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1 Introduction and Executive Summary

A long-running debate over exchange rate dynamics centers on whether they
are stationary or follow a random walk. Traditional models assume that
exchange rates exhibiting a unit root follow a random walk, making their
future movements inherently unpredictable. This assumption aligns with
the Efficient Market Hypothesis (EMH), which posits that asset prices fully
reflect all available information.

However, this paper challenges this view by demonstrating that exchange
rates can simultaneously possess a unit root while maintaining predictable
components. We show that exchange rate dynamics can be decomposed into
two parts: a slowly moving stochastic trend and a stationary cyclical com-
ponent. The stochastic trend represents the long-run equilibrium exchange
rate, evolving as a random walk driven by fundamental economic factors like
differential inflation rates and productivity growth. In contrast, the station-
ary cyclical component captures temporary deviations from this equilibrium
path, which diminish over time as the exchange rate converges back toward
equilibrium. By combining these elements, exchange rates can exhibit both
long-term unpredictability (driven by the stochastic trend) and medium-term
predictability (due to the cyclical component). In this framework, expected
exchange rate changes depend solely on the cyclical component—the larger
the cyclical component, the higher the expected exchange rate depreciation.

This dual-component framework captures three key features of exchange
rate dynamics: expected exchange rate changes are not zero, they are highly
persistent, and there is a strong relationship between exchange rate levels
and expected future changes. Without a stationary component, expected
exchange rate changes would by definition be zero. Furthermore, if the
stochastic trend did not evolve slowly, the relationship between exchange
rate levels and expected changes would break down, and the cyclical compo-
nent—along with the persistence of expected exchange rate changes—would
diminish.

The interplay between the stochastic trend and the stationary cyclical
component produces an inverted U-shaped predictability pattern, where ex-
change rates are least predictable in the short and long term but exhibit
significant forecastability in the medium term. This reflects the dominance
of noise in short-term fluctuations, the stochastic trend in long-term move-
ments, and the stationary component in medium-term dynamics.

To illustrate, this paper extends the Bacchetta and van Wincoop (2021)
framework (which is an example of how mean-reverting interest rate differen-
tials and gradual portfolio adjustments can generate a stationary component)
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with a stochastic trend.
To test the model, we align its theoretical predictions with data from 2000

to 2024 for nine inflation-targeting countries with freely floating exchange
rates. These countries are chosen because their interest rate differentials are
exogenous to expected exchange rate changes. Our empirical analysis shows
that twelve-month exchange rate forecasts significantly predict multi-year
changes, with predictive power increasing over extended horizons. This con-
firms the model’s prediction of an inverted U-shaped pattern, with medium-
term changes being the most predictable. Moreover, our model significantly
outperforms the random walk benchmark in out-of-sample forecasting. This
improvement in predictive accuracy is particularly notable over longer hori-
zons, where traditional models struggle to balance short-term predictability
with long-term uncertainty. Finally, we conduct a sensitivity analysis to
demonstrate that the model’s outperformance remains robust across a range
of parameter values, underscoring the stability of the forecasting framework.

While our model incorporates portfolio adjustment frictions within the
Bacchetta and van Wincoop (2021) framework to generate the stationary
component, it is important to note that this is only one example of a mecha-
nism that can produce mean-reverting dynamics. Other approaches, such as
models emphasizing transaction costs, behavioral biases, or deviations from
purchasing power parity (PPP), could similarly lead to mean-reversion in ex-
change rates. The ability to incorporate alternative mechanisms highlights
the broader applicability of the dual-component framework, accommodating
various theoretical foundations to capture stationary behavior.

In summary, this paper introduces a hybrid model that reconciles the
random walk hypothesis with mean reversion. By combining a stochas-
tic trend with a stationary component, the model captures key features of
exchange rate dynamics and demonstrates strong out-of-sample predictive
power across different horizons. This dual-component framework, adaptable
to various theoretical perspectives, lays the foundation for further research
on alternative mechanisms for generating mean-reverting dynamics.
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2 Literature review

Mean Reversion of Real Exchange Rates

One of the longstanding debates in international finance is whether exchange
rates are stationary or possess a unit root, thereby following a random walk.
Stationarity implies that exchange rates revert to a long-term mean, suggest-
ing predictability over the long run. In contrast, a unit root indicates that
exchange rates follow a random walk, where shocks have permanent effects,
leading to unpredictability.

Early empirical studies predominantly supported the random walk hy-
pothesis, suggesting that exchange rates follow a unit root process and are
therefore unpredictable. Meese and Rogoff (1983) famously demonstrated
that random walk models often outperform economic models in exchange
rate forecasting. Their seminal work showed that models based on economic
fundamentals failed to outperform a simple random walk model in out-of-
sample predictions. This finding has been corroborated by numerous stud-
ies, such as Mark (1995), which found that the predictive power of economic
models over short horizons was limited, reinforcing the view that exchange
rates follow a random walk. The random walk hypothesis aligns with the
Efficient Market Hypothesis (EMH), which posits that exchange rates reflect
all available information and are thus inherently unpredictable.

In the 1980s, researchers employed unit root tests to assess whether real
exchange rates are mean-reverting—a necessary condition for PPP to hold
over time. These early tests frequently failed to reject the null hypothesis of
a unit root for major economies, suggesting that real exchange rates might
follow a random walk rather than exhibit mean reversion Taylor and Taylor
(2004), Rogoff (1996), Nelson and Plosser (1982) and Stock and Watson
(1988) provided early empirical evidence that many macroeconomic time
series, including exchange rates, exhibit unit root behavior, supporting the
random walk hypothesis.

Unit root tests often have low power in small samples, making it difficult
to distinguish between a unit root and a near-stationary process. DeJong
et al. (1992) highlighted the sensitivity of these tests to sample size and
structural breaks, which can significantly impact conclusions.

Recognizing the low statistical power of these unit root tests in small
samples (Lothian and Taylor, 1997, Sarno and Taylor, 2002), researchers
have explored several enhancements. These include extending the time se-
ries data (Lothian and Taylor, 1996) and employing panel unit root tests that
aggregate data across different countries (Pedroni, 2001). Such methodolo-
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gies have generally provided more support for the mean reversion of real
exchange rates, offering empirical backing for PPP.

Structural breaks and regime changes, such as shifts in economic policy or
external shocks, also play a crucial role. Perron (1989) showed that ignoring
structural breaks can lead to incorrect conclusions about the presence of
unit roots. Lumsdaine and Papell (1997) found that allowing for multiple
structural breaks often changes the inference about stationarity and unit
roots. They demonstrated that accounting for breaks can reveal periods of
mean reversion within an overall unit root process.

Non-linear Adjustment

The introduction of nonlinear adjustment models marked a significant ad-
vancement. These models propose that the speed of mean reversion increases
as deviations from the equilibrium level grow larger, suggesting faster mean
reversion than previously recognized and aligning better with PPP predic-
tions (Kilian and Taylor, 2003, Taylor and Taylor, 2004).

