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1. Introduction 
Economists often need to impose constraints, such as accounting identities, when forecasting multiple 
macroeconomic variables to ensure internal consistency. At the same time, they also want each economic 
series to be smooth over time in the forecast horizon. For example, when economists forecast seasonally 
adjusted quarterly GDP, quarterly GDP forecasts need to aggregate up to the annual GDP forecast and evolve 
smoothly unless a shock is expected to hit the economy in a specific quarter. The problem shows up in other 
macroframework settings, including forecasting the monthly consumer price index (CPI), which needs to be 
consistent with annual CPI, the balance of payments accounts that consist of dozens of time series linked by 
accounting identities, etc. These problems are widely faced by macroeconomists in policy institutions, including 
central banks, ministries of finance, international financial institutions, and the private sector. 
 
Both respecting constraints and ensuring smoothness over the forecast horizon are important for the quality of 
the forecast. Satisfying accounting identities, within and across time series, is a property of the true data and 
crucial for the internal consistency of the forecast. The smoothness over the forecast horizon is a property of 
the optimal forecast in many time series models, including random walk and autoregressions. Smoothness also 
helps forecasters communicate the story behind the forecast by suppressing the noise generated by algorithms 
and highlighting intentionally introduced kinks. 
 
Existing methods, however, do not achieve both objectives. In the example of quarterly GDP forecast, 
economists often apply their favorite technique to the forecast of Q1, Q2, and Q3 GDP, and use Q4 GDP as 
the residual variable to manually enforce consistency with annual GDP. This approach ensures the forecast 
satisfies accounting identities but can generate unwanted kinks in Q4 and the following year’s Q1. Forecasters 
often need to re-adjust all quarters manually until the quarterly path looks smooth and satisfies the accounting 
identity. Such manual adjustments could easily lead to mistakes and become prohibitively costly as the number 
of time series increases. 
 
The literature on forecast reconciliation offers a more systematic approach to producing forecasts that satisfy 
linear constraints. Di Fonzo and Girolimetto (2023) and Girolimetto and Di Fonzo (2023) propose a projection 
method to satisfy linear cross-sectional and temporal constraints by extending the minimum-trace (min-T) 
reconciliation proposed by Wickramasuriya et al. (2019) and Athanasopoulos et al. (2017). Taieb (2017) 
proposes an approach based on regularization. Di Fonzo and Marini (2011) extend Denton (1971) in the 
context of national accounts statistics. The existing methods in the reconciliation literature, however, do not 
necessarily generate smooth time series. A separate strand of literature proposes various filtering methods to 
smooth time series, including the Hodrick and Prescott filter (HP filter) (Hodrick and Prescott, 1997), moving 
averages, and others, but they do not allow for forecasts to be subject to constraints. Applying the filtering and 
reconciliation methods repeatedly need not converge, leading to a whack-a-mole exercise: solving one problem 
creates another. To our knowledge, there is no paper that combines the two discrete strands of literature. The 
main contribution of this paper is to integrate them into a practical method to achieve both objectives. 
 
This paper proposes a new forecast reconciliation method to impose both constraints and smoothness. The 
method integrates the min-T reconciliation and HP filter. Intuitively, the min-T component optimally determines 
how much each forecast horizon of each time series should be adjusted to satisfy the constraints imposed by 
the forecaster, while the HP component controls each time series’ smoothness over the forecast horizon. 
Mathematically, since both min-T reconciliation and HP filter are quadratic programming, they can be naturally 
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integrated into one constrained minimization problem. The proposed method can accommodate any number of 
time series with any frequencies, any constraints between or within the time series, and any smoothness 
parameters of choice. Moreover, the proposed method has a closed-form solution, which makes it amenable to 
a high-dimensional environment. 
 
We demonstrate the application of the proposed method using three examples. Each example compares the 
forecast generated by the proposed method, with the forecasts published in the International Monetary Fund 
(IMF) World Economic Outlook (WEO) database, and the forecasts generated by min-T reconciliation. We 
consider IMF WEO forecasts as the benchmark, which incorporates economists’ extensive country-specific 
knowledge and quality controls, including the validation of accounting identities and unintended kinks in the 
forecast horizon. (Genberg et al., 2014) 
 
In the first example, we take the annual US GDP series as fixed and forecast the seasonally adjusted quarterly 
GDP subject to the constraint that the quarterly GDP aggregates up to the annual number. We show that the 
proposed method can replicate the smoothness of the expert-generated WEO forecasts with slightly smaller 
forecast errors than the reconciled-but-not-smoothed alternative generated by min-T reconciliation. In other 
words, our method allows forecasts to be smoothed subject to constraints without loss in forecast performance 
and resource-intensive manual adjustments. 
 
The proposed method can accommodate ad-hoc constraints in addition to imposing accounting identities. In 
the second example, we forecast both the annual and quarterly US GDP. We show that the forecast based 
purely on historical data can deviate substantially from the WEO forecasts since WEO forecasts incorporate 
ad-hoc information about the future such as recessions and recoveries in the short run and potential growth 
rates in the long run. We demonstrate that the proposed method can incorporate such ad-hoc information by 
imposing short-run and long-run constraints, which bring back the forecast closer to the one in the WEO. 
 
The last example illustrates the flexibility of the proposed method by incorporating both cross-sectional and 
temporal constraints. We build on the second example by expanding the forecast to include the 
subcomponents of annual GDP. We show that the proposed method can smooth mixed-frequency multivariate 
time series subject to a wide range of constraints, including cross-sectional, temporal, and ad-hoc information. 
 
It is important to note that the proposed method is a post-forecasting process: adopting reasonable forecasting 
methods and imposing reasonable constraints are crucial. The examples described in the paper intentionally 
rely on naïve forecasts for the first-step forecast to highlight the kinks introduced by min-T reconciliation. In 
practice, however, an accurate first-step forecast is important for forecast performance. The constraints should 
also be chosen wisely since imposing constraints improves forecast only when they are correct. In this sense, 
the proposed method is not a replacement but a complement to the existing forecasting methods. It could, 
however, replace some of the ex-post ad-hoc and resource-intensive manual adjustments to the first-step 
forecasts that many macroeconomists use to ensure internal consistency and smoothness of their forecasts. 
 
