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I. Introduction 
Forecasting tail risk has been one of the essential topics for both academics and practitioners. In real-world 
implementation, forecasting tail risk often takes the form of predicting Value-at-Risk (VaR) that is a measure of 
the potential loss for a given probability. Among many, predicting VaR is used in financial risk management, 
trading risk regulations, and early warning system.1  

In this paper, we propose a new machine-learning-based approach for forecasting VaR named CoFiE-NN 
where a neural network (NN) is combined with Cornish-Fisher expansions (CoFiE).2 Two advantages of CoFiE-
NN are flexibility and interpretability. On one hand, the CoFiE-NN can represent nonlinear relationship between 
statistical moments because of the universal approximation nature of NNs and hence it is flexible to capture the 
nonlinear dynamics of moments. On the other hand, the CoFiE-NN explicitly links statistical moments with the 
percentile of distribution based on a well-known statical formula named Cornish-Fisher expansions and thus it 
is easy to interpret which moments impact VaR.  

Cornish-Fisher expansions has been studied in the literature of financial risk management. The previous 
studies include, but not limited to, Jaschke (2002), Christoffersen and Gonçalves (2005), Giamouridis (2006), 
Lönnbark (2016). To the best of our knowledge, this is the first study to combine the Cornish-Fisher expansions 
with a NN and conduct the empirical applications.  

Combining Cornish-Fisher expansions with a neural network has several advantages.3 First, the Cornish-Fisher 
expansions are relatively simple to implement in any computational language.4 Second, it allows us to examine 
the impact of skewness and kurtosis. For example, the formula shows that 99 percentile is larger than 2.33, 
which is the number based on the standard normal distribution, if the excess kurtosis is positive due to fat-tail 
feature. Third, and most important, it helps us predict VaR even with relatively small amounts of data. This 
feature is advantageous especially when we are interested in foreign exchange rates in developing countries or 
emerging markets where it is difficult to obtain sufficiently long historical data or the FX policy regime has 
changed recently.  

In our empirical analyses, we test the performance of CoFiE-NN with two types of neural network models: 
Feed-Forward Neural Network (FFNN) and Long Short-Term Memory (LSTM). FFNN is the simplest NN. We 
are interested in whether CoFiE-NN outperforms conventional models even when the NN component is 
specified as a simple FFNN. LSTM is more sophisticated than FFNN. LSTM has been successfully used in time 
series modeling because it captures both short-term and long-term relationship between inputs and outputs. 
Our main specification is LSTM.  

We compare the performance of VaR forecasting based on CoFiE-NN with three conventional models using 
both Monte Carlo simulated data and real data. The three conventional models are EGARCH-t model, CAViaR 
model, and Extreme Value Theory (EVT) model with the generalized Pareto distribution (GPD). We use these 
three models as benchmarks, following the previous studies such as Wu and Yan (2019). Testing with the 

    
1 Jorion (2006) discusses the use of VaR from the view of financial risk management and trading risk regulations.  
2 This asymptotic expansion was first derived by Cornish and Fisher (1938). 
3 Amédée-Manesme et al. (2019) point out that the fourth advantage is no assumption about the time horizon.  
4 For expository simplicity, we consider the Cornish-Fisher expansion up to the fourth order. 
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simulated data helps us cleanly investigate under what conditions CoFiE-NN beats the conventional models, 
while testing with real data is more directly relevant to practitioners’ interest.    

To conduct rigorous statistical analyses, we employ Kupiec (1995) test, Christoffersen (1998) test, and Lopez 
(1999) quadratic loss function. Kupiec (!995) test allows us to test whether breaches of VaR forecast are too 
many or too less. Christoffersen (1998) test allows us to analyze whether VaR breaches are independent or 
autocorrelated. Specifically, we conduct a joint test of Kupiec (1995) and Christoffersen (1998). Lopez (1999) 
quadratic loss function allows us to measure the magnitude of VaR breaches.    

For the simulated data, we report that the CoFiE-NN with LSTM tends to outperform the EGARCH-t model 
when the sample period is relatively short. This is surprising because the simulated data is generated from the 
extended EGARCH-t model with stochastic parameters but resembling enough to the conventional EGHARCH-
t model. By contrast, the CoFiE-NN underperforms CAViaR in terms of Kupiec (1995) and the joint test but 
outperform it in Lopez (1999) loss function under all settings of the training data size.  

We then apply the CoFiE-NN for 30 assets across different asset classes, with a special emphasis on foreign 
exchange markets where high-order moments could be a key in forecasting VaR. We set up four sample 
periods to examine the out-of-sample forecasting performance in different market environments: Pre-Global-
Financial-Crisis (Pre-GFC), Global-Financial-Crisis (GFC), Pre-COVID-19-Crisis (Pre-Covid), COVID-19-Crisis 
(Covid) periods. We consider that studying the performance of CoFiE-NN in both normal and crisis periods is 
important because there is a concern that Machine Learning (ML) approach performs poorly in the stressed 
market environment.  

We find that the CoFiE-NN tends to show the better performance relative to the EGARCH-t model and the EVT 
in the real data in several statistical criteria. Specifically, CoFiE-NN with LSTM outperforms the EGARCH-t in 
terms of Kupiec (1995) test and the joint under the all four different sample periods except one case although it 
underperforms the EGARCH-t in terms of Lopez (1999) quadratic loss function. By contrast, CoFiE-NN 
underperforms CAViaR in all criteria under the four sample periods in general. Finally, we report that CoFiE-NN 
outperforms the EVT in all criteria for all four different sample periods except one case. 

Finally, we discuss how the forecast of VaR under CoFiE-NN can be used to monitor tail risk. We introduce an 
empirical measure named tail risk ratio that is volatility-scaled VaR. The tail risk ratio allows us to make cross-
country analysis easy because we can compare large VaR of high-volatility currency and small VaR of low-
volatility currency using the tail risk ratio in a consistent way. We construct the tail risk ratios for 22 currencies 
during 2019/8-2023/7 period. We then conduct principal component analysis (PCA) to extract common factors 
in a similar manner to Longstaff et al. (2011).5  

We discover that the only 20 percent of tail risk dynamics across 22 currencies is explained by one common 
factor. This is contrasting to the fact that 60 percent of volatility dynamics across the same set of currencies is 
explained by one common factor. We also look at coefficients of the top three PCA factors for both tail risk 
ratios and volatilities. The results indicate that: (i) the first PCA factor is a global factor for both the tail risk 
ratios and volatilities; (ii) the second PCA factor of the tail risk ratios is related to Chinese Yuan while the 
second PCA factor of volatilities is associated with Latin American countries; and (iii) the third PCA factors of 

    
5 Longstaff et al. (2011) conduct PCA of the changes in sovereign Credit Default Swap (CDS) spreads for 26 countries and find that 
most of the sovereign credit risk can be linked to global factors. 
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both tail risk ratios and volatilities are difficult to interpret but they are related to Eastern European countries 
although the third PCA factor of tail risk ratios is also related to Asian countries. 

We also briefly discuss the implications of the tail risk ratio for portfolio optimization problems. We show that 
the tail risk ratio naturally arises in the context of optimal asset allocation under a VaR constraint. 

Our primary focus in this paper is forecasting tail risks for the FX markets, but we emphasize that CoFiE-NN is 
applicable to various contexts where conventional models have been employed for forecasting VaR. The most 
relevant application is a FX intervention strategy based on VaR proposed by Lafarguette and Veyrune (2021). 
They employ VaR to define the non-intervention range of FX spot rate return. If the return goes above (below) 
the upper (lower) bound, a central bank has an option to intervene. They explain that the VaR-based FX 
intervention rule provides a hedge against tail risk to the market participants while it allows the exchange rate 
smoothly adjusting its new level.  

In addition to the rule-based FX intervention strategy, we can apply VaR forecasting with CoFiE-NN for other 
purposes such as financial risk management and early warning system. Jorion (2006) describes how VaR is 
used for financial risk management. De Nicolò and Lucchetta (2017) employ VaR of macroeconomic variables 
and financial indicators as early warning system.  

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3 explains the CoFiE-NN 
framework. Section 4 explains the data set. Section 5 reports our main results. Section 6 discusses an 
empirical application of the tail risk ratio under CoFiE-NN. Section 7 concludes.   