Moreover, the literature discusses the impact of transaction costs and
market frictions, which can create "bands of inaction." In these bands, ar-
bitrage does not occur until deviations exceed transaction costs, leading to
periods of apparent non-reversion. This complexity has been explored in
models incorporating elements such as nonlinear adjustments and transac-
tion costs, showing that real exchange rates do revert to a mean under more
realistic market conditions (Michael et al., 1997, Sarno et al., 2004).

Implications for Nominal Exchange Rates

Several authors have concluded that mean reversion of real exchange rates
implies mean reversion of nominal exchange rates. Cheung et al. (2004)
challenge the conventional view that price adjustment determines the PPP
reversion rate. They argue that nominal exchange rate adjustment, not price
adjustment, is the key engine governing the speed of PPP convergence.

Kilian and Taylor (2003) show that deviations of the nominal exchange
rate from PPP equilibrium can forecast changes in nominal exchange rates.
They show that while nominal rates approximate a random walk near equi-
librium, significant deviations from fundamentals trigger mean-reverting be-
havior. The predictability of nominal exchange rates, therefore, improves
over longer horizons. Zorzi and Rubaszek (2020) show that real exchange
rates in advanced countries with flexible regimes are mean-reverting, as im-
plied by the Purchasing Power Parity model. They also show that the ad-
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justment takes place via nominal exchange rates. They propose forecasting
the nominal exchange rate change by using the level of the real exchange
rate and show that this has significant predictive power.

Conclusion

The ongoing debate over the stationarity of exchange rates remains unre-
solved due to the complex nature of exchange rate dynamics and the limi-
tations of statistical tests. Both sides present compelling arguments: early
studies predominantly supported the random walk hypothesis and the un-
predictability of exchange rates, while later studies, leveraging longer time
series and advanced techniques, find more support for mean reversion. A
nuanced understanding that incorporates both perspectives may offer the
most comprehensive insight into exchange rate behavior.
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3 Exchange rates have a unit root

To analyze the time series properties of exchange rates, we conducted tests
for unit roots using two common approaches: the Augmented Dickey-Fuller
(ADF) test and the KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test.

The ADF test examines the null hypothesis that a time series has a unit
root. If the null is rejected, it indicates that the series is stationary. In our
analysis, the ADF test results showed (Table 3.1) that we could not reject
the null hypothesis for the examined exchange rates, suggesting that the
exchange rate has a unit root.

To complement the findings from the ADF test, we applied the KPSS
test, which assumes the opposite null hypothesis: that the series is stationary.
Our KPSS test results reject the null hypothesis, reinforcing the conclusion
that the exchange rate series are not stationary.

The results from both the ADF and KPSS tests consistently indicate
that the examined exchange rate series are non-stationary.

Table 3.1: ADF and KPSS Test Results for Exchange Rates vis-a-vis US
dollar, 2000-2024

ADF Statistic ADF p-value KPSS Statistic KPSS p-value

EUR -2.314 0.444 0.867 0.01
JPN -1.108 0.920 0.894 0.01
GBR -2.633 0.310 2.973 0.01
CAN -1.677 0.712 0.976 0.01
AUS -1.855 0.637 1.092 0.01

NZL -2.137 0.519 1.522 0.01
CHE -2.098 0.535 3.820 0.01
SWE -2.281 0.458 1.389 0.01
NOR -2.106 0.531 2.038 0.01
a Monthly data. The p-values indicate the significance level for the null hy-

potheses.
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4 Why Exchange Rates Combine a Stationary Component with
a Slowly Moving Trend

4.1 Intuition

If exchange rates followed a random walk, expected exchange rates should be
zero. To test whether this is true, we use monthly data of 12-month expected
exchange rate changes vis-à-vis the US dollar for the period 2000–2024, from
a dataset of monthly survey data kindly provided by Das et al. (2022). Sev-
eral key observations emerge:

• Expected exchange rate changes are not zero. They can be quite sub-
stantial (Figure 4.1).

• Expected exchange rate changes exhibit high persistence over time
(Figure 4.2).

• There is a notable negative relationship between exchange rate levels
and expected future changes. This link is strong for most countries,
though weaker for a few, including Great Britain (Figure 4.3).

Thus, exchange rates exhibit characteristics that seem paradoxical. On
the one hand, they have a unit root, suggesting a random walk with no long-
term predictability. On the other hand, survey data indicate that expected
exchange rate changes are not zero and exhibit strong persistence, suggesting
medium-term predictability.

This apparent contradiction can be resolved by recognizing that exchange
rates are composed of two distinct components: a slowly evolving stochastic
trend and a stationary cyclical component. The stochastic trend governs
long-term, unpredictable movements, while the stationary component intro-
duces mean-reverting dynamics. Together, these components allow exchange
rates to display both a unit root and medium-term predictability.

If the stochastic trend dominates, exchange rate changes are largely un-
predictable. However, when the stationary component is significant, the
cyclical behavior of the exchange rate creates medium-term predictability.
Expected changes are then determined by the current value of the cyclical
component, with greater deviations leading to stronger mean reversion.
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To illustrate, consider two scenarios in which an initially equilibrium
exchange rate appreciates by 20%:

1. Scenario 1: Predominance of the Cyclical Component (90%)
In this scenario, 90% of the 20% appreciation—equivalent to 18 per-
centage points—originates from the cyclical component (sct), while the
remaining 2 percentage points reflect a shift in the equilibrium level
(µt). Since sct is a stationary component that reverts to its mean over
time, the expected future depreciation would be approximately 18%.
This scenario demonstrates strong mean reversion, as the appreciation
is predominantly attributable to the transitory cyclical component.

2. Scenario 2: Predominance of the Stochastic Trend (90%)
Here, only 10% of the 20% appreciation—2 percentage points—can be
ascribed to sct , while the remaining 18 percentage points are driven by
the stochastic trend (µt). Unlike the cyclical component, the stochastic
trend evolves slowly and lacks mean-reverting properties, leading to
a predicted future depreciation of merely 2%. This scenario reflects
weaker mean reversion and reduced predictability.

These scenarios illustrate how the relative contributions of the stochas-
tic trend and the cyclical component influence the degree of predictability
in exchange rates. When the stochastic trend evolves slowly and the cycli-
cal component plays a dominant role, exchange rates exhibit considerable
medium-term predictability. This dual-component framework reconciles the
unit root hypothesis with the observed persistence in expected exchange rate
changes.

4.2 The Math

We will now show that a combination of a slowly evolving trend and a cyclical
(stationary) component can account for these patterns.

Why Exchange Rates Should Have a Stationary Component

We assume that the exchange rate st at time t is equal to a stochastic trend
plus a stationary component:

st = µt + sct (4.2.1)

Here, µt represents the stochastic trend, and sct is the stationary compo-
nent. The stochastic trend µt evolves as a random walk:
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µt = µt−1 + ηt (4.2.2)

where ηt is a white noise error term with zero mean and constant vari-
ance σ2

η. This random walk component allows for persistent, unpredictable
changes in the long-term level of the exchange rate.