The rest of the paper proceeds as follows. Section 2 discusses the theoretical justification of the proposed 
smooth forecast reconciliation method. Section 3 illustrates the application with three examples. Section 4 
concludes. 
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2. Theory 

2.1. Minimum-Trace Reconciliation and Hodrick-Prescott Filter 
This section reviews the min-T reconciliation method and HP filter. We use unified notation to highlight that 
both methods take some data as exogenously given and adjust them to satisfy certain properties. Thus, they 
can be integrated into a single method as a natural extension. 
 
The min-T reconciliation, proposed by Wickramasuriya et al. (2019), is a projection of a forecast on the space 
spanned by linear constraints. The distance used in the projection is weighted by the covariance matrix of the 
first-step forecast errors, which is optimal in the sense that it minimizes the sum of the variances of the second-
step forecast errors when the first-step forecast is unbiased (Wickramasuriya et al., 2019; Ando and Narita, 
2022). 
 
Specifically, let 𝑦𝑦� ∈ ℝ𝑁𝑁 be the first-step forecast, 𝑊𝑊 = 𝑉𝑉(𝑦𝑦� − 𝑦𝑦∗) be the variance of its error from the ground 
truth 𝑦𝑦∗, and (𝐶𝐶,𝑑𝑑) be a pair of the 𝐾𝐾 × 𝑁𝑁 matrix and 𝐾𝐾 × 1 vector in the linear constraints that the ground truth 
𝑦𝑦∗ satisfies. The second-step forecast 𝑦𝑦� ∈ ℝ𝑁𝑁 is defined as 
 

𝑦𝑦� = arg min
𝑦𝑦∈ℝ𝑁𝑁

(𝑦𝑦 − 𝑦𝑦�)′𝑊𝑊−1(𝑦𝑦 − 𝑦𝑦�)   𝑠𝑠. 𝑡𝑡.  𝐶𝐶𝑦𝑦 = 𝑑𝑑. (1) 

 
The solution can be written as 
 

𝑦𝑦� = 𝑦𝑦� + 𝑊𝑊𝐶𝐶′(𝐶𝐶𝐶𝐶𝐶𝐶′)−1(𝑑𝑑 − 𝐶𝐶𝑦𝑦�). (2) 

 
Intuitively, the second-step forecast 𝑦𝑦� adjusts the first-step forecast 𝑦𝑦� to satisfy the constraints in a way that the 
𝑖𝑖-th variable 𝑦𝑦�𝑖𝑖 is adjusted more if the first-step forecast 𝑦𝑦�𝑖𝑖 is less accurate. Geometrically, the second-step 
forecast 𝑦𝑦� is an oblique projection of the first-step forecast 𝑦𝑦� on the space of constraints (Panagiotelis et al., 
2023), so that applying the reconciliation twice is the same as applying it once. The true weight 𝑊𝑊 = 𝑉𝑉(𝑦𝑦� − 𝑦𝑦∗) 
is unfeasible since it uses the ground truth 𝑦𝑦∗ and becomes degenerate when the first-step forecast 𝑦𝑦� satisfies 
the constraints 𝐶𝐶𝑦𝑦� = 𝑑𝑑. A non-singular estimate of the weight matrix 𝑊𝑊� = 𝑉𝑉�(𝑦𝑦� − 𝑦𝑦∗), however, can be obtained 
by various shrinkage methods (Ledoit and Wolf, 2004; Schafer and Strimmer, 2005; Chen et al., 2010; and 
Ando and Xiao, 2023), as illustrated in section 3. 
 
The HP filter, developed by Hodrick and Prescott (1997), is a filter to smooth times series. Let 𝑦𝑦� ∈ ℝ𝑇𝑇 be a 
times series and 𝜆𝜆 be a smoothness parameter, both of which are exogenously given. The smoothed time 
series 𝑦𝑦� is 
 

{𝑦𝑦�𝑡𝑡}𝑡𝑡=1𝑇𝑇 = arg min
{𝑦𝑦𝑡𝑡}𝑡𝑡=1

𝑇𝑇
�(𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑡𝑡)2
𝑇𝑇

𝑡𝑡=1

+ 𝜆𝜆�{(𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡) − (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)}2
𝑇𝑇−1

𝑡𝑡=2

= arg min
𝑦𝑦∈ℝ𝑇𝑇

(𝑦𝑦� − 𝑦𝑦)′(𝑦𝑦� − 𝑦𝑦) + 𝜆𝜆𝑦𝑦′𝐹𝐹𝐹𝐹 , (3) 

 
where 𝐹𝐹 is a 𝑇𝑇 × 𝑇𝑇 degenerate penta-diagonal matrix 
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𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −2 1 0
−2 5 −4 1
1 −4 6 −4
0 1 −4 6

⋱
6 −4 1 0
−4 6 −4 1
1 −4 5 −2
0 1 −2 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (4) 

 
With a 𝑇𝑇 × 𝑇𝑇 identity matrix 𝐼𝐼𝑇𝑇, the solution can be written as 
 

𝑦𝑦� = (𝐼𝐼𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1𝑦𝑦�. (5) 

 
Intuitively, the smoothed time series 𝑦𝑦� adjusts the original time series 𝑦𝑦� in a way that the difference in 
differences is minimized. The smoothness parameter 𝜆𝜆 for quarterly time series is typically chosen to be 𝜆𝜆 =
1600. For annual and monthly data, Hodrick and Prescott (1997) suggest 100 and 14400, while Ravn and Uhlig 
(2002) propose 6.25 and 129600. 
 
Although the literature has debated whether the HP filter can estimate the trend accurately, this paper abstracts 
from this debate and interprets the HP filter as a smoothing device. For example, Hamilton (2018) proposes 
Maximum Likelihood estimates and points out drawbacks of the HP filter, including the endpoint problem. 
Hodrick (2020) and Dritsaki and Dritsaki (2022) offer counterarguments. Instead of assuming a data-generating 
process and discussing whether the HP filter estimates the trend accurately, this paper interprets the HP filter 
as a smoothing device and uses actual data to check the forecast performance. 
 
The min-T reconciliation and HP filter methods have both similarities and differences. Both adjustment methods 
(1) take some data as exogenously given and (2) are quadratic programming. These similarities allow the two 
methods to be integrated as natural extensions. The second similarity also enables a closed-form solution, 
which is useful for high-dimensional data. The main differences between the two methods are that (1) min-T 
reconciliation can accommodate multiple time series by stacking them into a single vector, while the HP filter 
can handle only a single time series, and (2) min-T reconciliation weights variables, while the HP filter does not. 
Sections 2.2 and 2.3 combine the two methods by exploiting their similarities and bridge the differences by 
allowing multiple smooth parameters with appropriate units. 
 