II. Literature 
This study contributes to three strands of the literature. 

The first strand of the literature is application of machine learning for forecasting VaR. The literature on ML-
based VaR forecasting is scarce. We find four relevant papers. Taylor (2000) is an early study that integrates a 
quantile regression with a feed-forward neural network with a single hidden layer. Similarly, Buczynski and 
Chlebus (2023) combine GARCH model with a neural network while Chronopoulos et al. (2023) integrates 
quantile regression with a neural network for forecasting VaR. Wu and Yan (2019) develop a conditional 
quantile model which is more closely related to our CoFiE-NN approach than Buczynski and Chlebus (2023) 
and Chronopoulos et al. (2023). They combine LSTM with a new heavy-tailed quantile function which has four 
inputs: mean, volatility, up-tail-controlling and down-tail-controlling parameters. They set up LSTM to generate 
these four parameters over time. Our work is different from these studies in that we develop a framework for 
forecasting value-at-risk by combining a modern ML approach with Cornish-Fisher expansions established in 
statistics. As we discuss below, the CoFiE-NN framework performs well even with relatively small size of data 
because Cornish-Fisher expansions reduce the problem of forecasting VaR to the problem of forecasting 
moments. Also, the CoFiE-NN framework allows us to forecast Expected Shortfall (ES) without additional 
calibration, although forecasting ES is not our focus in this paper.      

The second strand of the literature is application of machine learning for forecasting VaR. There have been 
several recent studies on forecasting volatilities which is the second-order moment, including but not limited to 
Zhang et al. (2023), Zhu et al. (2023), and Niu et al. (2023). Zhang et al. (2023) employes LSTM for equity 
volatility forecasting. Zhu et al. (2023) employ deep NN for S&P 500 firms’ equity volatility forecasting. Niu et al. 
(2023) employ different ML approaches such as Convolutional Neural Network (CNN), Random Forest, 
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Support Vector Machine, for equity volatility forecasting Our paper is different from these studies because the 
CoFiE-NN is mainly designed to forecast VaR.  

The third strand of the literature is the application of machine learning for foreign exchange markets. Amat et al. 
(2018) employ ridge regressions for forecasting the level of the exchange rates for 12 major industrial 
economies. They find that the machine learning approach outperforms OLS regressions when forecasting 
exchange rates at one month horizon. Rojas and Herman (2018) employ several machine learning techniques 
including a simple feed forward neural networks, but not including LSTM. They analyze the Mexican peso 
against the US dollar and find that Support Vector Machine shows the best performance. Taylor (2000) 
develops a quantile regression with a single-hidden-layer feed-forward neural network for forecasting VaR of  
exchange rates. Unlike the previous studies, our focus is forecasting the tail risk of the foreign exchange 
markets with LSTM which is a recently developed neural network model. 

III. CoFiE-NN Framework 
For expository simplicity, we explain the CoFiE-NN framework using the Cornish-Fisher expansions up to the 
fourth order. It means that mean, volatility, skewness, and kurtosis show up in the expansion. We can apply the 
same framework up to any high order of cumulants.  

Let us denote time series of log return of the foreign exchange rate with 𝑟𝑟𝑡𝑡. We first compute statistical 
cumulants of the log return from the 1st order to 4-th order Κ𝑡𝑡 = �𝜅𝜅1,𝑡𝑡 ,𝜅𝜅2,𝑡𝑡, 𝜅𝜅3,𝑡𝑡 ,𝜅𝜅4,𝑡𝑡�.  Note that skewness is  𝜅𝜅3

𝜅𝜅2
1.5 

and excess kurtosis is 𝜅𝜅4
𝜅𝜅22

. We then estimate a neural network specified as       

                                                                                    Κ𝑡𝑡+1 = 𝑓𝑓(Κ𝑡𝑡,Κ𝑡𝑡−1, . .Κ𝑡𝑡−𝑠𝑠,𝑍𝑍𝑡𝑡)                                                                             (1) 

Where 𝑓𝑓 is the neural network to model the dynamics of moments or equivalently, cumulants. 𝑍𝑍𝑡𝑡 is a vector of 
exogenous variables. In our empirical applications, we employ LSTM as our main specification. Κ𝑡𝑡−𝑠𝑠 is a vector 
of the cumulants at time 𝑡𝑡 − 𝑠𝑠. 

The building blocks of the CoFiE-NN is outlined as follows:  

1.   Compute the mean, variance, skewness, and kurtosis using the historical data of the asset prices. For 
example, one can compute 10-day mean, variance, skewness, and kurtosis.  

2.   Train the neural network using the historical data of the cumulants defined as training data.  

3.   Forecast the cumulants with the neural network. 

4.   Compute VaR based on Cornish-Fisher expansion using the forecast of the cumulants.   

Cornish-Fisher expansion is represented as  

                                                                           𝑅𝑅𝛼𝛼,𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑤𝑤𝛼𝛼,𝑡𝑡                                                                      (2) 

                     𝑤𝑤𝛼𝛼,𝑡𝑡 = 𝑥𝑥𝛼𝛼 + 𝜅𝜅3,𝑡𝑡
𝜅𝜅2,𝑡𝑡
1.5 ⋅

1
6
𝐻𝐻2(𝑥𝑥𝛼𝛼) + 𝜅𝜅4,𝑡𝑡

𝜅𝜅2,𝑡𝑡
2 ⋅ 1

24
𝐻𝐻3(𝑥𝑥𝛼𝛼) − �𝜅𝜅3,𝑡𝑡

𝜅𝜅2,𝑡𝑡
1.5�

2
⋅ 1
36

(2𝐻𝐻3(𝑥𝑥𝛼𝛼) + 𝐻𝐻1(𝑥𝑥𝛼𝛼)) + ⋯                              (3) 
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Where 𝑅𝑅𝛼𝛼,𝑡𝑡 is the alpha-percentile of VaR. 𝜇𝜇𝑡𝑡 is the mean of log return. 𝜎𝜎𝑡𝑡 is the volatility. 𝑥𝑥𝛼𝛼 is the alpha-
percentile of the standard normal distribution.  𝐻𝐻𝑛𝑛(𝑥𝑥) is 𝑛𝑛-th order Hermite polynomials.6 𝑤𝑤𝛼𝛼,𝑡𝑡 is the alpha-
percentile of the distribution which volatility is standardized to one. We discuss the implications of 𝑤𝑤𝛼𝛼,𝑡𝑡 with 
more details in Section 6. In our simulation analyses and empirical applications below, we set the alpha equal 
to 97.5 percentile.  

It is noteworthy that if skewness and kurtosis are zero, the approximation leads to 𝑤𝑤𝛼𝛼,𝑡𝑡 = 𝑥𝑥𝛼𝛼 which means that 
the VaR is the same as the one under the assumption of normal distribution, 𝑅𝑅𝛼𝛼,𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑥𝑥𝛼𝛼,𝑡𝑡. 

In our empirical applications, we set a vector of exogenous variables 𝑍𝑍𝑡𝑡 = (𝑟𝑟𝑡𝑡 , 𝑟𝑟𝑡𝑡2) to capture the relationship 
between the contemporary return and future moments. For example, the impact of the contemporary return of 
volatility known as “leverage effect” in the literature on equity volatility can be captured by including log return to 
a list of exogenous variables. We also include the squared contemporary return based on an analogy of 
GARCH (1,1) model.7  

Figure 1 shows the overview of the CoFiE-NN framework.  

We make a few comments on potential extensions of CoFiE-NN framework. The first extension is Expected 
Shortfall (ES).8 Our primary focus is predicting VaR but the CoFiE-NN framework can also predict ES without 
re-estimating parameters. To predict ES, we use the expansion proposed by Giamouridis (2006) which is 
analogous to Cornish-Fisher expansions. Following Giamouridis (2006), the alpha-percentile ES is given by   

                                                                           𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑒𝑒𝛼𝛼,𝑡𝑡                                                                     (4) 

                                           𝑒𝑒𝛼𝛼,𝑡𝑡 = 𝜙𝜙�𝑤𝑤𝛼𝛼,𝑡𝑡�
𝛼𝛼

�1 + 𝜅𝜅3
𝜅𝜅2
1.5 ⋅

1
6
𝑤𝑤𝛼𝛼,𝑡𝑡
3 + 𝜅𝜅4

𝜅𝜅22
⋅ 1
24
�𝑤𝑤𝛼𝛼,𝑡𝑡

4 − 2𝑤𝑤𝛼𝛼,𝑡𝑡
2 − 1��                                            (5) 

where 𝜙𝜙(𝑥𝑥) is the density function of the standard normal distribution.  

The second extension is multivariate case. As discussed in Lamb et al. (2019), there are two approaches. To 
illustrate these approaches, let us consider a portfolio with N number of risky assets. We denote the portfolio 
return with 𝑟𝑟𝑡𝑡

𝑝𝑝. 

                                                                              𝑟𝑟𝑡𝑡
𝑝𝑝 = ∑ 𝜔𝜔𝑖𝑖𝑟𝑟𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 ,                                                                      (6) 

where 𝑟𝑟𝑖𝑖 and 𝜔𝜔𝑖𝑖 are the return and the weight for the i-th asset, respectively. When estimating the VaR of this 
portfolio, one approach is to compute the cumulants of the portfolio return directly by constructing the time 
series of the portfolio return. Another approach is to compute the cumulants of the portfolio return by using 
those of the constituent asset returns 𝑟𝑟𝑖𝑖,𝑡𝑡. For example, the mean and the variance of the portfolio return are 
computed by using the following relationships. 