Expectations of future exchange rates are formed based on both the
stochastic trend and the stationary component:

Et[st+h] = Et[µt+h] + Et[s
c
t+h] (4.2.3)

We assume that expectations of future values of the cyclical component
are based on the current value of the cyclical component and the autocorre-
lation function (ACF) of the stationary process:

Et[s
c
t+h] = ρ(h)sct (4.2.4)

Expected future values of the stochastic trend are equal to the current
value:

Et[µt+h] = µt (4.2.5)

It follows that:

Et[st+h − st] = −(1− ρ(h))sct (4.2.6)

When exchange rates incorporate both a random walk (trend) and a
cyclical component, the best forecast for future changes will be the expected
change in the cyclical component, which itself depends on the current value
of this cyclical component.

Thus, the expected exchange rate change will be zero only if the cyclical
component is zero, meaning that the exchange rate behaves purely as a
random walk. If the cyclical component is not zero, neither will the expected
exchange rate change.
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Why the Stochastic Trend Must Be Moving Slowly

Next, we explain why the stochastic trend must be moving slowly. This is
so for two reasons: if it were not, expected exchange rate changes would not
be highly persistent, and there would not be a strong link between exchange
rate levels and expected exchange rate changes.

The persistence of expected exchange rate changes is influenced by the
persistence of the cyclical component, which varies depending on whether
exchange rate changes are driven primarily by the stochastic trend or by
the cyclical component. If exchange rate changes are largely influenced by
the cyclical component, the stochastic trend will evolve slowly, resulting
in potentially large and persistent expected changes. If the stochastic trend
drives most of the exchange rate changes, the cyclical component will remain
small, leading to relatively small and less persistent expected changes.

We demonstrate this in Figure 4.4, where we decompose the New Zealand-
US dollar exchange rate into the trend and the cyclical component using an
HP-filter. For smaller values of λ, the exchange rate changes are mostly
driven by the trend, and the movements of the cyclical component are less
persistent. By contrast, if λ is large, the exchange rate changes are mostly
driven by the cyclical component, and the movements of the cyclical com-
ponent are more persistent.

A slowly moving stochastic trend can also explain the link between the
exchange rate level and the expected exchange rate change. The top panel
of Figure 4.5 shows the simulation of a combination of a stochastic trend
with a stationary AR(1) process with a coefficient of 0.97. We assume that
the variance of the stochastic trend is much smaller than the variance of
the cyclical component. In a small sample of 300 (equivalent to 25 years
of monthly data), the link between the exchange rate level and the cyclical
component is very strong. The link weakens in very large samples (bottom of
Figure 4.5), but remains significant. By contrast, with a significantly higher
variance of the stochastic trend, the link between exchange rate levels and
expected exchange rate changes becomes weak even in small samples (Figure
4.6).

In sum, we can explain the three observations (a) exchange rates have a
unit root; (b) expected exchange rate changes are highly persistent; (c) there
is a strong link between exchange rate levels and expected exchange rate
changes by assuming that exchange rates combine a slowly moving stochastic
trend with a stationary component.
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4.3 Partial Reversion of Exchange Rate Shocks

Having established the mathematical foundations of the dual-component
model, we now examine its implications for exchange rate shocks. The model
suggests that such shocks are not entirely permanent but instead exhibit par-
tial reversion, driven by the mean-reverting nature of the stationary compo-
nent. Below, we derive and interpret these dynamics to illustrate their role
in shaping medium-term predictability in exchange rates.

At time t − 1, the expected exchange rate change between period t and
t+ h is equal to:

Et−1[st+h − st] = −(1− ρ(h))Et−1[s
c
t ]. (4.3.1)

At time t, the expected exchange rate change between period t and t+ h is
equal to:

Et[st+h − st] = −(1− ρ(h))[sct ]. (4.3.2)

It follows that

Et[st+h − st]− Et−1[st+h − st] = −(1− ρ(h)) (sct − Et−1[s
c
t ]) (4.3.3)

For large h, ρ(h) approaches 0, leading to:

lim
h→∞

Et[st+h − st]− Et−1[st+h − st] = − (sct − Et−1[s
c
t ]) . (4.3.4)

This means that in the long run, the shock to the stationary component
(sct − Et−1[s

c
t ]) is expected to be fully reversed.

However, the total shock to the exchange rate also includes the shock to
the stochastic trend:

st − Et−1[st] =
(
stc − Et−1s

c
t

)
+ (µt − Et−1µt) (4.3.5)

Therefore, if the exchange rate in period t is higher than expected, only the
part of the shock attributable to the stationary component is expected to be
reversed in the future.

The dual-component model bridges the gap between purely stationary
and random walk models by incorporating both cyclical predictability and
long-term stochastic behavior.
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Part I

The Model
To illustrate, this paper extends the Bacchetta and van Wincoop (2021)
framework (which is an example of how mean-reverting interest rate differ-
entials and gradual portfolio adjustments can generate a stationary compo-
nent) with a stochastic trend.

We first will discuss, in section 5, the stationary component. In section
6, we will combine this with a stochastic trend.

5 The Stationary Component

5.1 The model of the stationary component

Bacchetta and van Wincoop (2021) derive a model in which the exchange rate
depends on the lagged exchange rate and the sum of current and expected
future interest rate differentials:

st = αst−1 + Et

∞∑
i=0

ρidift+i (5.1.1)

where st is the log exchange rate (US dollars per foreign currency unit), and
dift is the interest rate differential (foreign interest rate minus US interest
rate). If portfolio adjustment is gradual, 0 < α < 1, otherwise α = 0. If
investors are risk-neutral, ρ = 1, otherwise 0 < ρ < 1.1

In line with Bacchetta and van Wincoop (2021), we assume that the
interest rate differential follows a stochastic AR(1) process:

dift = βdift−1 + ϵt (5.1.2)

This implies:
Etdift+i = βidift (5.1.3)

Substituting (5.1.3) in (5.1.1) we get

st = αst−1 +

(
ρ

1− ρβ

)
dift (5.1.4)

The exchange rate depends on the lagged exchange rate and the interest rate
differential only.

1If α = 0 and ρ = 1, we get the UIP-model.
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Substituting (5.1.2) into (5.1.4) and solving,2 we obtain:

st = (α+ β)st−1 − αβst−2 + ϵ′t (5.1.9)

where ϵ′t =
ϵt

1−β . Equation (5.1.9) is an AR(2) process with roots α and
β. As long as both α < 1 and β < 1, this process is stationary, implying
mean reversion in exchange rates.