2.2. Closed-Form Solution with Given Smoothness Parameters 
This section defines the smooth forecast reconciliation for a given set of smoothness parameters and derives 
its closed-form solution. The solution boils down to min-T reconciliation and HP filter in special cases. 
 
Suppose there are 𝑀𝑀 time series {𝑦𝑦𝑚𝑚}𝑚𝑚=1

𝑀𝑀  with potentially different lengths {𝑇𝑇𝑚𝑚}𝑚𝑚=1
𝑀𝑀 . Different time series can 

have different frequencies or units. Let 𝑦𝑦 denote the stacked vector and 𝑁𝑁 denote its length. 
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𝑦𝑦 = �
𝑦𝑦1
⋮
𝑦𝑦𝑀𝑀
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑦𝑦11
⋮

𝑦𝑦1𝑇𝑇1
⋮

𝑦𝑦𝑀𝑀1
⋮

𝑦𝑦𝑀𝑀𝑇𝑇𝑀𝑀⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑁𝑁 = � 𝑇𝑇𝑚𝑚

𝑀𝑀

𝑚𝑚=1

. (6) 

 
The problem takes three objects as exogenously given. The first object is the set of first-step forecast 𝑦𝑦� ∈ ℝ𝑁𝑁 
and its associated covariance matrix of forecast errors 𝑊𝑊 = 𝑉𝑉(𝑦𝑦� − 𝑦𝑦∗) ∈ ℝ𝑁𝑁×𝑁𝑁 where 𝑦𝑦∗ is the ground truth. The 
covariance matrix of forecast errors 𝑊𝑊 is assumed to be invertible. 
 
The first-step forecast 𝑦𝑦� can be obtained by any forecasting methods, including judgmental forecast. One 
caveat is that the optimality of min-T reconciliation assumes unbiasedness of the first-step forecast 𝐸𝐸[𝑦𝑦� − 𝑦𝑦∗] =
0. The covariance matrix of forecast errors 𝑊𝑊 is not feasible since it depends on the unknown ground truth 𝑦𝑦∗ ∈
ℝ𝑁𝑁, but it can be replaced by a feasible estimate 𝑊𝑊� . One caveat is that the covariance matrix of forecast errors 
𝑊𝑊 is singular when both the first-step forecast 𝑦𝑦� and the ground truth 𝑦𝑦∗ satisfy the same linear constraints. 
Section 3 shows that shrinkage methods can be used to estimate a non-singular covariance matrix of forecast 
errors 𝑊𝑊� . 
 
The second object is the constraints (𝐶𝐶,𝑑𝑑) that the ground truth 𝑦𝑦∗ satisfies. 
 

𝐶𝐶𝑦𝑦∗ = 𝑑𝑑, (7) 

 
where 𝐶𝐶 is a 𝐾𝐾 × 𝑁𝑁 matrix and 𝑑𝑑 is a 𝐾𝐾 × 1 vector. The constraint matrix 𝐶𝐶 is assumed to be full rank. 
 
Two observations are noteworthy. First, as discussed in Ando and Kim (2023), nonlinear constraints often show 
up in macroeconomic statistics. Although a closed-form solution may not be available and numerical solution 
may be challenging to obtain in general, it is straightforward to extend the constraints to nonlinear 𝐶𝐶(𝑦𝑦∗) = 0 or 
inequality 𝐶𝐶(𝑦𝑦∗) ≥ 0 constraints. Second, since the vector 𝑦𝑦 stacks multiple time series, the formulation allows 
both intra-temporal/cross-sectional and inter-temporal constraints, as illustrated in section 3. 
 
The third object is the symmetric smoothness matrix Φ, which is block-diagonal and consists of 𝑀𝑀 smoothness 
parameters {𝜆𝜆𝑚𝑚}𝑚𝑚=1

𝑀𝑀  and 𝑀𝑀 penta-diagonal matrices {𝐹𝐹𝑚𝑚}𝑚𝑚=1
𝑀𝑀 , where the size of the matrix 𝐹𝐹𝑚𝑚 is 𝑇𝑇𝑚𝑚 × 𝑇𝑇𝑚𝑚, and 

the elements of each matrix 𝐹𝐹𝑚𝑚 are analogous to (4). 
 

Φ = �
𝜆𝜆1𝐹𝐹1

⋱
𝜆𝜆𝑀𝑀𝐹𝐹𝑀𝑀

� . (8) 

 
Given the first-step forecast and its associated covariance matrix of forecast errors (𝑦𝑦�,𝑊𝑊), the constraints 
(𝐶𝐶,𝑑𝑑), and the smoothness matrix Φ, the second-step forecast 𝑦𝑦� is 
 

𝑦𝑦� = arg min
𝑦𝑦∈ℝ𝑁𝑁

(𝑦𝑦 − 𝑦𝑦�)′𝑊𝑊−1(𝑦𝑦 − 𝑦𝑦�) + 𝑦𝑦′Φ𝑦𝑦   𝑠𝑠. 𝑡𝑡.  𝐶𝐶𝐶𝐶 = 𝑑𝑑. (9) 
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One can see that the formulation reduces to min-T reconciliation (1) when the smoothness parameters are 
nullified 𝜆𝜆1 = ⋯ = 𝜆𝜆𝑀𝑀 = 0. The formulation also reduces to an independent sum of 𝑀𝑀 HP filters (3) when the 
weight is an identity matrix 𝑊𝑊 = 𝐼𝐼𝑁𝑁 and the constraints are zeros (𝐶𝐶, 𝑑𝑑) = (0,0). 
 

min
𝑦𝑦∈ℝ𝑁𝑁

� {(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)′(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚) + 𝜆𝜆𝑚𝑚𝑦𝑦𝑚𝑚′𝐹𝐹𝑚𝑚𝑦𝑦𝑚𝑚}
𝑀𝑀

𝑚𝑚=1

. (10) 

 
The following theorem states that problem (9) has a closed-form solution, which is a convenient feature in a 
high-dimensional environment with a large 𝑁𝑁. 
 