                                                                         𝐸𝐸[𝑟𝑟𝑡𝑡
𝑝𝑝] = ∑ 𝜔𝜔𝑖𝑖𝐸𝐸�𝑟𝑟𝑖𝑖,𝑡𝑡�𝑁𝑁

𝑖𝑖=1 ,                                                                 (7) 

    
6 For example, 𝐻𝐻1(𝑥𝑥) = 𝑥𝑥, 𝐻𝐻2(𝑥𝑥) = 𝑥𝑥2 − 1, and 𝐻𝐻3(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥. 
7 We confirm that the CoFiE-NN with LSTM outperforms conventional models in general even when 𝑍𝑍𝑡𝑡 = 𝑟𝑟𝑡𝑡.    
8 Yamai and Yoshiba (2005) compare advantages and disadvantages of VaR and ES from a practical perspective.  
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                                                    𝑉𝑉𝑉𝑉𝑟𝑟[𝑟𝑟𝑡𝑡
𝑝𝑝] = ∑ 𝜔𝜔𝑖𝑖

2𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟𝑖𝑖,𝑡𝑡�𝑁𝑁
𝑖𝑖=1 + ∑ 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟𝑖𝑖,𝑡𝑡 , 𝑟𝑟𝑗𝑗,𝑡𝑡�𝑖𝑖≠𝑗𝑗, ,                                         (8) 

We can compute the skewness and the kurtosis in a similar manner. Under the CoFiE-NN framework, we first 
predict the cumulants of the returns for each asset and cross terms such as covariance, co-skewness, and co-
kurtosis. We then compute the cumulants of the portfolio return using the cumulants of the constituent asset 
returns.  

Compared to the first approach, the advantage of the second approach is that there is no need to re-calibrate 
the parameters of the neural network even when the weights are changed. The disadvantage of the second 
approach is that the number of the cumulants that need to be predicted increases quickly when the number of 
the assets increases.    

The third extension is forecasting VaR beyond t+1. Let us consider that we forecast VaR at time 𝑡𝑡 + 𝑢𝑢. To do 
so, we iteratively compute the pre-estimated nonlinear equation below.   

                                              Κ𝑡𝑡+1+𝑞𝑞 = 𝑓𝑓�Κ𝑡𝑡+𝑞𝑞,Κ𝑡𝑡+𝑞𝑞−1, . .Κ𝑡𝑡+𝑞𝑞−𝑠𝑠,𝑍𝑍𝑡𝑡�  for  𝑞𝑞 = 0,1,⋯𝑢𝑢 − 1.                                   (9)                                       

Once we obtain Κ𝑡𝑡+𝑢𝑢, we apply the Cornish-Fisher expansions for calculating VaR at time 𝑡𝑡 + 𝑢𝑢. 

A. FFNN 
Our main neural network model is LTSM but it is natural to ask whether a simple neural network can beat 
conventional models in forecasting VaR. To do so, we employ a Feed-Forward Neural Network (FFNN) as 
another neural network. FFNN consists of several components: an input layer, hidden layers, and output layers. 
Suppose that the number of hidden layers is 𝐿𝐿 and 𝑥𝑥𝑡𝑡 is a vector of the cumulants at time 𝑡𝑡. 

                                                                           𝑧𝑧1,𝑡𝑡 = 𝑓𝑓(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑏𝑏0)                                                                 (10) 

                                                                        𝑧𝑧𝑙𝑙+1,𝑡𝑡 = 𝑓𝑓�𝑊𝑊𝑙𝑙𝑧𝑧𝑙𝑙,𝑡𝑡 + 𝑏𝑏𝑙𝑙�   for  𝑙𝑙 = 1, … , 𝐿𝐿                                       (11) 

                                                                         𝑥𝑥𝑡𝑡+1 = 𝑓𝑓�𝑊𝑊𝐿𝐿+1𝑧𝑧𝐿𝐿+1,𝑡𝑡 + 𝑏𝑏𝐿𝐿+1�                                                     (12) 

where 𝑓𝑓 is the activation function. 𝑊𝑊𝑙𝑙 is the weight matrix and 𝑏𝑏𝑙𝑙 is the bias vector. In our empirical applications, 
we employ a sigmoid function as the activation function and the number of hidden layers equal to 5 as we find 
that 𝐿𝐿 = 5 provides the best performance on average. The number of units in hidden layers are the same as 
the dimension of the inputs. We calibrate parameters to minimize the loss function based on backpropagation 
algorithm. The loss function is defined as the sum of the squared errors.  

B. LSTM 
We employ LSTM as our main neural network model because it has been successfully applied for time series 
modeling. LSTM is specified as 

                                                                  𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑔𝑔�𝑊𝑊𝑓𝑓𝑢𝑢𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�,                                                           (13) 

                                                                  𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑖𝑖𝑢𝑢𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖),                                                             (14) 

                                                                  𝐶𝐶𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑜𝑜𝑢𝑢𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜),                                                           (15) 



IMF WORKING PAPERS Forecasting Tail Risk via Neural Networks with Asymptotic Expansions 

 

INTERNATIONAL MONETARY FUND 10 

 

                                                                  𝑐𝑐𝑡𝑡� = 𝜎𝜎𝑐𝑐(𝑊𝑊𝑐𝑐𝑢𝑢𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐),                                                            (16) 

                                                                  𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀𝑐𝑐𝑡𝑡� ,                                                                       (17) 

                                                                  ℎ𝑡𝑡 = 𝐶𝐶𝑡𝑡⨀𝜎𝜎ℎ(𝑐𝑐𝑡𝑡),                                                                                (18) 

                                                                  𝑦𝑦𝑡𝑡 = 𝜎𝜎ℎ�𝑊𝑊𝑦𝑦ℎ𝑗𝑗 + 𝑏𝑏𝑦𝑦�,                                                                         (19) 
         

 

where 𝑢𝑢𝑡𝑡 is the input vector, 𝑓𝑓𝑡𝑡 is the activation vector of forget gate. 𝑖𝑖𝑡𝑡 is the activation vector of update gate. 𝐶𝐶𝑡𝑡 
is the activation vector of the output gate.  𝑐𝑐𝑡𝑡�   is the activation vector of the cell input. 𝑐𝑐𝑡𝑡 is the cell state vector. 
ℎ𝑡𝑡 is the hidden state vector. 𝑦𝑦𝑡𝑡 is the output vector For more details, please refer to Hochreiter and 
Schmidhuber (1997).  

C. Calibration 

LSTM is implemented using machine learning package in Matlab. Table 1 shows the setting of calibrations of 
LSTM. As a preliminary analysis, we have tested LSTM under several different settings. We discovered that a 
small-scale LSTM is sufficient for our empirical applications. We also found that a key hyperparameter is the 
number of hidden units. If it is set to a large number (e.g., 250), the out-of-sample performance tends to be 
poor.   

D. Ensuring Monotonicity 

One well-known problem of Cornish-Fisher expansions is the possibility of non-monotonicity. It does not ensure 
that the VaR is a monotonously increasing function of the percentile. The previous studies have proposed 
several solutions for recovering monotonicity.  

Maillard (2012) analyzes under which conditions the monotonicity is ensured. Notice that the VaR is a cubic 
function of the percentile where coefficients are functions of volatility, skewness, and kurtosis if we truncate the 
Cornish-Fisher expansions up to the fourth order. Maillard (2012) obtains theoretical conditions that ensure the 
monotonicity of the cubic function. The condition is obtained by deriving the first order derivative of the cubic 
function and explicitly solving when the first-order derivative is always positive. The condition is represented as 
two inequalities. 

                                                              |𝑠𝑠𝑡𝑡| < √2 − 1,                                                                                (20) 

                                                 9𝑘𝑘𝑡𝑡2 − (3 + 33𝑠𝑠2)𝑘𝑘 + 30𝑠𝑠4 + 7𝑠𝑠2 ≤ 0,                                                         (21) 

where 𝑠𝑠𝑡𝑡 =  𝐸𝐸𝑡𝑡  /6  and 𝑘𝑘𝑡𝑡 = 𝐾𝐾𝑡𝑡/24 where 𝐸𝐸𝑡𝑡  and 𝐾𝐾𝑡𝑡  are skewness and excess kurtosis, respectively.   

We apply these inequalities to skewness and kurtosis before computing VaR using the Cornish-Fisher 
expansions. If combination of skewness and kurtosis is outside of the region specified by the inequalities, we 
adjust skewness and kurtosis to be inside of the region by changing a vector of skewness and kurtosis to the 
closest one within in the region.  
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Chernozhukov et al. (2016) apply a rearrangement method which is used in the mathematical research areas 
of functional analysis and optimal transportation. Different from the solution of Maillard (2012), the 
rearrangement method changes the shape of entire distribution and applicable to Cornish-Fisher expansions 
with any order of moments.    

We employ Maillard (2012)’s solution as our main solution for non-monotonicity issue because of intuitiveness 
and computational tractableness. 