5.2 Exchange Rate Levels and Expected Exchange Rate Changes

We assume that expectations of future exchange rate are formed using the
Autocorrelation Function (ACF):

Etst+k = ρ(k)st (5.2.1)

where ρ(k) is the ACF.
We show in Annex A that for our AR(2) process:

ρ(k) =
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
(5.2.2)

We also show that 0 < ρ(k) < 1 and ρ(k+1) < ρ(k). Moreover lim
k→∞

ρ(k) = 0.

We can rewrite equation (5.2.1) as

Etst+k − st = (ρ(k)− 1)st (5.2.3)

Equation (5.2.3) has two important implications:

• Expected exchange rate changes depend on the exchange rate level.
The more appreciated the exchange rate level, the larger the expected
future depreciation.

2It follows from equation (5.1.2) that

(1− βL)dift = ϵt (5.1.5)

It follows that
dift =

ϵt
1− βL

(5.1.6)

Substituting (5.1.6) in (5.1.4) we get:

(1− αL)(1− βL)st = ϵ′t (5.1.7)

where ϵ′t =
ϵt

1−β
. We can rewrite this as:

st = (α+ β)st−1 − αβst−2 + ϵ′t (5.1.8)
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• The longer the lag (i.e., the higher k), the higher the coefficient. As
k → ∞ the coefficient of a regression of expected exchange rate changes
on exchange rate levels should go to −1 .

5.3 The Exchange Rate Level and Interest Rate Shocks

Note that we can rewrite equation (5.1.4) as:

st =

(
1

(1− αL)(1− βL)

)
ϵt

1− β
(5.3.1)

Using
1

(1− αL)(1− βL)
=

α
α−β

1− αL
−

β
α−β

1− βL
(5.3.2)

we can rewrite (5.3.1) as:

st =

(
1

α− β

)(
1

1− β

)(i=∞∑
i=0

κiϵt−i

)
(5.3.3)

where κi = αi+1 − βi+1. The exchange rate level is a weighted average of
current and past interest rate shocks. An interest rate shock will lead to an
appreciation of the exchange rate, but over time, the impact of the shock
wanes, and the exchange rate returns to its equilibrium.

Our model’s representation of exchange rates as a weighted average of
interest rate shocks aligns with Kekre and Lenel (2024), who emphasize
the importance of persistent interest rate differentials in driving exchange
rate dynamics. Their work provides empirical support for this relationship,
reinforcing the importance of the dynamic interest rate-exchange rate rela-
tionship in understanding currency movements.
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5.4 Economic Drivers of Interest Rate Differential Mean Reversion

The mean reversion of interest rate differentials is itself grounded in funda-
mental economic processes. One key driver is the behavior of output gaps,
which plays a significant role in shaping interest rate dynamics across coun-
tries.

Interest rates are often closely tied to a country’s output gap—the dif-
ference between actual and potential GDP. Central banks typically employ
a counter-cyclical monetary policy, raising rates when the economy is over-
heating (positive output gap) and lowering them during economic slowdowns
(negative output gap). This responsive policy approach creates a direct link
between output gaps and interest rates.

Economic theory and empirical evidence suggest that output gaps tend
to close over time as economies naturally adjust. This convergence towards
potential output exerts a mean-reverting force on interest rates. As an econ-
omy operating above potential gradually cools down, interest rates are likely
to decrease. Conversely, an economy operating below potential is expected
to recover, leading to rising interest rates over time.

The convergence of output gaps becomes particularly relevant for ex-
change rates when considering interest rate differentials between two coun-
tries. When two economies have opposing output gaps—for example, country
A with a positive gap and country B with a negative gap—their interest rate
differential is likely to narrow as these gaps close. Country A’s rates would
be expected to decrease as its economy cools, while country B’s rates would
rise as its economy recovers. This differential convergence in interest rates
drives mean reversion in exchange rates.
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6 Combining the Stationary Component and a Stochastic Trend

Building on the discussion in Section 4, the exchange rate s(t) is modeled as
the sum of two components: a stochastic trend µt and a stationary compo-
nent sc(t):

st = µt + sct . (6.0.1)

The stochastic trend evolves as a random walk:

µt = µt−1 + ηt, (6.0.2)

where ηt is a white noise error term. This trend accounts for the long-term,
persistent movements in exchange rates, reflecting their random walk nature.

The stationary component sct , previously detailed in section 5, follows an
AR(2) process:

sct = (α+ β)sct−1 − αβsct−2 + εt, (6.0.3)

where α and β determine the degree of mean reversion. This component in-
troduces cyclical dynamics, with exchange rates reverting toward equilibrium
over time.

This hybrid structure allows exchange rates to simultaneously exhibit
random walk behavior in the long run while showing mean-reverting tenden-
cies in the medium term, reconciling the two contrasting dynamics.
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Part II

Exchange Rate Changes

7 Predictability of Exchange Rate Changes and the Relation-
ship between Short-term and Long-term Expected Changes

To test the validity of the dual-component framework, we conduct an em-
pirical investigation using exchange rate data from nine inflation-targeting
countries spanning 2000–2024. This analysis evaluates key theoretical predic-
tions, including medium-term predictability, the relationship between short-
term and long-term expected changes, and the model’s outperformance over
the random walk benchmark. By comparing actual exchange rate changes to
their expected values across different horizons, we provide robust evidence
supporting the framework’s applicability.

This section investigates the predictability of exchange rate changes across
different time horizons and explores the link between short-term and long-
term expected changes. Contrary to the traditional view that exchange
rates are largely unpredictable, especially over extended periods, our anal-
ysis presents both theoretical and empirical evidence highlighting two main
findings:

• Long-term exchange rate changes are more predictable than short-term
changes.

• Expected long-term changes are proportional to short-term expected
changes, with the proportionality factor increasing with the time hori-
zon.

7.1 Predictability of Exchange Rate Changes

Predictability of the Stationary Component

The expected change in the stationary component of the exchange rate is
characterized by:

Et

[
sct+h − sct

]
= (ρ(h)− 1)sct , (7.1.1)

where ρ(h) is the autocorrelation function at horizon h.
As detailed in Annex C, if we regress actual changes in the stationary

component on their expected values

sct+h − sct = ah + bh [(ρ(h)− 1)sct ] + εt. (7.1.2)
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the expected value of the coefficient of determination (R2) is equal to:

R2(h) =
(1− ρ(h))

2
(7.1.3)

For small h, R2 is close to zero (as ρ(h) is close to 1). R2 increases asymp-
totically to 0.5 as h becomes larger.

These results suggest that, while short-term changes in the stationary
component are challenging to predict, predictability improves significantly
for longer-term changes.

Predictability of the Exchange Rate

The overall predictability of the exchange rate reflects the combined pre-
dictability of its stationary and stochastic trend components. While the
stationary component becomes more predictable over longer horizons, the
stochastic trend becomes less predictable. Consequently, the predictability
of the exchange rate as a whole initially increases, reaches a peak, and then
declines.