Theorem: The second-step forecast 𝑦𝑦� that solves (9) can be written as 
 
𝑦𝑦� = [𝐼𝐼𝑁𝑁 − (𝑊𝑊−1 + Φ)−1𝐶𝐶′{𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1𝐶𝐶](𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦� + (𝑊𝑊−1 + Φ)−1𝐶𝐶′{𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1𝑑𝑑. (11) 

 
Proof: The first-order condition is sufficient since the problem is quadratic. The Lagrangian is 
 

ℒ = (𝑦𝑦� − 𝑦𝑦�)′𝑊𝑊−1(𝑦𝑦� − 𝑦𝑦�) + 𝑦𝑦�′Φ𝑦𝑦� + 2𝜆𝜆′(𝑑𝑑 − 𝐶𝐶𝑦𝑦�). 
 
The first-order condition with respect to 𝑦𝑦� is 
 

2(𝑊𝑊−1 + Φ)𝑦𝑦� − 2𝑊𝑊−1𝑦𝑦� − 2𝐶𝐶′𝜆𝜆 = 0 ⇒ 𝑦𝑦� = (𝑊𝑊−1 + Φ)−1(𝑊𝑊−1𝑦𝑦� + 𝐶𝐶′𝜆𝜆). 
 
From the constraint, 
 
𝐶𝐶𝑦𝑦� = 𝑑𝑑 ⇒ 𝑑𝑑 = 𝐶𝐶(𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦� + 𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′𝜆𝜆 ⇒ 𝜆𝜆 = {𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1{𝑑𝑑 − 𝐶𝐶(𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦�}. 

 
By substitution, 
 

𝑦𝑦� = (𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦� + (𝑊𝑊−1 + Φ)−1𝐶𝐶′{𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1{𝑑𝑑 − 𝐶𝐶(𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦�} 
= {𝐼𝐼𝑁𝑁 − (𝑊𝑊−1 + Φ)−1𝐶𝐶′{𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1𝐶𝐶}(𝑊𝑊−1 + Φ)−1𝑊𝑊−1𝑦𝑦� + (𝑊𝑊−1 + Φ)−1𝐶𝐶′{𝐶𝐶(𝑊𝑊−1 + Φ)−1𝐶𝐶′}−1𝑑𝑑. 

 
Q.E.D. 

 
Equation (11) is a natural extension of both min-T reconciliation (2) and HP filter formula (5). One can reconfirm 
that equation (11) reduces to min-T reconciliation (2) when the smoothness matrix is nullified 𝜆𝜆1 = ⋯ = 𝜆𝜆𝑀𝑀 = 0. 
Equation (11) also reduces to the stacked version of HP filter (5) when the weight is an identity matrix 𝑊𝑊 = 𝐼𝐼𝑁𝑁 
and the constraints are zeros (𝐶𝐶,𝑑𝑑) = (0,0). 
 

𝑦𝑦� = (𝐼𝐼𝑁𝑁 + Φ)−1𝑦𝑦� = �
�𝐼𝐼𝑇𝑇1 + 𝜆𝜆1𝐹𝐹1�

−1𝑦𝑦�1
⋮

�𝐼𝐼𝑇𝑇𝑀𝑀 + 𝜆𝜆𝑀𝑀𝐹𝐹𝑀𝑀�
−1𝑦𝑦�𝑀𝑀

� . (12) 

 



IMF WORKING PAPERS Smooth Forecast Reconciliation 

 

INTERNATIONAL MONETARY FUND 9 

 

Note that equation (11) is no longer an oblique projection, so that applying it twice may result in a different time 
series than applying it once. Intuitively, the HP filter (5) is not a projection, and thus, equation (11) which 
inherits the property of the HP filter is also not a projection. 
 

2.3. Choice of Smoothness Parameters 
The choice of smoothness parameters needs to reflect the units of the covariance matrix of forecast errors 𝑊𝑊. 
Section 2.2 demonstrates that problem (9) reduces to the HP filter when the weight is an identity matrix 𝑊𝑊 = 𝐼𝐼𝑁𝑁. 
The covariance matrix of forecast errors 𝑊𝑊, however, is rarely an identity, as fan charts often expand over the 
forecast horizon. Thus, the typical smoothness parameter values cannot be applied directly. 
 
One way to align the units of the smoothness parameters is to use the minimum variance of the forecast errors 
 

𝜆𝜆𝑚𝑚 =
𝜆𝜆𝑚𝑚∗

𝜎𝜎𝑚𝑚2
, 𝜎𝜎𝑚𝑚2 = min

𝑡𝑡=1,…,𝑇𝑇𝑚𝑚
𝑉𝑉(𝑦𝑦�𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚∗ ) = min

𝑡𝑡=1,…,𝑇𝑇𝑚𝑚
(𝑊𝑊𝑚𝑚)𝑡𝑡𝑡𝑡 , 𝑚𝑚 = 1, … ,𝑀𝑀, (13) 

 
where 𝜆𝜆𝑚𝑚∗  is the typical smoothness parameter for the frequency of the 𝑚𝑚-th time series, like 𝜆𝜆𝑚𝑚∗ = 1600 if the 
𝑚𝑚-th time series is quarterly, and 𝑊𝑊𝑚𝑚 is a submatrix of 𝑊𝑊 that corresponds to the 𝑚𝑚-th time series. This is a 
natural choice since problem (9) boils down to the HP filter with the typical smoothness parameter in the 
special case where 𝑊𝑊 is diagonal, 𝑊𝑊𝑚𝑚 has constant diagonals, and the constraints are zeros (𝐶𝐶, 𝑑𝑑) = (0,0). 
 

(𝑦𝑦 − 𝑦𝑦�)′𝑊𝑊−1(𝑦𝑦 − 𝑦𝑦�) + 𝑦𝑦′Φ𝑦𝑦 = �
1

(𝑊𝑊𝑚𝑚)11
�(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚)′(𝑦𝑦𝑚𝑚 − 𝑦𝑦�𝑚𝑚) + 𝜆𝜆𝑚𝑚∗ 𝑦𝑦𝑚𝑚′𝐹𝐹𝑚𝑚𝑦𝑦𝑚𝑚�������������������������

𝐻𝐻𝐻𝐻 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�
𝑀𝑀

𝑚𝑚=1

. (14) 

 
Intuitively, the special case corresponds to the situation where all forecast errors are uncorrelated, and the 
variances of forecast errors are constant, so the forecast errors come from white noise. This special case is 
more general than an identity weight 𝑊𝑊 = 𝐼𝐼𝑁𝑁 since each submatrix 𝑊𝑊𝑚𝑚 can take different values. Each 
submatrix 𝑊𝑊𝑚𝑚 having constant diagonals, however, is restrictive since the variance of forecast errors typically 
increases as the forecast horizon extends, like a fan chart. 
 