E. EGARCH-t Model 

We compare the performance of CoFiE-NN with three conventional models. The first conventional model is 
EGARCH-t model for volatility 𝜎𝜎𝑡𝑡. We employ the EGARCH-t model as a benchmark model for three reasons.9 
First, there is no parameter restriction in the EGARCH model unlike the original GARCH model. Hence, it is 
easy to estimate the EGARCH model for large number of assets without failure of estimating the model 
parameters. Second, it can capture both fat-tail nature of conditional distribution which is important for 
emerging markets’ FX as well as volatility clustering. Third, the EGARCH-t model is used as a benchmark 
model in the previous studies of ML-based VaR forecasting such as Wu and Yan (2019). 

The EGARCH-t model is represented as  

                                                                                       𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 ⋅ �
𝜈𝜈−2
𝜈𝜈 
𝜖𝜖𝑡𝑡                                                                                (22) 

                                   log 𝜎𝜎𝑡𝑡2 − log𝜎𝜎�2 = 𝜌𝜌(log𝜎𝜎𝑡𝑡−12 − log 𝜎𝜎�2) + 𝛽𝛽(|𝜖𝜖𝑡𝑡−1| − 𝐸𝐸[|𝜖𝜖𝑡𝑡−1|]) + 𝛾𝛾 𝜖𝜖𝑡𝑡−1               (23) 

Where the log return of the exchange rate with 𝑟𝑟𝑡𝑡. 𝜌𝜌 is the auto-coefficient, and 𝜎𝜎� is the mean-reverting level of 
the volatility and 𝜈𝜈 is volatility of volatility. 𝛾𝛾 is the parameter to capture the feedback effect. 𝜖𝜖𝑡𝑡 is sampled from 
Student t distribution with degree of freedom 𝜈𝜈. The EGARCH-t model is estimated based on the maximum 
likelihood estimation. 

F. CAViaR 

The second conventional model is Conditional Autoregressive Value at Risk (CAViaR) model proposed by 
Engle and Manganelli (2004). CAViaR model is a conditional autoregressive specification for VaR. CAViaR is 
represented as  

                          𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼������� = 𝜌𝜌�𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡−1 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼�������� + 𝛽𝛽 �𝛼𝛼 − 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 �𝑟𝑟𝑡𝑡−1,𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡−1��,                   (24) 

                         𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 �𝑟𝑟𝑡𝑡−1,𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡−1� = �1 + exp�𝐺𝐺(𝑟𝑟𝑡𝑡−1 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡−1)��−1                                          (25) 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼������� is the mean-reverting level of 𝛼𝛼-percentile VaR. The autoregressive coefficient is 𝜌𝜌.  𝛽𝛽 is the 
volatility of VaR. 𝐺𝐺 is the speed of the adjustment to the breach of VaR. If 𝐺𝐺 is very large, then 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 is 

    
9 There have been academic studies on modeling FX volatility using GARCH-type models. For example, Abdullah et al. (2017) find 
that GARCH-t model works best for Bangladesh Taka against the US Dollar. Theodossiou (1994) employ EGARCH-M model for 
modeling Canadian Dollar.     
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reduced to an indicator function where it takes zero if the return is larger than the VaR and otherwise it is equal 
to one. The intuition is that if the return exceeds the VaR today, the next day VaR is increased.  

Parameters of the CAViaR model is estimated based on minimizing the following objective function. 

                                                       min
𝐺𝐺,𝜌𝜌,𝛽𝛽

1
𝑇𝑇
∑ �𝐼𝐼�𝑟𝑟𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡� − 𝛼𝛼 �[𝑟𝑟𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡]𝑇𝑇
𝑡𝑡=1 .                                                (26) 

Note that the CAViaR model is designed to predict the VaR with pre-determined percentile and does not predict 
volatility or other statistical moments. By contrast, CoFiE-NN is designed to predict the distribution.   

G. EVT  

The third conventional model is the Extreme Value Theory (EVT). We adopt a generalized Pareto distribution 
(GDP) to model extremely large shocks which exceed a pre-determined threshold. Following McNeil and Frey 
(2000), we combine EVT with a GARCH-type model. Specifically, we use it as a part of the distribution of the 
shock term in the EGARCH model as described as follows. 

𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 ⋅ 𝜖𝜖𝑡𝑡, 

                              𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶(𝜖𝜖t) = �
1 − 𝑁𝑁𝑢𝑢

𝑁𝑁
�1 − 𝐹𝐹𝐺𝐺𝐺𝐺𝐶𝐶(𝜖𝜖𝑡𝑡, 𝛾𝛾𝑢𝑢 ,𝜃𝜃𝑢𝑢 ,𝛽𝛽𝑢𝑢)�,    𝑖𝑖𝑓𝑓 𝜖𝜖𝑡𝑡 > 𝜃𝜃𝑢𝑢 ,

Φ(𝜖𝜖𝑡𝑡),    𝑖𝑖𝑓𝑓 𝜃𝜃𝑑𝑑 ≤  𝜖𝜖𝑡𝑡 ≤ 𝜃𝜃𝑢𝑢 ,
𝑁𝑁𝑑𝑑
𝑁𝑁
�1 − 𝐹𝐹𝐺𝐺𝐺𝐺𝐶𝐶(−𝜖𝜖𝑡𝑡 , 𝛾𝛾𝑑𝑑 ,𝜃𝜃𝑑𝑑 ,𝛽𝛽𝑑𝑑)�,    𝑖𝑖𝑓𝑓 𝜖𝜖𝑡𝑡 < 𝜃𝜃𝑑𝑑 ,

                                        (27) 

where 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 is the cumulative distribution function of 𝜖𝜖𝑡𝑡. Φ is the cumulative distribution function of the standard 

normal distribution. 𝜃𝜃𝑢𝑢 and 𝜃𝜃𝑑𝑑 are pre-determined threshold levels. 𝑁𝑁𝑢𝑢 and 𝑁𝑁𝑑𝑑 are the number of samples which 

are in the corresponding region. 

 𝐹𝐹𝐺𝐺𝐺𝐺𝐶𝐶(𝛾𝛾,𝛽𝛽) is the cumulative distribution function of the generalized Pareto distribution with shape parameter 𝛾𝛾 

and scale parameter 𝛽𝛽 and the shift parameter 𝜃𝜃, which is represented as  

                                                               𝐹𝐹𝐺𝐺𝐺𝐺𝐶𝐶  (𝜖𝜖, 𝛾𝛾,𝜃𝜃,𝛽𝛽) = 1 − �1 + 𝛾𝛾 𝜖𝜖−𝜃𝜃
𝛽𝛽
�
−1/𝛾𝛾

.                                                 (28)                                   

The volatility 𝜎𝜎𝑡𝑡 is modeled as the EGARCH process. In our empirical application below, we assume that 𝜃𝜃𝑢𝑢 =

Φ(0.05) and 𝜃𝜃𝑑𝑑 = 𝜙𝜙(0) = −∞ because our main interest is large positive shocks which mean large depreciation 

of the domestic currency against USD in the case of FX returns.   

IV. Data 
We apply our machine-learning-based VaR forecasting model for time series of 30 assets across four major 
asset classes (FX, commodity, interest rates, and equity). Specifically, we obtain historical data of  
20 currencies (EUR, JPY, CNY, KRW, GBP, MXN, INR, CAD, BRL, AUD, CHF, THB, MYR, ZAR, TWD, SGD, 
NOK, SEK, NZD, DKK) and two stock indices (NASDAQ 100 and Nikkei 225) and three commodities (WTI oil 
price, Brent oil price, Henry Hub natural gas) and two interest rates (two-year and five-year yields of the US 
Treasury) from the website of the Federal Reserve Economic Data (FRED). Regarding the remaining three 
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currencies, we download the historical data of Hungarian Forint (HUF) and Polish Zloty (PLN) and Czech 
Koruna (CZK) against Euro from the website of ECB and convert them into the prices against the US dollar.   

Regarding our empirical study, we study the performance of CoFiE-NN under four different settings of sample 
period. For each sample period, we set up training period and test period. Time frequency is daily. Specifically, 
the four sample period settings are as follows:  

(1) Pre-Global-Financial-Crisis period (Pre-GFC) in which training data is from 2004/7/2 to 2005/6/30 and test 
data is from 2005/7/1 to 2007/6/29.  

(2) Global-Financial-Crisis period (GFC) in which training data is from 2003/7/1 to 2007/6/29 and test data is 
from 2007/7/2 to 2009/12/31.  

(3) pre-COVID-19 Crisis period (Pre-COVID) in which training data is from 2015/1/6 to 2015/12/31 and test 
data is from 2016//1/4 to 2019/12/31.  

(4) COVID-19 Crisis period (COVID) in which training data is from 2018/3/1 to 2020/2/28 and test data is from 
2020/3/2 to 2023/7/27.  