7.2 The Relationship Between Short-term and Long-term Expected Changes

The expected h-period exchange rate change is determined by:

Et [st+h − st] = Et

[
sct+h − sct

]
. (7.2.1)

For a 12-month horizon (h = 12), this relationship becomes:

Et [st+12 − st] = Et

[
sct+12 − sct

]
. (7.2.2)

Combining these expressions, we derive:

Et [st+h − st] =

(
1− ρ(h)

1− ρ(12)

)
Et [st+12 − st] . (7.2.3)

This equation implies that expected multi-year exchange rate changes are
proportional to the expected one-year change, with the proportionality factor
increasing with h.
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7.3 Empirical Evidence

To test these theoretical predictions, we estimate the following regression:

st+h − st = ah + bh [Et (st+12 − st)] + εt. (7.3.1)

This regression links h-period changes in the exchange rate to the ex-
pected one-year change lagged by h periods. The theoretical model yields
two key expectations:

• bh should increase with h and exceed 1 for h > 12.

• The behavior of R2 depends on the relative contributions of the sta-
tionary and stochastic trend components:

– For the stationary component, predictability increases with h.

– For the stochastic trend, predictability decreases with h.

– For the combined process, predictability initially rises, peaks, and
subsequently declines.

We perform this analysis using monthly exchange rate data for 10 ad-
vanced economies relative to the U.S. dollar from 2000 to 2024. Regression
results are presented in Tables 7.1 and 7.2:
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Table 7.1: Coefficients and Standard errors of regression of x-year exchange rate change on x-year lagged one-year
expected change, 2000-2024

Coefficients Standard errors

1 year 2 years 3 years 4 years 5 years 1 year 2 years 3 years 4 years 5 years Observations

CAN 0.95 1.26 1.82 2.50 3.03 0.18 0.27 0.33 0.39 0.45 237
JPN -0.23 0.10 0.84 1.92 2.77 0.12 0.20 0.25 0.24 0.23 237
GBR 0.84 1.94 2.28 2.38 2.76 0.18 0.22 0.25 0.30 0.32 237
SWE 0.69 1.74 2.34 2.65 2.70 0.15 0.18 0.17 0.19 0.23 237
EUR 0.59 1.44 2.08 2.42 2.58 0.12 0.15 0.15 0.17 0.19 237
AUS 0.42 1.15 1.78 2.30 2.53 0.13 0.17 0.19 0.20 0.23 237
CHE 0.46 0.94 1.42 1.87 2.10 0.09 0.11 0.11 0.11 0.12 237
NOR 0.62 1.21 1.64 1.93 1.99 0.16 0.22 0.26 0.31 0.37 237
NZL 0.41 1.10 1.62 2.02 1.97 0.12 0.15 0.16 0.17 0.19 237
a Monthly data.
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Table 7.2: R2 of regressions of x-year exchange rate change on x-year
lagged one-year expected exchange rate change, 2000-2024

1 year 2 years 3 years 4 years 5 years Observations

CHE 0.08 0.22 0.41 0.53 0.58 237
EUR 0.07 0.26 0.44 0.46 0.43 237
JPN 0.01 -0.00 0.04 0.20 0.38 237
SWE 0.07 0.25 0.43 0.44 0.37 237
AUS 0.03 0.14 0.26 0.34 0.33 237
NZL 0.04 0.17 0.29 0.37 0.31 237
GBR 0.07 0.22 0.24 0.20 0.23 237
CAN 0.08 0.07 0.10 0.14 0.16 237
NOR 0.05 0.10 0.13 0.13 0.11 237
a Monthly data.

Our findings are consistent with the theoretical predictions:

• The expected twelve-month exchange rate change exhibits substantial
predictive power for subsequent multi-year changes, with predictive
power increasing at longer horizons.

• The relationship between the twelve-month expected change and the
actual five-year change is particularly pronounced for Switzerland, Japan,
the Euro area, and Sweden.

• Multi-year changes are proportional to the twelve-month expected change,
as predicted by the model.

While these results are robust, a discrepancy arises in the coefficient link-
ing actual twelve-month changes to expected changes. This issue warrants
further exploration and will be addressed in the following section.
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8 Assessing Bias in Exchange Rate Change Forecasts

In our regressions of actual twelve-month exchange rate changes on the
lagged twelve-month predicted changes, we observe coefficients that are sig-
nificantly lower than the expected value of 1. This suggests a potential bias in
the forecasts, as we would theoretically expect a one-to-one correspondence
between predicted and actual changes. In this section, we explore whether
this discrepancy is indicative of a systematic forecast bias or if alternative
explanations account for this result.

8.1 Potential Sources of Apparent Bias: Interest Rate Differential Pro-
jections

One possible source of bias stems from the behavior of interest rate differ-
entials. Gourinchas and Tornell (2004) showed that in advanced economies,
interest rate differentials tend to converge more slowly than investors an-
ticipate, offering an explanation for several exchange rate puzzles. If the
convergence of interest rate differentials is slower than expected, this could,
in theory, lead to a discrepancy between expected and actual exchange rate
changes.

Slower-than-expected convergence of interest rate differentials would im-
ply slower adjustment in exchange rate levels, potentially explaining why the
observed twelve-month exchange rate change is often smaller than predicted.
This is because the path of the exchange rate is closely linked to interest rate
differentials, and delays in the adjustment of interest rates would naturally
cause delays in exchange rate adjustments.

However, when examining the specific period from 2000 to 2024, this
theoretical explanation does not hold.3

Contrary to the slower-than-expected convergence typically observed, we
find that interest rate differentials converged faster than expected during
this period (Table 8.1). As a result, the bias in the forecasted exchange
rate changes cannot be attributed to slow-moving interest rate adjustments.
Instead, other factors must be considered to explain the lower-than-expected
coefficients in our regression analysis.

3We derive expected changes of one-year interest rate differentials from current one
year differentials and current multi-year interest rate differentials, assuming that the ex-
pectations hypothesis of interest rate differentials holds. The data are from Haver, from
the INTDAILY database. We leave out Australia and New Zealand for lack of availability
of multi-year interest rate differentials.
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Table 8.1: Coefficients and Standard errors of regression of x-year change in interest
rate differential on x-year lagged expected x-year change

Coefficients Standard errors

1 year 2 years 3 years 4 years 1 year 2 years 3 years 4 years

EUR 1.66 1.65 1.54 1.43 0.12 0.10 0.08 0.07
JPN 1.04 1.19 1.08 0.98 0.12 0.13 0.11 0.09
GBR 1.63 1.77 1.21 1.20 0.11 0.09 0.10 0.08
CAN 1.36 1.37 1.49 1.22 0.12 0.11 0.11 0.10
SWE 2.10 2.06 1.68 1.51 0.13 0.13 0.11 0.09

CHE 1.13 1.63 1.43 1.11 0.12 0.12 0.11 0.10
NOR 1.73 1.49 1.24 1.17 0.12 0.11 0.11 0.08
a Monthly data.