There can be many alternative choices for the smoothness parameters. For example, replacing the minimum 
variance of the forecast errors (13) with the median, average, or maximum variance of the forecast errors leads 
to the same expression (14) in the special case. One advantage of using the minimum variance of the forecast 
errors (13) is that, when the fan chart expands over time, it puts stronger smoothing force on the farther 
forecast horizon, so the times series is smoother in the more uncertain horizon. To see this, suppose the 
weight matrix is diagonal, and the diagonals increase monotonically as the index increases, (𝑊𝑊𝑚𝑚)11 < ⋯ <
(𝑊𝑊𝑚𝑚)𝑇𝑇𝑚𝑚𝑇𝑇𝑚𝑚 . The part of the objective function that corresponds to the 𝑚𝑚-th time series becomes 
 

�
1

(𝑊𝑊𝑚𝑚)𝑡𝑡𝑡𝑡

𝑇𝑇𝑚𝑚

𝑡𝑡=1

(𝑦𝑦𝑚𝑚𝑚𝑚 − 𝑦𝑦�𝑚𝑚𝑚𝑚)2 +
𝜆𝜆𝑚𝑚∗

(𝑊𝑊𝑚𝑚)11
� {(𝑦𝑦𝑚𝑚𝑚𝑚+1 − 𝑦𝑦𝑚𝑚𝑚𝑚) − (𝑦𝑦𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚−1)}2
𝑇𝑇𝑚𝑚−1

𝑡𝑡=2

. (15) 
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The weight on the first term becomes smaller as the time index increases, but the weight on the second term 
remains the same over time. Thus, the force to avoid deviation from 𝑦𝑦� becomes relatively weaker, and the 
resulting time series is smoother on the horizons where forecasters have relatively weaker confidence. 
 
One can also empirically estimate the smoothness parameters {𝜆𝜆𝑚𝑚}𝑚𝑚=1

𝑀𝑀 , although optimizing 𝑀𝑀 parameters can 
become computationally challenging. One caveat is that, in estimating the parameters, targeting the 
smoothness of historical data may not be optimal, as can be seen in Section 3.2.2. For example, if the data-
generating process is a random walk, the best forecast is a constant over time, in which case the volatility of 
the historical data should not be reflected in the forecast. Another caveat is that, even if the estimated 
smoothness parameters minimize the variance of the forecast errors, the forecast may not be visually smooth 
enough. This might be unsatisfactory since forecasters often want to explain the economic story to the public. 
For communication with the public, it is not sufficient to say that the kink is a result of the algorithm, so they 
want the path to be visually smooth unless the kink is intentionally introduced with associated story to be told. 
 
In this paper, we use the minimum variance of the forecast errors (13) as the baseline smoothness parameter. 
In practice, forecasters can choose their favorite values depending on their objectives. 
 

3. Applications 
This section illustrates the proposed method using as example US GDP forecasts. It shows that the proposed 
method can replicate the smoothness of the expert-generated forecasts, achieve a slightly smaller forecast 
error than the reconciled-but-not-smoothed alternative generated by min-T reconciliation, and incorporate 
various constraints. 
 

3.1. Data 
The data used in the following three examples are annual and quarterly US real GDP and the subcomponents 
of the annual GDP, comprising of annual foreign balance, annual total domestic demand, and annual statistical 
discrepancy, taken from the 2023 October vintage of the World Economic Outlook (WEO). The WEO database 
contains both historical data and forecasts, ranging from 1950 to 2028 for annual data and 1979Q1 to 2024Q4 
for quarterly data (Figure 1). As of October 2023, the historical data for US GDP have been released up to 
2023Q2. In this paper, we assume that data up to 2023Q2 is historical and from 2023Q3 is forecast, 
abstracting from uncertainties regarding whether some quarters contain flash estimates or will be revised later. 
The quarterly data are seasonally adjusted and annualized so that the average quarterly GDP over the four 
quarters equals the annual GDP in each year. 
 
The annual GDP and seasonally adjusted quarterly GDP forecast in WEO are usually smooth unless the 
country team has prior information to believe there should be a kink or lacks resources to finetune the 
forecasts. Different economists may use different forecasting techniques, including their judgment, but they 
typically strive to smooth the forecast as they are published and discussed in various public documents (e.g., 
country reports, multilateral surveillance products and the like). In addition, forecasts made by individual 
country teams are checked by the IMF’s research department, which validates that accounting identities hold, 
and no unintended kinks remain, among other quality controls before the forecasts are included in the WEO 
database. For further details of the IMF’s WEO production process, see Genberg et al. (2014). 
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Figure 1. Times Series of US GDP in WEO 

  
Source: IMF October 2023 World Economic Outlook database. 
Note: The left chart shows the level of US GDP in real USD, and the right chart shows the growth of US real 
GDP used in the applications. Quarterly GDP is annualized and seasonally adjusted. 

 

3.2. Forecasting Quarterly GDP 
As a simple example, this section illustrates how the proposed method helps forecast quarterly GDP in a 
smooth manner when quarterly GDP needs to aggregate up to the exogenously given annual GDP. This 
example has been studied in the context of national accounts as the benchmarking problem, and the 
comparison is presented in Annex I. We show that the proposed method can mimic the smoothness of the 
WEO forecast. 
 

3.2.1. Input 
The forecast horizon of interest is from 2023Q3 to 2024Q4. To mitigate the end point problem of the HP filter, 
the forecast horizon is extended to 2023Q2 and to 2025Q4. Including four quarters after 2024Q4 is excessive 
but can utilize the annual GDP forecast for 2025. Thus, the objective is to forecast quarterly GDP from 2023Q2 
to 2025Q4. Table 1 summarizes the data structure. 
 

