviation shock to the Truncated Soil
Moisture Deficit Index (weather shock) in the SVAR model using the positive SMDI. Time series is
quarterly. The red dashed line is the Impulse Response Function, the gray band represents the 95%
confidence intervals obtained from the SVAR using 10,000 Monte-Carlo simulations. The time horizon is
plotted on the x-axis while the percent deviation from the steady state is plotted on the y-axis.
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A.2 Additional DSGE Results

Additional results from the DSGE model (shown in Section 4) are displayed below in

Figure 13. The one standard deviation increase in the weather shock causes gross domes-

tic product to fall, however part of this decrease is offset by the non-agricultural sector

output expanding initially as the sector benefits from the relative price advantage. The

non-agricultural price falls following the shock, whilst the agricultural price rises - spurred

by lower land efficiency and higher land costs. Falling non-agricultural prices help to fuel

foreign demand for non-agricultural goods and boost the non-agricultural domestic pro-

duction. The weather shock lowers land productivity by close to 10 percent in the model.

To compensate for this loss, firms in the agricultural sector use more non-agricultural

goods as inputs to reestablish their land productivity (given by a higher land cost xt).

The demand effect for these non-agricultural goods is captured in the model by the rise

in xt, which represents the additional effort to combat the drought through additional use

of water or alternative measures.
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Figure 13: Additional DSGE Model results.

Sources: IMF staff calculations.
Notes: Impact on the Uruguayan economy from a one standard deviation shock to the Soil Moisture
Deficit Index (weather shock) in the DSGE model. Time series is quarterly. The blue line is the
response from the DSGE model. The time horizon is plotted on the x-axis while the percent deviation
from the steady state is plotted on the y-axis. 40



To further analyze the shocks that drive the fluctuations of the Uruguayan economy we

conduct a variance decomposition exercise. Figure 14 presents the forecast error variance

decomposition exercise displays at the posterior mean for different time horizons (one, ten,

fifty and unconditional). Notably supply shocks, the combination of technology shock,

labour supply shock and sector reallocation shock, explain the majority of movements in

GDP, agricultural output, consumption and employment. Notably weather shocks play

a role in the movement of GDP and agriculture but play a significantly diminished role

compared to the findings of Gallic and Vermandel (2020) for New Zealand. Part of this

diminished response could be explained by our sample period, which includes Covid-19,

which had a particularly large impact on output, consumption and employment.18

Figure 14: Variance Decomposition

Sources: IMF staff calculations.
Notes: Variance decomposition of supply, demand foreign and weather socks from the DSGE estimation.

18Further, a small sample size (quarterly data from 2005Q2-2023Q2) may impact the accuracy of the
FEVD.
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