Table 8.2: R2 of regression of x-year change
in interest rate differential on x-year lagged
expected x-year change, 2004-24

R2

1 year 2 years 3 years 4 years

EUR 0.43 0.54 0.59 0.63
JPN 0.23 0.27 0.29 0.37
GBR 0.46 0.64 0.40 0.56
CAN 0.33 0.37 0.46 0.38
SWE 0.50 0.54 0.54 0.57

CHE 0.26 0.47 0.44 0.39
NOR 0.44 0.43 0.39 0.56
a Monthly data.
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8.2 Potential Sources of Apparent Bias: Timing of exchange rate projec-
tions

The observed low coefficients do not necessarily imply biased forecasts. A
plausible explanation lies in the timing of exchange rate projections. For
instance, projections made in March 2023 for end-March 2024 are typically
produced at the beginning of March, not at month-end (they are published
in the middle of the month, and presumably made some time before that).
This timing difference suggests that the expected exchange rate should be
characterized by Et−1st+12 rather than Etst+12, potentially introducing a
bias in the regression coefficients.

Analytical Framework

To account for this timing discrepancy, we consider regressing xt+h − xt on
(Et−1xt+h − xt), where Et−1xt+h = ρ(h + 1)xt−1, instead of regressing on
(Etxt+h − xt).

As demonstrated in Annex F, for a stationary ARMA(p,q) process with
autocorrelation function ρ(h), the regression coefficient for st+h−st on ρ(h+
1)st−1 − st is given by:

β(h) =
ρ(h+ 1)ρ(h+ 1)− ρ(h)− ρ(h+ 1)ρ(1) + 1

ρ(h+ 1)2 + 1− 2ρ(h+ 1)ρ(1)
(8.2.1)

Illustrative Example

Consider an AR(2) process with roots 0.98 and 0.65:

• Regressing st+12 − st on ρ(12)st − st yields an expected coefficient of
1.

• Regressing st+12 − st on ρ(13)st−1 − st yields an expected coefficient
of β(12) = 0.56.

Importantly, this bias diminishes as h increases. Figure 8.1 illustrates
how β(h) converges to 1 as h increases for this AR(2) process.
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9 Out-of-Sample Forecasts of Multi-Year Exchange Rate Changes

9.1 Methodology

To evaluate the predictive power of our model against a random walk bench-
mark, we employ out-of-sample forecasts and the Mean Squared Error (MSE)
metric. We define the MSE and the MSE ratio for exchange rate changes as
follows:

MSEModel =
1

N

N∑
i=1

(∆st+h,i −∆ŝModel
t+h,i )

2 (9.1.1)

MSERW =
1

N

N∑
i=1

(∆st+h,i)
2 (9.1.2)

MSE Ratio =
MSEModel

MSERW
(9.1.3)

where:

• ∆st+h,i = st+h,i − st,i is the actual change in exchange rate from time
t to t+ h for observation i

• ∆ŝModel
t+h,i is the predicted change from our model

• N is the number of forecasts

Note that for the random walk model, the predicted change is always
zero, simplifying its MSE to the average squared actual change.

9.2 Model Specification

Our model posits that expected multi-year exchange rate changes are a mul-
tiple of the expected 12-month change:

Et[st+h − st] = bh[Etst+12 − st] (9.2.1)

Instead of estimating the coefficients, we set them a priori as shown in
Table 9.1. They are based on the insights developed earlier in the paper that
expected multi-year changes should be a multiple of the expected one-year
change. We will show later that our results are not very sensitive the precise
value of the coefficients.

35



Table 9.1: A priori coefficients for different forecast horizons

Horizon (months) Coefficient (bh)
12 1.00
24 1.50
36 2.00
48 2.25
60 2.50

9.3 Results and Discussion

Table 9.2 shows the MSE ratios for various currencies and forecast horizons.
It demonstrates that the predictive power of our model increases over time

Table 9.2: Ratio of mean squared error to that of ran-
dom walk, 2005-24

1 year 2 years 3 years 4 years 5 years

JPN 1.28 1.13 0.98 0.71 0.51
EUR 0.88 0.70 0.67 0.61 0.52
AUS 0.97 0.91 0.86 0.73 0.69
GBR 0.91 0.76 0.79 0.83 0.74
SWE 1.01 0.92 0.91 0.82 0.78
CHE 1.06 1.16 1.21 0.93 0.79
CAN 0.89 0.95 0.93 0.87 0.83
NZL 1.07 1.09 1.17 0.92 0.87
NOR 1.01 1.06 1.16 1.05 0.95
a Monthly data. Data start in January 2005.

Our out-of-sample forecast results reveal that at longer time horizons,
the MSE ratio is consistently below one across multiple currencies, indicating
superior predictive power compared to the random walk model. For instance,
for the Japanese Yen at the five-year horizon, we observe an MSE Ratio of
0.51. This implies that our model’s forecast errors are, on average, 51% of
the random walk model’s errors, representing a substantial 49% improvement
in predictive accuracy. For the euro and the Danish krone, the predictive
power is similar.

This substantial out-performance of the random walk benchmark chal-
lenges the widely held belief in the unpredictability of exchange rates, espe-
cially at longer horizons. It provides empirical support for our theoretical
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framework, which suggests increased predictability of exchange rate changes
over extended periods. The improvement in predictive accuracy grows with
the forecast horizon, aligning with our model’s core proposition. The consis-
tency of results across multiple major currencies strengthens the robustness
of our findings.

Sensitivity analysis

Interestingly, the outperformance by our model of the random walk is not
very sensitive to the precise coefficients used. Table 9.3 shows the ratio at
the five-year horizon for various values of b60. For all values between 1 and
3, our model outperforms the random walk (albeit marginally so for some
values for some currencies).4

The robustness of our results to the precise value of the coefficient is not
surprising when we consider the mechanics of the forecasts. For example,
suppose the exchange rate is expected to appreciate by 5 percent over the
next year. If the correct value of b60 is 2.5, this implies an expected appre-
ciation of 12.5 percent over five years. If we instead use b60 = 2, we would
forecast a five-year appreciation of 10 percent, while using b60 = 3 would
yield a forecast of 15 percent. While these forecasts deviate from the "cor-
rect" one, they both predict substantial appreciation, in stark contrast to
the random walk forecast of no change. Thus, even with some imprecision
in the coefficient, our model captures the direction and approximate magni-
tude of the expected change, leading to superior performance compared to
the random walk model.