Table 1. Structure of Data and Forecast Horizon 
 

History Forecast 

Quarterly GDP ⋯ 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊  𝑦𝑦�2023𝑄𝑄2 𝑦𝑦�2023𝑄𝑄3 𝑦𝑦�2023𝑄𝑄4 ⋯ 𝑦𝑦�2024𝑄𝑄4 ⋯ 𝑦𝑦�2025𝑄𝑄4 

Annual GDP (given) ⋯ 𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊 𝑦𝑦2024𝑊𝑊𝑊𝑊𝑊𝑊 𝑦𝑦2025𝑊𝑊𝑊𝑊𝑊𝑊 

Horizon of interest 
   

Forecasted 
 

Expand forecast horizon to mitigate HP filter’s end point problem 
 

Note: The table shows the structure of the data and shades the forecast horizon used in the application. 
 
The first-step forecast 𝑦𝑦� uses naïve forecast based on the growth rate. 
 



IMF WORKING PAPERS Smooth Forecast Reconciliation 

 

INTERNATIONAL MONETARY FUND 12 

 

𝑦𝑦�2023𝑄𝑄2 = 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊 , 𝑦𝑦�𝑡𝑡 −
𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊

𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 𝑦𝑦�𝑡𝑡−1 = 0, 𝑡𝑡 = 2023𝑄𝑄3, … , 2025𝑄𝑄4. (16) 

 
There can be many alternative choices for the first-step forecast 𝑦𝑦�. The naïve forecast has the pedagogical 
benefit of generating a constant forecast of the GDP growth so that the kinks introduced by reconciliation can 
be seen clearly. For robustness check, Annex II uses alternative forecasting methods, such as autoregression 
with four lags and exponential smoothing. 
 

To estimate the covariance matrix of forecast errors 𝑊𝑊, the historical data is split into 𝑛𝑛 = 10 expanding 
windows. (Table 2) The forecast errors in the ten test sets are used to estimate the covariance matrix 𝑊𝑊. 

 
Table 2. Expanding Windows of Time Series Split 

 Time dimension of historical data 

Fold 1 Training Test 2011Q2-2013Q4  

Fold 2 Training Test 2012Q2-2014Q4  

Fold 3 Training Test 2013Q2-2015Q4 
 

⋮ ⋮ 

Fold 10 Training Test 2020Q2-2022Q4 
 

Note: The table shows the training sets and test sets used to generate the forecast errors. 
 

We use oracle shrinkage approximating estimator with diagonal target (OASD) by Ando and Xiao (2023) 
instead of the sample covariance matrix of forecast errors Σ�. 

 

𝑊𝑊� = 𝜌𝜌�Σ� + (1 − 𝜌𝜌�)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Σ��, 𝜌𝜌� = min �
1
𝑛𝑛𝜙𝜙�

, 1� , 𝜙𝜙� =
𝑡𝑡𝑡𝑡�Σ�2� − 𝑡𝑡𝑡𝑡 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Σ��2�

𝑡𝑡𝑡𝑡�Σ�2� + 𝑡𝑡𝑡𝑡�Σ��2 − 2𝑡𝑡𝑡𝑡 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Σ��2�
. (17) 

 
The OASD shrinks the sample covariance matrix Σ� toward the diagonals of the sample covariance matrix so 
that the shrunk matrix 𝑊𝑊�  is invertible even when the sample covariance matrix is degenerate, which can 
happen when the number of folds is smaller than the length of the first-step forecast 𝑦𝑦�, as is the case here, or 
when both the first-step forecast 𝑦𝑦�  and historical data 𝑦𝑦𝑊𝑊𝑊𝑊𝑊𝑊 from WEO satisfy the same linear constraints. One 
can alternatively use other shrinkage methods discussed in Ando and Xiao (2023), such as Ledoit and Wolf 
(2004), Schafer and Strimmer (2005), and Chen et al. (2010). 
 
The constraints that the second-step forecast 𝑦𝑦� satisfies are 
 

𝑦𝑦�2023𝑄𝑄2 = 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊 , 
𝑦𝑦�2023𝑄𝑄3 + 𝑦𝑦�2023𝑄𝑄4 = 4𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊 , 

𝑦𝑦�𝑡𝑡𝑡𝑡1 + 𝑦𝑦�𝑡𝑡𝑡𝑡2 + 𝑦𝑦�𝑡𝑡𝑡𝑡3 + 𝑦𝑦�𝑡𝑡𝑡𝑡4 = 4𝑦𝑦𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊, 𝑡𝑡 = 2024, 2025, (18) 
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where the first constraint fixes the forecast of 2023Q2 to be the historical data, the second constraint requires 
the forecast of 2023Q3 and Q4 to be consistent with the annual forecast of 2023 and the historical data of the 
first half of 2023, and the third constraint ensures that the average quarterly GDP equals the annual GDP. In 
matrix form, the constraints can be written, using a 4 × 11 matrix 𝐶𝐶 and 4 × 1 vector 𝑑𝑑, as 
 

𝐶𝐶𝑦𝑦� = 𝑑𝑑, 𝐶𝐶 =

⎣
⎢
⎢
⎡ 1

11×2
11×4

11×4⎦
⎥
⎥
⎤

, 𝑦𝑦� =

⎣
⎢
⎢
⎢
⎡
𝑦𝑦�2023𝑄𝑄2
𝑦𝑦�2023𝑄𝑄3
𝑦𝑦�2023𝑄𝑄4

⋮
𝑦𝑦�2025𝑄𝑄4⎦

⎥
⎥
⎥
⎤

, 𝑑𝑑 =

⎣
⎢
⎢
⎢
⎡ 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊

4𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊

4𝑦𝑦2024𝑊𝑊𝑊𝑊𝑊𝑊

4𝑦𝑦2025𝑊𝑊𝑊𝑊𝑊𝑊 ⎦
⎥
⎥
⎥
⎤

. (19) 

 
Finally, the smoothness matrix Φ is a penta-diagonal matrix analogous to (4), multiplied by the typical 
smoothness parameter for quarterly data 1600 and normalized by the minimum variance of the forecast errors. 
 

Φ =
1600
𝜎𝜎�2

𝐹𝐹, 𝐹𝐹: 11 × 11, 𝜎𝜎�2 = min
𝑖𝑖
𝑊𝑊�𝑖𝑖𝑖𝑖 . (20) 

 
Given the first-step forecast and its associated covariance matrix of forecast errors �𝑦𝑦�,𝑊𝑊��, constraints (𝐶𝐶, 𝑑𝑑), 
and the smoothness matrix Φ, the second-step forecast 𝑦𝑦� can be derived by (11). 
 