We construct these four settings for two reasons. First, it is important to study the performance of models under 
both normal period and crisis period, especially given the concern that machine learning approach might overfit 
to data and thus vulnerable to stressed market environment. Second, there might be structural changes in 
market dynamics after the 2008–2009 global financial crisis and/or the COVID-19 crisis. Hence, it is useful to 
analyze the performance of VaR forecasting models both before and after these crises.  

Table 2 shows descriptive statistics for 30 assets across different asset classes. We make two observations. 
First, the three commodities show extremely large kurtosis but several currencies such as Swiss Franc and 
Korean Won also show large kurtosis. Another observation is skewness. Some currencies such as Swiss Franc 
shows negative skewness, which means large appreciation with small probability while other currencies such 
as Mexican Peso show positive skewness, which means large depreciation with small probability. These 
observations indicate that foreign exchange rate changes cannot be generated from normal distributions. 
Hence, we need to use distributions which capture the asymmetry and the fat-tail behavior.  

A. Testing VaR Forecasting Performance 

The statistical test of Kupiec (1995) for VaR forecasting performance is based on the likelihood ratio test and 
defined as 

                                                                     𝐿𝐿𝑅𝑅𝑢𝑢𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑 = 2 log ��1−𝛼𝛼�
1−𝛼𝛼

�
𝑇𝑇−𝐼𝐼(𝛼𝛼)

�𝛼𝛼�
𝛼𝛼
�
𝐼𝐼(𝛼𝛼)

� ,                                           (29)    

                                                                                𝛼𝛼� = 1
𝑇𝑇
𝐼𝐼(𝛼𝛼),                                                                          (30) 

                                                                            𝐼𝐼(𝛼𝛼) = ∑ 𝐼𝐼𝑡𝑡(𝛼𝛼)𝑇𝑇
𝑡𝑡 ,                                                                      (31) 

where 𝐼𝐼𝑡𝑡(𝛼𝛼) is the indicator function when the breach occurs at time t. The distribution of the likelihood ratio 
under the null hypothesis is chi squared distribution with 1 degree of freedom. This test is referred to as the 
Kupiec (1995)’s unconditional coverage test. Following Campbell (2005), if we apply an approximation based 
on normal distribution, the Kupiec (1995) test statistic is given by 
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                                                                                 𝑧𝑧 = √𝑇𝑇(𝛼𝛼�−𝛼𝛼)
�𝛼𝛼(1−𝛼𝛼)

 .                                                                      (32) 

Second, the statistical test of Christoffersen (1998) for VaR forecasting performance analyzes whether VaR 
beaches are independent or autocorrelated. Christoffersen (1998)’s independence test is defined as follows: 

                                                                       𝐿𝐿0 = (1 − 𝜋𝜋2)(𝑛𝑛00+𝑛𝑛10)𝜋𝜋2
(𝑛𝑛01+𝑛𝑛11),                                                  (33) 

                                                                        𝐿𝐿1 = 𝜋𝜋00
𝑛𝑛00𝜋𝜋01

𝑛𝑛01𝜋𝜋10
𝑛𝑛10𝜋𝜋11

𝑛𝑛11,                                                               (34) 

where 𝜋𝜋2 = (𝑛𝑛01+𝑛𝑛11)
𝑛𝑛00+𝑛𝑛10+𝑛𝑛01+𝑛𝑛11

 and 𝜋𝜋𝑖𝑖𝑗𝑗 = Pr (𝐼𝐼𝑡𝑡 = 𝑗𝑗|𝐼𝐼𝑡𝑡−1 = 𝑖𝑖).  The likelihood ratio is given by  

                                                                     𝐿𝐿𝑅𝑅𝑖𝑖𝑛𝑛𝑑𝑑 = −2 log 𝐿𝐿1
𝐿𝐿0

.                                                                          (35) 

The distribution of the likelihood ratio under the null hypothesis is chi squared distribution with 1 degree of 
freedom. 

The statistic for the joint test is formulated as 𝐿𝐿𝑅𝑅𝑗𝑗𝑜𝑜𝑖𝑖𝑛𝑛𝑡𝑡 = 𝐿𝐿𝑅𝑅𝑢𝑢𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑+𝐿𝐿𝑅𝑅𝑖𝑖𝑛𝑛𝑑𝑑 where the distribution of 𝐿𝐿𝑅𝑅𝑗𝑗𝑜𝑜𝑖𝑖𝑛𝑛𝑡𝑡 under 
the two null hypotheses is chi squared distribution with 2 degrees of freedom.   

Third, Lopez (1999)’s quadratic loss function for VaR forecasting performance is given as  

                                                             𝑄𝑄𝐿𝐿𝐹𝐹 = 1𝑟𝑟𝑡𝑡>𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼,𝑡𝑡 �1 + �𝑟𝑟𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝑡𝑡�
2� .                                                   (36) 

The quadratic loss function is designed to quantify how much forecast of VaR is underestimated. Using both 
the quadratic loss function and the Kupiec (1995) test, we can study not only how often VaR breaches occur 
but also the magnitude of VaR breaches.  

V. Results 
A. Testing CoFiE-NN using Monte Carlo Simulation 

We generate artificial time series data of foreign exchange spot rates using the EGARCH-t model with 
stochastic degree of freedom and asymmetry-controlling parameter as described below.  

                                                                   𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡 ⋅ �
𝜈𝜈𝑡𝑡−2
𝜈𝜈𝑡𝑡 

𝜖𝜖𝑟𝑟,𝑡𝑡,                                                                                      (37) 

                                 log 𝜎𝜎𝑡𝑡2 − log 𝜎𝜎�2 = 𝜌𝜌𝜎𝜎(log𝜎𝜎𝑡𝑡−12 − log 𝜎𝜎�2) + 𝛽𝛽𝜎𝜎(|𝜖𝜖𝑡𝑡−1| − 𝐸𝐸[|𝜖𝜖𝑡𝑡−1|]) + 𝛾𝛾𝑡𝑡  𝜖𝜖𝑟𝑟,𝑡𝑡−1,                              (38) 

                                                                            𝛾𝛾𝑡𝑡 − �̅�𝛾 = 𝜌𝜌𝛾𝛾(𝛾𝛾𝑡𝑡−1 − γ�) + 𝛽𝛽𝛾𝛾 𝜖𝜖𝛾𝛾,𝑡𝑡,                                                                     (39) 

                                                                   𝜈𝜈𝑡𝑡 − �̅�𝜈 = 𝜌𝜌𝜈𝜈(𝜈𝜈𝑡𝑡−1 − �̅�𝜈) + 𝛽𝛽𝜈𝜈 𝜖𝜖𝜈𝜈,𝑡𝑡 ,                                                                      (40) 

where the first and second equations are the same as those above in the description of the EGARCH-t model 
except that the asymmetry-controlling parameter 𝛾𝛾𝑡𝑡  and the degree of freedom 𝜈𝜈𝑡𝑡  have time index. The third 
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equation indicates that the asymmetry-controlling parameter follows a mean-reverting stochastic process. The 
fourth equation indicates that the degree of freedom also follows a mean-reverting stochastic process. 𝜖𝜖𝑟𝑟 𝑡𝑡 is 
sample from Student’s t distribution while 𝜖𝜖𝛾𝛾,𝑡𝑡 and 𝜖𝜖𝜈𝜈,𝑡𝑡 are sampled from the standard normal distribution.  

We adopt the EGARCH-t model with these two stochastic features described above because it produces 
nonlinear dynamics of skewness and kurtosis but still resemble enough the conventional EGARCH-t model 
which CoFiE-NN competes against.   

We set the parameters of this EGARCH-t model with stochastic skewness and kurtosis as follows. 𝜎𝜎� = 0.02, 
𝜌𝜌𝜎𝜎 = 0, 𝛽𝛽𝜎𝜎 = 0, γ� = −0.2, 𝜌𝜌𝛾𝛾 = 0.99, 𝛽𝛽𝛾𝛾 = 0.05, �̅�𝜈 = 10, 𝜌𝜌𝜈𝜈 = 0.99, 𝛽𝛽𝜈𝜈 = 0.2. We consider that these parameter 
values are reasonable.  

We estimate the CoFiE-NN using four different settings of the sample period length: (1) T=250 days, (2) T=500 
days, (3) T=1000 days, (4) T=2000 days. We can study how the size of training data impacts the performance 
by looking at the results under these different settings. 

Table 3 (a) reports the results for all models. CoFiE-NN with LSTM is denoted with LSTM and CoFiE-NN with 
FFNN is denoted with FFNN. To make the comparison of the performance easy, we compute winning rate of 
CoFiE-NN against each conventional model under each criterion. Tables 3 (b) and 3 (c) show the winning rates 
of CoFiE-NN with FFNN and with LSTM, respectively. 