4We did not pick any coefficients smaller than 1 as our theory suggests the coefficient
should be larger than 1. We set 4 as the top of our range simply because the coefficient
cannot be too large.
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Table 9.3: Ratio of mean squared error to that of ran-
dom walk for five years exchange rate change forecasts
for various levels of b60, 2005-24

Coefficient b60

1 1.5 2 2.5 3 3.5 4

EUR 0.72 0.62 0.56 0.52 0.52 0.55 0.61
JPN 0.72 0.62 0.55 0.51 0.50 0.52 0.56
GBR 0.86 0.81 0.77 0.74 0.72 0.71 0.72
CAN 0.91 0.87 0.84 0.83 0.82 0.81 0.82
AUS 0.80 0.73 0.70 0.69 0.70 0.74 0.81
NZL 0.83 0.80 0.82 0.87 0.97 1.10 1.28
CHE 0.80 0.76 0.75 0.79 0.87 0.98 1.13
SWE 0.80 0.75 0.75 0.78 0.85 0.96 1.10
NOR 0.93 0.92 0.92 0.95 0.99 1.04 1.12
a Monthly data. .
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10 Conclusion

This paper introduces a hybrid model of exchange rate dynamics that rec-
onciles the seemingly contradictory behaviors of random walks and mean
reversion. By integrating a stochastic trend with a stationary component,
the model captures key features of exchange rate behavior, offering a uni-
fied explanation for both long-term unpredictability and medium-term pre-
dictability.

Our findings reveal that exchange rates can possess a unit root while
maintaining significant medium-term forecastability. This dual behavior
stems from the interaction between a slowly evolving stochastic trend and
a mean-reverting stationary component. The stochastic trend governs long-
term movements, reflecting persistent shocks and structural changes, while
the stationary component introduces cyclical dynamics, creating predictabil-
ity in medium-term horizons. Notably, the model predicts an inverted U-
shaped pattern of predictability, where forecast accuracy peaks at interme-
diate horizons, a result consistent with empirical observations.

This dual-component framework captures three key features of exchange
rate dynamics: expected exchange rate changes are not zero, they are highly
persistent, and there is a strong relationship between exchange rate levels
and expected future changes. Without a stationary component, expected
exchange rate changes would by definition be zero. Furthermore, if the
stochastic trend did not evolve slowly, the relationship between exchange
rate levels and expected changes would break down, and the cyclical compo-
nent—along with the persistence of expected exchange rate changes—would
diminish. These patterns underscore the necessity of incorporating both
components to fully capture exchange rate dynamics.

We implement these insights by extending the Bacchetta and van Win-
coop (2021) framework (which generates a stationary component of the ex-
change rate) with a stochastic trend. Our model generates an inverted U-
shaped pattern where forecast accuracy peaks at intermediate horizons and
predicts that multi-year exchange rate changes are increasing multiples of
one-year changes.

Empirical tests using data from nine inflation-targeting countries with
freely floating exchange rates confirm the model’s predictions. Furthermore,
the model’s outperformance of the random walk benchmark in out-of-sample
forecasts—particularly over multi-year horizons—challenges the conventional
wisdom of inherent exchange rate unpredictability.

By combining the strengths of random walk and mean-reversion models,
this framework offers a more nuanced understanding of exchange rate dynam-
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ics. It highlights the importance of medium-term horizons, where exchange
rates are most predictable, and provides actionable insights for policymakers
and investors. Future research could extend this framework to economies
with high inflation or unconventional monetary regimes, further enhancing
its applicability.

In sum, the hybrid model bridges long-standing debates in the literature,
demonstrating that exchange rates—while inherently stochastic in the long
run—can exhibit substantial predictability in the medium term. This dual-
component approach provides a robust foundation for both theoretical and
empirical advancements in the study of exchange rate behavior.

Future Research Directions

The hybrid framework developed in this paper, which combines a stochastic
trend with a stationary component, is likely applicable to other economic
variables characterized by persistent trends and cyclical fluctuations. A par-
ticularly compelling example is the unemployment rate, which exhibits a
long-term trend shaped by structural factors such as demographic changes,
technological advancements, and labor market policies, alongside short-term
cyclical dynamics driven by business cycles.

Future research could extend this framework to empirically distinguish
trend and cyclical components in real time, accommodate regime changes and
structural breaks, and develop multivariate models to capture interactions
across different variables and markets. By exploring these directions, the
hybrid model could serve as a unifying framework for understanding the
dynamic interplay of trends and cycles across economics.
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Part III

Annexes

A The Exchange Rate Level and Expected Exchange Rate
Changes

Consider the regression of the exchange rate st on the k-period lagged ex-
change rate, st−k:

st = a+ bkst−k + ξt (A.0.1)

We know that:

bk =
cov(st, st−k)

var(st)
(A.0.2)

Autocovariance

The autocovariance of st is:

γ(k) = cov(st, st−k) (A.0.3)

We can rewrite Equation (5.1.4) as:

cov(st, st−k) = (α+ β)cov(st−1, st−k)− αβcov(st−2, st−k) + cov(ϵ′t, st−k)
(A.0.4)

where ϵ′t =
(

ϵt
1−β

)
This can be rewritten as:

γ(k) = (α+ β)γ(k − 1)− αβγ(k − 2) (A.0.5)

This is a second-order homogeneous difference equation. The solution is:

γ(k) = Aαk +Bβk (A.0.6)

Deriviation of A and B

We have the following AR(2) process:

st = (α+ β)st−1 − αβst−2 + ϵ′t (A.0.7)
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This implies
γ(0) = (α+ β)γ(1)− αβγ(2) + σ2

ϵ (A.0.8)

γ(1) = (α+ β)γ(0)− αβγ(1) (A.0.9)

γ(2) = (α+ β)γ(1)− αβγ(0) (A.0.10)

Solving the system of equations we get:

γ(0) =

(
1 + αβ

1− αβ

)
σ2
e

(1 + αβ)2 − (α+ β)2
=

(
1 + αβ

1− αβ

)
σ2
ϵ′

(1− α2)(1− β2)
(A.0.11)

γ(1) =

(
α+ β

1 + αβ

)(
1 + αβ

1− αβ

)
σ2
ϵ′

(1− α2)(1− β2)
(A.0.12)

Recall from equation (A.0.5) that

γ(k) = (α+ β)γ(k − 1)− (αβ)γ(k − 2) (A.0.13)

It follows that:
γ(0) = A+B (A.0.14)

γ(1) = Aα+Bβ (A.0.15)

It follows that:

A =
ασ2

ϵ′

(1− α2) (α− β)(1− αβ)
(A.0.16)

B = −
βσ2

ϵ′

(α− β)(1− αβ) (1− β2)
(A.0.17)

Using A and B

Note that
bk =

γ(k)

γ(0)
(A.0.18)

It follows that:

bk =
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
(A.0.19)

Note that 0 < bk < 1 and bk+1 < bk. Moreover lim
k→∞

bk = 0.5

5First note that
α+ β

1 + αβ
< 1
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Equation (A.0.19) implies:

Et−kst − st−k = a+

(
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
− 1

)
st−k (A.0.20)

Equation (A.0.20) has two important implications:

• Expected exchange rate changes depend on exchange rate levels. The
more appreciated the exchange rate level, the larger the expected future
depreciation.

• The longer the lag (i.e., the higher k), the higher the coefficient. As
lim
k→∞

bk = 0, the coefficient of a regression of exchange rate changes on
past exchange rate levels should go to −1 as k increases.