3.2.2. Output 
The second-step forecast 𝑦𝑦� traces well the smoothness of the WEO forecast 𝑦𝑦𝑊𝑊𝑊𝑊𝑊𝑊. Figure 2 shows that the 
second-step forecast 𝑦𝑦� traces the WEO GDP level 𝑦𝑦𝑊𝑊𝑊𝑊𝑊𝑊 and the quarter-on-quarter growth with high precision, 
much better than the first-step forecast 𝑦𝑦� and the reconciled-but-not-smoothed alternative where the 
smoothness parameter is set to 𝜆𝜆 = 0. The first-step forecast 𝑦𝑦� is smooth but does not aggregate up to the 
annual GDP. When only min-T reconciliation is applied without smoothing, 𝜆𝜆 = 0, the forecast includes 
unintended boom and bust in 2024Q3 and Q4. The time series remains volatile even if the weight is replaced 
by an identity 𝐼𝐼𝑁𝑁. This is an inconvenient property of forecast reconciliation without smoothing since forecasters 
need to smooth the path manually to highlight the intended kinks and suppress the unintended ones. 
 

Figure 2. Forecast of US quarterly GDP 

  
Note: The left chart shows the forecast of US quarterly GDP in level. The right chart shows the forecast of 
US quarterly GDP in quarter-on-quarter growth rate. 
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Back testing shows that smooth reconciliation can slightly improve forecast performance, although the 
difference is not statistically significant. Figure 3 compares the root mean squared percentage error (RMSPE) 
of the 6-quarter forecast horizon, averaged over the past 25 years from 1996 to 2020. Expectedly, the RMSPE 
of the first-step forecast is the largest since it does not reflect the actual annual GDP. An interesting result is 
that the second-step forecast 𝑦𝑦� has a lower RMSPE than the reconciled-but-not-smoothed forecast. Since the 
formula of the min-T reconciliation is derived by optimally minimizing the variance of forecast errors, one would 
expect that imposing smoothness could lead to a suboptimal forecast. It turns out that the Diebold-Mariano test 
does not reject the null hypothesis that they have the same accuracy, and thus, the reconciled forecast can be 
smoothed without sacrificing the forecast performance. 
 
Figure 3 also shows the RMSPE for the second-step forecast with random noise, which is drawn from the 
empirical distribution of the HP filter’s cyclical component of the historical data. This confirms that simply adding 
noise to the second-step forecast 𝑦𝑦� to mimic the volatility of the historical data does not improve forecast 
accuracy. Annex II shows that the qualitative result remains similar even if the naïve forecaster in the first-step 
forecast is replaced with other widely used forecasting methods, such as autoregression and exponential 
smoothing. 
 

Figure 3. Forecast Performance Comparison 

 
Note: The chart shows the average root mean squared percentage error for four methods. 

 
Note that the smoothness of the proposed method may not be similar to that of the historical data. Figure 4 
applies the same back testing to the average roughness relative to the historical data over the past 25 years, 
where the roughness of a times series 𝑦𝑦 = {𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑇𝑇  is defined by the penalty term of the HP filter 
 

roughness(𝑦𝑦) = �{(𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡) − (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1)}2
𝑇𝑇−1

𝑡𝑡=2

, (21) 

 
and the average is taken for the ratio of a forecasting method’s roughness and historical data’s roughness. As 
expected, the proposed method is smoother than the historical data. In many forecasting models, such as 
random walk and autoregressions, the optimal forecast is smoother than realized times series. Thus, whether a 
forecasting method has a good forecast performance should be understood separately from whether it 
generates a smoothness similar to the true data. 
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Figure 4. Roughness Comparison 

 
Note: The chart shows the average roughness relative to the historical data in WEO for four methods. The 
average percentage deviation is 1 if the smoothness is similar to that of the historical data. 

 

3.3. Mixed-Frequency: Forecasting Both Annual and Quarterly GDP 
Section 3.2 illustrates the forecast of quarterly GDP. This section extends the example to the forecast of both 
the annual and quarterly GDP, illustrating how the proposed method handles mixed-frequency data. Although 
the extension to multiple time series is straightforward, the second-step forecast no longer tracks the WEO 
forecast. It is shown, however, that the proposed method can incorporate ad-hoc information into the 
constraints, and the information on the short-run and long-run growth can bring back the second-step forecast 
closer to the WEO forecast. 
 

3.3.1. Input 
The forecast horizon of interest is from 2023 to 2028 for the annual GDP and 2023Q3 to 2028Q4 for the 
quarterly GDP. The forecast horizon for the quarterly GDP is longer than that in section 3.2 since the annual 
GDP forecast is available until 2028 in WEO. To mitigate the end point problem of the HP filter, the forecast 
horizon is extended to 2022-2029 and 2023Q2 to 2029Q4.  
 
The first-step forecast 𝑦𝑦� remains to be the naïve forecast based on the growth rate for both annual and 
quarterly GDP, which takes the growth rate of the last observation. The first-step forecast 𝑦𝑦� is a 35 × 1 vector, 
stacking annual and quarterly forecasts 
 

𝑦𝑦� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑦𝑦�2022
⋮

𝑦𝑦�2029
𝑦𝑦�2023𝑄𝑄2

⋮
𝑦𝑦�2029𝑄𝑄4⎦

⎥
⎥
⎥
⎥
⎤

. (22) 

 
As in section 3.2, the estimation method of the 35 × 35 covariance matrix of forecast errors 𝑊𝑊�  is OASD (17). 
 
The constraints that the second-step forecast 𝑦𝑦� satisfies are 
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 𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊, 𝑡𝑡 = 2022, 2023𝑄𝑄2 

4𝑦𝑦�2023 − 𝑦𝑦�2023𝑄𝑄3 − 𝑦𝑦�2023𝑄𝑄4 = 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊 , 
4𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑡𝑡1 − 𝑦𝑦�𝑡𝑡𝑡𝑡2 − 𝑦𝑦�𝑡𝑡𝑡𝑡3 − 𝑦𝑦�𝑡𝑡𝑡𝑡4 = 0, 𝑡𝑡 = 2024, … ,2029. (23) 

 
Note that the constraint for 2023 no longer uses the annual GDP for 2023 in the WEO forecast, 𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊. In matrix 
form, the constraints can be written using a 9 × 35 matrix 𝐶𝐶 and 9 × 1 vector 𝑑𝑑. 
 