Table 3 (b) shows that CoFiE-NN with FFNN outperforms the EGARCH-t in all three criteria under all four 
settings of the training data size except one when T=500 in terms of Lopez (1999) quadratic loss function. 
CoFiE-NN with FFNN also outperforms CAViaR in terms of the loss function but underperforms it in terms of 
Kupiec (1995) test and the joint test. CoFiE-NN with FFNN outperforms the EVT in all criteria.  

Table 3 (c) shows that CoFiE-NN with LSTM outperforms the EGARCH-t in terms of Kupiec (1995) test and the 
joint test when the training data size is relatively small (T=250 and T=500) but underperform it when the data 
size is relatively large (T=1000 and T=2000). CoFiE-NN with LSTM also outperforms the EGARCH-t in the loss 
function except one case (T=250). Similar to the case above, CoFiE-NN with LSTM outperforms CAViaR in the 
loss function but underperforms it in Kupiec (1995) test and the joint test. CoFiE-NN with LSTM outperforms the 
EVT in all criteria.  

These results indicate that CoFiE-NN works successfully even when the training data is small. It is also 
noteworthy that CoFiE-NN tends to show the better performance than the EGARCH-t even though the data is 
generated from the extended EGARCH-t model resembling the conventional EGARCH-t model. 

B. Comparison of VaR Forecasts for 30 Assets 

Figure 2 shows the accumulated breaches of VaR based on CoFiE-NN approach and two conventional models, 
EGARCH-t model and CAViaR model for 30 assets including 23 currencies during the COVID-19 crisis period. 
As described above, the training data is from 2018/3/1 to 2020/2/28 and test data is from 2020/3/2 to 
2023/7/27. The black-solid line denotes CoFiE-NN. The red-dotted line denotes the EGARCH-t model. The 
blue-dashed line denotes CAViaR model. The green-dashed line shows the ideal number of breaches which is 
computed as probability multiplied by the number of days up to time t. Hence, it linearly increases with time. If 
the black-solid line is closer to the green-dashed line than the red-dotted one, it means that the CoFiE-NN 
outperforms the EGARCH-t model in forecasting VaR.  
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Tables 4 (a) (b) (c) (d) report the results of two specifications of CoFiE-NN and the two conventional models 
across 30 asset classes under the four cases of sample periods.10 To facilitate the comparison of the 
performance, we compute winning rate of CoFiE-NN against each conventional model under each criterion. 
Tables 4 (e) and (f) show the winning rates of CoFiE-NN with FFNN and with LSTM, respectively. 

For CoFiE-NN with FFNN, we find that it outperforms the EVT in all criteria for all four sample periods except 
one case (Pre-GFC). However, CoFiE-NN with FFNN underperform the EGARCH-t and the EVT in general. 
The result suggests that FFNN may not be powerful enough to beat these conventional models.     

For CoFiE-NN with LSTM, we make three observations. First, it outperforms the EGARCH-t in Kupiec (1995) 
test and the joint test under the all four different sample periods except one case (Covid) while it underperforms 
the EGARCH-t in terms of the loss function. Second, CoFiE-NN underperforms CAViaR in general. Third, 
CoFiE-NN outperforms the EVT in all criteria for all four different sample periods except one case (Pre-GFC).  

In summary, CoFiE-NN with LSTM tends to outperform the EGARCH-t and the EVT but tends to underperform 
CAViaR.    

VI. Empirical Application: Tail Risk Ratio 
A. Defining Tail Risk Ratio 

We introduce a new concept named tail risk ratio which measures the severity of tail event after controlling for 
volatility. Specifically, we define the 𝛼𝛼-percentile tail risk ratio 𝑇𝑇𝑅𝑅𝑅𝑅𝛼𝛼,𝑖𝑖,𝑡𝑡 as volatility-scaled 𝛼𝛼-percentile VaR.  

                                                                           𝑇𝑇𝑅𝑅𝑅𝑅𝛼𝛼,𝑖𝑖,𝑡𝑡 = VaR𝛼𝛼,𝑖𝑖,𝑡𝑡−𝜇𝜇𝑖𝑖,𝑡𝑡
𝜎𝜎𝑖𝑖,𝑡𝑡

,                                                               (41) 

where 𝜇𝜇𝑖𝑖𝑡𝑡 and  𝜎𝜎𝑖𝑖,𝑡𝑡 are the mean and the volatility of the i-th asset at time 𝑡𝑡. VaRα,i,t is the alpha-percentile of 
VaR for the i-th asset.  

We make a few comments on the definition of the tail risk ratio. First, the tail risk ratio is aimed to capture the 
size of unexpectedly large shock to an asset relative to its volatility. We consider that scaling by volatility is 
necessary because the increase in VaR can be simply due to the increase in volatility, which is misleading to 
interpret as increase in tail risk. In other words, level of VaR may differ across assets due to differences in 
volatility but scaling by volatility allows us to quantify the pure tail risk. One practical advantage is that we can 
make cross-country comparison of tail risk in the foreign exchange markets by accounting for difference in the 
level of VaR.  

Second, the definition of the tail risk ratio analogous to the definition of the Sharpe ratio that is volatility-scaled 
excess return. Sharpe ratio is understood as the risk-adjusted return. In this analogy, the tail risk ratio is 
interpreted as the severity of tail event after the adjustment of volatility.  

    
10 Results for EVT are not report in these tables but we confirm that the EVT underperform CoFiE-NN as shown in Table 4 (e) (f).  
  Also, note that “-” denotes that the statistic is not obtained as a finite number.  
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Under CoFiE-NN framework, the tail risk ratio is the percentile of the volatility-standardized distribution which is 
introduced in the description of CoFiE-NN.  

                 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡−𝜇𝜇𝑖𝑖𝑡𝑡
𝜎𝜎𝑖𝑖,𝑡𝑡

= 𝑤𝑤𝛼𝛼,𝑡𝑡 = 𝑥𝑥𝛼𝛼 + 𝜅𝜅3,𝑡𝑡
𝜅𝜅2,𝑡𝑡
1.5 ⋅

1
6
𝐻𝐻2(𝑥𝑥) + 𝜅𝜅4,𝑡𝑡

𝜅𝜅2,𝑡𝑡
2 ⋅ 1

24
𝐻𝐻3(𝑥𝑥) − �𝜅𝜅3,𝑡𝑡

𝜅𝜅2,𝑡𝑡
1.5�

2
⋅ 1
36

(2𝐻𝐻3(𝑥𝑥) + 𝐻𝐻1(𝑥𝑥)) + ⋯ .     (42) 

It is easy to make two observations. First, if both skewness and kurtosis are zero, the tail risk ratio is reduced to 
the percentile of the cumulative density function of the normal distribution 𝑥𝑥𝛼𝛼. Second, if skewness and kurtosis 
are time-varying, the tail risk ratio is also time-varying even if volatility is constant.   

It is noteworthy that the tail risk ratio is constant under conventional GARCH-type models. To see this, let us 
compute the tail risk ratio under a specific GARCH-type model. For example, under the EGARCH-t model, the 
tail risk ratio is given by  

                                                 𝑇𝑇𝑅𝑅𝑅𝑅𝛼𝛼,𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼,𝑖𝑖,𝑡𝑡−𝜇𝜇𝑖𝑖𝑡𝑡
𝜎𝜎𝑖𝑖,𝑡𝑡

= �(𝜈𝜈 − 2 )/𝜈𝜈 𝐹𝐹𝜈𝜈−1(𝛼𝛼).                                                       (43)     

where 𝐹𝐹𝜈𝜈−1(⋅) is the inverse function of the cumulative distribution function of Student’s t distribution with the 
degree of freedom 𝜈𝜈. The formula above shows that the tail risk ratio is constant under the EGARCH-t model.  

It is also worth mentioning that tail risk ratio cannot be defined under the CAViaR model because it does not 
explicitly model the volatility dynamics. It is practically possible to use the volatility extracted from another 
model (e.g., a specific GARCH-type model) but it creates internal inconsistency between the VaR forecasting 
model versus the volatility forecasting model.  

B. Analyzing Tail Risk Dynamics in Foreign Exchange Markets 

Surprisingly, to the best of our knowledge, no academic study explicitly measures the stress in foreign 
exchange markets. This is contrasting to the large number of academic and policy markers’ studies on 
measuring the stress in stock markets (e.g., Kelly and Jiang (2014)). Therefore, it is natural to ask what the tail 
risk ratio can tell us when and how the foreign exchange markets are stressed. 

To do so, we apply principal component analysis (PCA) for the tail risk ratios of 22 currencies during the 
2019/8-2023/7 period.11 Specifically, we compute the VaR for these currencies based on CoFiE-NN. The 
training period is the 2014/8-2019/7 period. We then apply PCA for the VaR for 22 currencies for extracting 
common factors. For comparison, we do the same exercise for the one-month historical volatilities of the same 
set of currencies using the same sample period.  