This follows from

1 + αβ > α+ β → 1 + αβ − α− β > 0 → (1− α)(1− β) > 0

Assume that α > β. To see that bk > 0

bk =
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
>

β1+k
(
α2 − β2

)
(α− β)(1 + αβ)

=
β1+k (α+ β)

1 + αβ
> 0

To see that bk < 1

bk =
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
<

α1+k
(
α2 − β2

)
(α− β)(1 + αβ)

=
α1+k (α+ β)

1 + αβ
< 1

Finally, note that

bk =
α1+k

(
1− β2

)
− β1+k(1− α2)

(α− β)(1 + αβ)
<

βαk
(
1− β2

)
− ββk(1− α2)

(α− β)(1 + αβ)
= β

(
αk
(
1− β2

)
− βk(1− α2)

(α− β)(1 + αβ)

)
= βbk−1 < bk−1

The proof is almost identical when α < β.

46



B Regressing the Change in the Stationary Part on the Total
Change

The exchange rate St is composed of a stationary ARMA(p, q) component
Xt and a stochastic trend Zt. Hence,

St = Xt + Zt (B.0.1)

where Xt is a stationary ARMA(p, q) process:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q

(B.0.2)
with ϵt being white noise with mean zero and variance σ2

ϵ and Zt is a stochas-
tic trend, which can be represented as a random walk:

Zt = Zt−1 + ηt (B.0.3)

with ηt being white noise with mean zero and variance σ2
η. The change in

the exchange rate is:
∆St = ∆Xt +∆Zt (B.0.4)

To regress the change in the stationary component (∆Xt) on the change in
the exchange rate (∆St), we will calculate the regression coefficient b using:

b =
cov(∆Xt,∆St)

var(∆St)
(B.0.5)

First, let’s find cov(∆Xt,∆St):

∆St = ∆Xt +∆Zt (B.0.6)

cov(∆Xt,∆St) = cov(∆Xt,∆Xt +∆Zt) (B.0.7)

cov(∆Xt,∆St) = cov(∆Xt,∆Xt) + cov(∆Xt,∆Zt) (B.0.8)

Since ∆Xt and ∆Zt are uncorrelated (as ∆Xt is derived from the stationary
ARMA(p, q) process and ∆Zt from the stochastic trend, which are indepen-
dent),

cov(∆Xt,∆Zt) = 0 (B.0.9)

Therefore,
cov(∆Xt,∆St) = var(∆Xt) (B.0.10)
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Next, we need to calculate var(∆Xt) for the ARMA(p, q) process. Given the
ARMA(p, q) process:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q

(B.0.11)
The change in Xt is:

∆Xt = Xt −Xt−1 (B.0.12)

The variance of the ∆Xt is a constant times the variance of the white noise:

var(∆Xt) = γσ2
ϵ (B.0.13)

γ depends on the specific value of ϕi and θj .6 Next, we need var(∆St):

var(∆St) = var(∆Xt +∆Zt) (B.0.14)

var(∆St) = var(∆Xt) + var(∆Zt) (B.0.15)

Since ∆Xt and ∆Zt are uncorrelated:

var(∆Zt) = var(ηt) = σ2
η (B.0.16)

Thus:
var(∆St) = γσ2

ϵ + σ2
η (B.0.17)

Now, we can find the regression coefficient ( b ):

b =
cov(∆Xt,∆St)

var(∆St)
=

γσ2
ϵ

γσ2
ϵ + σ2

η

(B.0.18)

So, the regression coefficient ( b ) is:

b =
γσ2

ϵ

γσ2
ϵ + σ2

η

(B.0.19)

This regression coefficient b represents the proportion of the change in
the exchange rate that can be attributed to the change in its stationary
component. It ranges from 0 to 1, where values closer to 1 indicate that
changes in the exchange rate are predominantly driven by its stationary
component, while values closer to 0 suggest that changes are mainly due to
the stochastic trend.

6For example, for an AR(1) process xt = 0.98xt−1 + ϵt, var(∆xt)=1.0101σ2
ϵ , so γ =

1.0101.
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C Regressing Z(t+ h)− Z(t) on (ρ(h)− 1)Z(t)

Consider a stochastic ARMA(p,q) process Z(t) with autocorrelation func-
tion ρ(h). We aim to show that in the regression of Z(t + h) − Z(t) on
(ρ(h) − 1)Z(t), the regression coefficient is 1 and the R2 approaches 0.5 as
h increases.

C.1 Regression Coefficient

Let Y = Z(t+ h)−Z(t) and X = (ρ(h)− 1)Z(t). The regression coefficient
β is given by:

β =
Cov(X,Y )

Var(X)
(C.1.1)

We calculate Cov(X,Y ):

Cov(X,Y ) = Cov((ρ(h)− 1)Z(t), Z(t+ h)− Z(t)) (C.1.2)
= (ρ(h)− 1)Cov(Z(t), Z(t+ h))− (ρ(h)− 1)Var(Z(t)) (C.1.3)

= (ρ(h)− 1)ρ(h)σ2 − (ρ(h)− 1)σ2 (C.1.4)

= (ρ(h)− 1)2σ2 (C.1.5)

Next, we compute Var(X):

Var(X) = Var((ρ(h)− 1)Z(t)) (C.1.6)

= (ρ(h)− 1)2Var(Z(t)) (C.1.7)

= (ρ(h)− 1)2σ2 (C.1.8)

Therefore, the regression coefficient is:

β =
(ρ(h)− 1)2σ2

(ρ(h)− 1)2σ2
= 1 (C.1.9)

C.2 R2 Analysis

To analyze R2, we use the formula:

R2 =
(Cov(X,Y ))2

Var(X) · Var(Y )
(C.2.1)
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We’ve already calculated Cov(X,Y ) and Var(X). Now we compute
Var(Y ):

Var(Y ) = Var(Z(t+ h)− Z(t)) (C.2.2)
= Var(Z(t+ h)) + Var(Z(t))− 2Cov(Z(t+ h), Z(t)) (C.2.3)

= σ2 + σ2 − 2ρ(h)σ2 (C.2.4)

= 2(1− ρ(h))σ2 (C.2.5)

Substituting these into the R2 formula:

R2 =
((ρ(h)− 1)2σ2)2

(ρ(h)− 1)2σ2 · 2(1− ρ(h))σ2
(C.2.6)

=
(ρ(h)− 1)2σ2

2(1− ρ(h))σ2
(C.2.7)

=
(ρ(h)− 1)2

2(1− ρ(h))
(C.2.8)

=
(1− ρ(h))2

2(1− ρ(h))
(C.2.9)

=
(1− ρ(h))

2
(C.2.10)

As h increases, ρ(h) approaches 0 for stationary ARMA processes. Tak-
ing the limit:

lim
h→∞

R2 = lim
ρ(h)→0

(1− ρ(h))2

2(1− ρ(h))
=

12

2 · 1
= 0.5 (C.2.11)

This proves that R2 approaches 0.5 as h increases.
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