Table 5 shows the proportion of variance of tail risk ratios and volatilities explained by each PCA factor. It 
shows that the only 20 percent of tail risk dynamics across 22 currencies is explained by the first PCA factor 
which is interpreted as a global factor. By contrast, 60 percent of volatility dynamics across the same set of 
currencies is explained by the first PCA factor. These two results indicate that tail risks in the foreign exchange 
markets are more country-specific compared to the volatilities.   

Figures 3 (a) and (b) show coefficients of the first PCA factor extracted from tail risk ratios and volatilities, 
respectively. The first PCA factor of tail risk ratios of 22 currencies is interpreted as a global factor as almost all 

    
11 We drop Danish Krone in this analysis because Danish Krone (DKK) is pegged to Euro.   
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coefficients are positive and in the same magnitude except a few currencies. Similarly, the first PCA factor of 
volatilities of 22 currencies also is considered as a global volatility factor as all coefficients are positive. 

Figures 3 (c) and (d) show coefficients of the second PCA factor extracted from tail risk ratios and volatilities, 
respectively. The result is contrasting to the first PCA factor case. The second PCA factor of tail risk ratios is 
understood as a Chinese-Yuan-specific factor as the coefficient is largest for Chinese Yuan and small for other 
countries. By contrast, the second PCA factor of volatilities captures the factor related to Latin American 
countries as the coefficients are large for Brazilian Real and Mexican Peso.    

Figures 3 (e) and (f) show coefficients of the third PCA factor extracted from tail risk ratios and volatilities, 
respectively. For both tail risk ratio and volatility, the third PCA factor is difficult to interpret. Yet it appears that 
the third PCA factor of tail risk ratios is related to Eastern European countries as the coefficients are high for 
Czech Koruna, Polish Zloty, and Hungarian Forint. Similarly, the third PCA factor of volatilities is related to 
Eastern European countries, too. However, it can also be interpreted as Asia-specific factor as the coefficients 
are negative and high for Japanese Yen, Chinese Yuan, South Korean Won, Indian Rupee, and Malaysian 
Ringgit.     

Figures 4 (a) and (b) show time evolution of the first PCA factor extracted from tail risk ratios and volatilities, 
respectively. As mentioned above, we consider that the first PCA factor is the global factor. There is a stark 
difference between them. The global volatility factor increased dramatically at the onset of the COVID-19 crisis. 
It also increased gradually after Russian invasion to Ukraine. By contrast, the global tail risk factor shows 
spikes more frequently than the global volatility factor. The global tail risk factor jumped to the highest level in 
June 2021 after when the Federal Reserve published updated dot plot indicating more hawkish policy stance.12 
These results show that the global tail risk factor captures the market stress which the global volatility factor 
does not necessarily capture. 

C. Portfolio Optimization under VaR constraint and Tail Risk Ratio 

Tail risk ratio naturally arises in the context of portfolio optimization under a VaR constraint. To see this, 
consider that there are 𝑁𝑁 assets. We denote a vector of the stochastic returns and the expected returns with 
𝑟𝑟𝑡𝑡 = �𝑟𝑟𝑡𝑡,1, 𝑟𝑟𝑡𝑡,2,⋯ , 𝑟𝑟𝑡𝑡,𝑁𝑁�

′ and 𝑟𝑟𝑡𝑡𝑒𝑒 = 𝐸𝐸[𝑟𝑟𝑡𝑡], respectively. The asset allocation is denoted with 𝜔𝜔𝑡𝑡 =

�𝜔𝜔𝑡𝑡,1,𝜔𝜔𝑡𝑡,2,⋯ ,𝜔𝜔𝑡𝑡,𝑁𝑁�
′. Suppose that an investor maximizes the expected return of her portfolio under the VaR 

constraint.13 

                                                                         max
𝜔𝜔𝑡𝑡

𝜔𝜔𝑡𝑡
′𝑟𝑟𝑡𝑡𝑒𝑒,                                                                                  (44) 

                                                                  VaRα (−𝜔𝜔𝑡𝑡
′𝑟𝑟𝑡𝑡�) ≤ 𝐿𝐿�                                                                             (45) 

    
12 See the article from Bloomberg: https://www.bloomberg.com/opinion/articles/2021-06-17/powell-surprise-marks-start-of-fed-s-
wtreacherous-retreat#xj4y7vzkg.  
13 Portfolio optimization problems under a VaR constraint have been studied in finance. The previous studies include, but not limited  
to, Emmer et al. (2001), Basak and Shapiro (2001), and Yiu (2004). Related to these studies, Adrian and Shin (2014) provide   
microfoundations to explain why VaR-based rules are widely used in financial risk management using a contracting model.  
Miranda-Agrippino and Rey (2020) describe a global bank as the investor who optimizes the expected return of his portfolio subject  
to a VaR constraint essentially under the assumption of the multivariate normal distribution.  

https://www.bloomberg.com/opinion/articles/2021-06-17/powell-surprise-marks-start-of-fed-s-treacherous-retreat#xj4y7vzkg
https://www.bloomberg.com/opinion/articles/2021-06-17/powell-surprise-marks-start-of-fed-s-treacherous-retreat#xj4y7vzkg
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where 𝑟𝑟𝑡𝑡�  is defined as the unexpected component of the asset returns (𝑟𝑟𝑡𝑡� = 𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡𝑒𝑒). 𝐿𝐿� is the maximum VaR 
budget. The second inequality means that the investor limits the unexpected loss below the pre-determined 
threshold 𝐿𝐿.  

When the asset returns are generated from a multivariate normal distribution, the VaR constraint is transformed 
to the constraint of the portfolio return volatility. Let us denote the covariance matrix of the asset return with Σ. 
We obtain  

                                                                       𝑥𝑥𝛼𝛼 ⋅ 𝜔𝜔𝑡𝑡
′Σ𝜔𝜔𝑡𝑡 ≤ 𝐿𝐿�.                                                                            (46)  

The solution of the asset allocation under the assumption of the multivariate normal distribution is given by   

                                                                       𝜔𝜔𝑡𝑡
∗ = 1

2𝜆𝜆𝜆𝜆𝛼𝛼
Σ−1𝑟𝑟𝑡𝑡𝑒𝑒,                                                                          (47)  

where 𝜆𝜆 is the Lagrange multiplier. The solution above indicates that mean-VaR portfolio optimization problem 
is reduced to the classic mean-variance portfolio optimization problem when the asset returns are generated 
from a multivariate normal distribution.   

In general, this does not hold. Let us denote the tail risk ratio of the portfolio return with 𝑤𝑤𝑝𝑝,𝛼𝛼,𝑡𝑡. The VaR 
constraint is represented as  

                                                                      𝑤𝑤𝑝𝑝,𝛼𝛼,𝑡𝑡 ⋅ 𝜔𝜔𝑡𝑡
′Σ𝜔𝜔𝑡𝑡 ≤ 𝐿𝐿�.                                                                        (48) 

The key difference between (46) and (48) is that 𝑥𝑥𝛼𝛼 is a constant given 𝛼𝛼 while 𝑤𝑤𝑝𝑝,𝛼𝛼,𝑡𝑡 is a non-linear function of 
the asset allocation 𝜔𝜔𝑡𝑡. Specifically, the tail risk ratio for the portfolio return depends on two factors: (1) 
skewness and kurtosis and higher moments of each asset return and (2) the asset allocation 𝜔𝜔𝑡𝑡. The VaR-
constrained investor may reduce her exposure to the asset returns when the moments increase even when the 
volatility of the portfolio return remains the same.  

VII. Conclusion 
In this paper, we proposed a new machine-learning-based approach for forecasting Value-at-Risk named 
CoFiE-NN where a neural network (NN) is combined with Cornish-Fisher expansions (CoFiE). The new 
approach has two advantages. It can capture non-linear dynamics of high-order statistical moments thanks to 
the universal approximation property of a NN while maintaining interpretability of the outputs by explicitly linking 
moments with the percentile of distribution via Cornish-Fisher expansions.  

We employ Long Short-Term Memory (LSTM) as our main specification of a NN because LSTM has been 
successful in time series modeling. Note that any NN can be employed in the CoFiE-NN.  

We compared the performance of VaR forecasting based on CoFiE-NN with three conventional models using 
both Monte Carlo simulation and real data. We show that CoFiE-NN with LSTM tends to outperform the 
EGARCH-t model even when the sample size of training data is small using the simulated data. We then apply 
the CoFiE-NN for 30 assets across different asset classes. We find that CoFiE-NN tends to outperform the 
EGARCH-t in terms of Kupiec (1995) test but not in Lopez (1999) quadratic loss function. CoFiE-NN 
underperforms CAViaR, but it outperforms the EVT model in general for the real data.  
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Finally, we introduce a new empirical proxy for tail risk named tail risk ratio under CoFiE-NN. We discover that 
the only 20 percent of tail risk dynamics across 22 currencies is explained by one common factor. This 
contrasts with the fact that 60 percent of volatility dynamics across the same set of currencies is explained by 
one common factor.  

There are several topics for future research. First, it would be useful to extend CoFiE-NN framework to 
multivariate case and multiple period forecasting, as briefly discussed in Section 3. In particular, the 
multivariate CoFiE-NN will allow us to generate VaR of multiple assets so that we can investigate the economic 
benefit of CoFiE-NN for constructing portfolio allocations using real data. Second, it would be interesting to see 
whether including the fifth or even higher order moments would improve VaR forecasting under CoFiE-NN 
framework. Third, although we study 30 assets across different asset classes, more comprehensive 
performance analyses of CoFiE-NN would be needed.  
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Annex I. Tables 
Table 1. Setting of Calibration and Hyperparameters of LSTM 

Variable Value 
Dimension  6 
Number of units 2 
Calibration method  Adams 
Maximum epochs  250 
Gradient thresholds 1 
Learn rate drop factor 0.2 

 
 

Table 2. Descriptive Statistics 
  Mean Stdev Skewness Kurtosis 
EUR 0.00% 0.6% 0.1 2.5 
JPY 0.01% 0.6% -0.4 4.4 
CNY 0.00% 0.2% 0.0 15.8 
KRW 0.00% 0.7% -0.6 46.9 
GBP 0.00% 0.6% -0.6 9.5 
MXN 0.01% 0.7% 0.7 10.4 
INR 0.00% 0.6% -0.6 9.5 
CAD 0.00% 0.6% -0.1 5.3 
BRL 0.02% 1.0% 0.0 7.7 
AUD 0.00% 0.8% -0.6 10.8 
CHF -0.01% 0.7% -1.2 34.1 
THB 0.00% 0.4% 0.1 9.2 
MYR 0.00% 0.4% -0.4 8.5 
ZAR 0.02% 1.1% 0.2 4.2 
TWD 0.00% 0.3% -0.3 14.5 
SGD 0.00% 0.3% 0.0 4.7 
NOK 0.00% 0.8% 0.2 4.1 
SEK 0.00% 0.7% -0.1 3.6 
NZD 0.00% 0.8% -0.4 4.5 
DKK 0.00% 0.6% -0.2 4.5 
CZK -0.01% 0.7% 0.3 3.8 
HUF 0.01% 0.9% 0.3 4.0 
PLN 0.00% 0.8% 0.5 5.9 
NASDAQ 0.03% 1.8% 0.0 6.6 
US 2Y 0.00% 4.8% 0.0 6.5 
US 10Y -0.01% 2.5% 0.0 25.2 
WTI 0.02% 5.6% -14.2 1718.1 
Brent 0.02% 2.7% -2.0 75.0 
Nikkei 0.01% 1.5% -0.4 6.2 
Henry Hub 0.00% 5.4% -0.2 48.8 
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Table 3 (a). Performance of VaR Forecasting using Simulated Data 

 

 
Table 3 (b). VaR Forecasting using Simulated Data: Winning rates of CoFiE-NN with FFNN 

 

Table 3 (c). VaR Forecasting using Simulated Data: Winning rates of CoFiE-NN with LSTM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kupiec (1995) test Joint test Lopez (1999) loss function
Size LSTM FFNN EGARCH-t CAViaR EVT LSTM FFNN EGARCH-t CAViaR EVT LSTM FFNN EGARCH-t CAViaR EVT
T=250 6.6 4.7 10.4 4.8 92.7 8.0 5.7 9.8 6.0 103.5 26.6 23.4 22.4 25.5 65.7
T=500 7.6 3.2 9.9 2.8 108.9 8.8 4.4 8.8 4.0 118.9 16.8 22.2 20.7 25.1 72.9

T=1000 12.4 2.2 6.5 1.7 124.0 13.1 3.4 7.7 2.9 137.6 11.5 22.2 21.8 24.6 81.4
T=2000 18.5 2.1 3.9 1.5 114.0 18.9 3.3 5.1 2.9 123.7 7.7 21.6 22.6 25.5 76.4
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Table 4 (a). Performance of VaR Forecasting: Real Data (Pre-Global Financial Crisis) 

 
 

Table 4 (b). Performance of VaR Forecasting: Real Data (Global Financial Crisis) 

 



IMF WORKING PAPERS Forecasting Tail Risk via Neural Networks with Asymptotic Expansions 

 

INTERNATIONAL MONETARY FUND 24 

 

Table 4 (c). Performance of VaR Forecasting: Real Data (Pre COVID-19 Crisis) 

 

Table 4 (d). Performance of VaR Forecasting: Real Data (COVID-19 Crisis) 
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Table 4 (e). VaR Forecasting using Real Data: Winning rates of CoFiE-NN with FFNN 

 

 

Table 4 (f). VaR Forecasting using Real Data: Winning rates of CoFiE-NN with LSTM 

 

 

Table 5. Proportion of Variance Explained by Each PCA Factor 

  Tail risk ratio   Volatility   

Factor 
Variance 
explained Accumulation 

Variance 
explained Accumulation 

1 19.9% 19.9% 60.7% 60.7% 
2 9.7% 29.6% 13.6% 74.3% 
3 7.8% 37.4% 6.3% 80.6% 
4 6.6% 44.0% 4.9% 85.5% 
5 6.4% 50.4% 3.7% 89.1% 
6 5.3% 55.6% 2.0% 91.1% 
7 5.0% 60.7% 1.9% 93.0% 
8 4.5% 65.2% 1.6% 94.6% 
9 4.3% 69.5% 0.9% 95.5% 

10 3.9% 73.3% 0.8% 96.4% 
11 3.4% 76.7% 0.7% 97.1% 
12 3.2% 80.0% 0.6% 97.6% 
13 3.0% 83.0% 0.5% 98.1% 
14 2.6% 85.6% 0.4% 98.5% 
15 2.4% 88.0% 0.4% 98.9% 
16 2.3% 90.3% 0.3% 99.2% 
17 2.2% 92.5% 0.3% 99.5% 
18 2.1% 94.5% 0.2% 99.7% 
19 1.9% 96.5% 0.2% 99.8% 
20 1.7% 98.1% 0.1% 99.9% 
21 1.5% 99.6% 0.1% 100.0% 
22 0.4% 100.0% 0.0% 100.0% 

 
 
 

CoFiE-NN (FFNN) Winning rate (Kupiec test) Winning rate (Joint test) Winning rate (Lopez function)
Sample period EGARCH-t CAViaR EVT EGARCH-t CAViaR EVT EGARCH-t CAViaR EVT

Pre-GFC 47% 17% 63% 47% 17% 63% 20% 77% 40%
GFC 10% 3% 73% 7% 3% 77% 3% 7% 70%

Pre-Covid 27% 13% 63% 27% 20% 67% 47% 77% 80%
Covid 23% 3% 70% 20% 0% 77% 10% 0% 63%

CoFiE-NN (LSTM) Winning rate (Kupiec test) Winning rate (Joint test) Winning rate (Lopez function)
Sample period EGARCH-t CAViaR EVT EGARCH-t CAViaR EVT EGARCH-t CAViaR EVT

Pre-GFC 70% 17% 80% 67% 47% 80% 20% 77% 43%
GFC 53% 7% 93% 50% 33% 93% 23% 37% 80%

Pre-Covid 63% 17% 67% 57% 27% 70% 30% 70% 77%
Covid 53% 3% 93% 47% 27% 97% 33% 27% 73%
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Annex II. Figures 
Figure 1. Overview of CoFiE-NN  
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Figure 2. Accumulation of VaR Breaches for 30 Assets 
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Figure 2. Accumulation of VaR Breaches for 30 Assets (continued) 

BRL/USD 

 

AUD/USD 

 

CHF/USD 
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Figure 2. Accumulation of VaR Breaches for 30 Assets (continued) 

NOK/USD 

 

SEK/USD 

 

NZD/USD 

 

DKK/USD 

 

CZK/USD 

 

HUF/USD 

 

PLN/USD 

 

NASDAQ 

 



IMF WORKING PAPERS Forecasting Tail Risk via Neural Networks with Asymptotic Expansions 

 

INTERNATIONAL MONETARY FUND 30 

 

Figure 2. Accumulation of VaR Breaches for 30 Assets (concluded) 

US 2-year Treasury yield  

 

US 10-year Treasury yield 

 

WTI oil price 

 

Brent oil price 

 

Henry Hub natural gas 

 

Nikkei 225 
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Figure 3. Coefficients of PCA Factors 

(a) 1st PCA factor of tail risk ratios 

 

(b) 1st PCA factor of volatilities 

 
(c) 2nd PCA factor of tail risk ratios 

 
 

(d) 2nd PCA factor of volatilities 

 

(e) 3rd PCA factor of tail risk ratios 

 
 

 

(f) 3rd PCA factor of volatilities 
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Figure 4. Evolution of Global Factors: Tail risk ratio and Volatility  

(a) 1st PCA factor of tail score ratios 

 

(b) 1st PCA factor of volatilities 
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