Finally, the smoothness matrix Φ is a block-diagonal matrix. 
 

Φ =

⎣
⎢
⎢
⎢
⎡
100
𝜎𝜎�𝐴𝐴2

𝐹𝐹𝐴𝐴

1600
𝜎𝜎�𝑄𝑄2

𝐹𝐹𝑄𝑄⎦
⎥
⎥
⎥
⎤

, 𝜎𝜎�𝐴𝐴2 = min
𝑖𝑖=1,…,8

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝐹𝐹𝐴𝐴: 8 × 8, 𝜎𝜎�𝑄𝑄2 = min
𝑖𝑖=9,…,35

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝐹𝐹𝑄𝑄: 27 × 27. (24) 

 
The smoothness parameter for the annual GDP is the typical value 100 normalized by the minimum variance of 
the forecast errors of annual GDP’s first-step forecast. The smoothness parameter for the quarterly GDP 
remains to be the typical value of 1600 normalized by the corresponding minimum variance of the forecast 
errors. The penta-diagonal matrices for the annual GDP 𝐹𝐹𝐴𝐴 and quarterly GDP 𝐹𝐹𝑄𝑄 are analogous to (4) with 
different sizes. Given the updated first-step forecast and its associated covariance matrix of forecast errors 
�𝑦𝑦�,𝑊𝑊��, constraints (𝐶𝐶,𝑑𝑑), and the smoothness matrix Φ, the second-step forecast 𝑦𝑦� can be derived by (11). 
 

3.3.2. Output 
Figure 5 shows that the second-step forecast 𝑦𝑦� by the proposed method is smooth and satisfies accounting 
identities, but the time series do not trace the WEO forecasts. The reconciled-but-not-smoothed time series are 
volatile and difficult to explain with an intuitive economic story. The second-step forecast 𝑦𝑦� is smoother, but 
since it only uses historical data for forecasting, it can deviate substantially from the WEO forecast, which may 
include future information, such as the recession and recovery in 2024 and 2025. 
 

Figure 5. Forecast of US Annual and Quarterly GDP 

  
Note: The left chart shows the US annual GDP growth. The right chart shows the US quarterly GDP quarter-
on-quarter growth rate. No constraints other than accounting identities are imposed. 
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3.3.3. Incorporating Ad-Hoc Information 
Incorporating ad-hoc future information is often useful. For example, if the forecasters know some budgets cut 
in near future or has some targeted potential growth rate in the long run, they want to incorporate such 
information in the forecast and connect other periods smoothly so that they can explain the economic story. 
 
Such ad-hoc future information can be incorporated in the constraints. In the WEO forecast of Figure 5, a rapid 
slowdown is predicted from 2023 to 2024 and a sharp recovery is predicted from 2024 to 2025. In addition to 
such a short-run development, the long-run growth rate converges to slightly above two percent. The 
information can be incorporated by imposing 
 

𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊 , 𝑡𝑡 = 2023, 2024, 2025, 

𝑦𝑦�𝑡𝑡 −
𝑦𝑦2028𝑊𝑊𝑊𝑊𝑊𝑊

𝑦𝑦2027𝑊𝑊𝑊𝑊𝑊𝑊 𝑦𝑦�𝑡𝑡−1 = 0, 𝑡𝑡 = 2028, 2029. (25) 

 
in addition to the constraints (23) in section 3.3.1. 
 
Figure 6 shows that the information (25) is sufficient to bring back the second-step forecast close to the WEO 
forecast. The reconciled-but-not-smoothed forecast coincides with the second-step forecast 𝑦𝑦� and WEO 
forecast 𝑦𝑦𝑊𝑊𝑊𝑊𝑊𝑊 up to 2025 due to the constraints, but it is more volatile than alternatives in other years. The 
quarterly GDP path also tracks the WEO forecast well, suggesting that there is not much quarter-specific 
economic story in the quarterly GDP forecast once the annual GDP is conditioned. 
 

Figure 6. Forecast of US Annual and Quarterly GDP with Ad-Hoc Constraints 

  
Note: The left chart shows the US annual GDP growth. The right chart shows the US quarterly GDP quarter-
on-quarter growth rate. In addition to accounting identities, the constraints on short-run GDP in 2024 and 
2025 and long-run growth after 2028 are imposed. 

 

3.4. Cross-Sectional and Temporal Constraints: Adding Subcomponents 
This section accommodates both cross-sectional (intra-temporal) and temporal (inter-temporal) constraints by 
adding subcomponents of annual GDP. The example with multivariate mixed-frequency time series 
demonstrates that the proposed method can produce sensible forecasts even in a higher dimensional 
environment with various types of constraints. 
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3.4.1. Input 
In addition to the annual and quarterly GDP, this example includes annual foreign balance 𝐹𝐹𝐵𝐵𝑡𝑡, annual 
domestic demand 𝐷𝐷𝐷𝐷𝑡𝑡, and annual statistical discrepancy 𝑆𝑆𝐷𝐷𝑡𝑡. In the expenditure approach of the GDP, the 
foreign balance is often decomposed into export minus import, and the domestic demand into consumption and 
investment. Further decomposition into lower subcomponents, such as private vs public, is available. The 
decompositions can also be made at quarterly frequency. Although exploring the most detailed decomposition 
at all possible frequencies is straightforward, this paper keeps the decomposition at high level and at annual 
frequency for expositional purpose. 
 
The forecast horizon of interest is from 2023 to 2028 for the annual variables and 2023Q3 to 2028Q4 for the 
quarterly GDP. To mitigate the end point problem of the HP filter, the horizon is extended to 2022-2029 and 
2023Q2 to 2029Q4 in conducting forecast. 
 
The first-step forecast 𝑦𝑦� remains to be the naïve forecast based on growth rate for the quarterly GDP, but for 
annual variables, the growth rate is replaced by the difference to accommodate foreign balance and statistical 
discrepancy that can take both positive and negative values. The first-step forecast 𝑦𝑦� is a 59 × 1 vector, 
stacking annual and quarterly forecasts. 
 

𝑦𝑦� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐺𝐺𝐺𝐺𝐺𝐺
�2022

⋮
𝐺𝐺𝐺𝐺𝐺𝐺�2029

𝐹𝐹𝐹𝐹�2022
⋮

𝐹𝐹𝐹𝐹�2029

𝐷𝐷𝐷𝐷�2022
⋮

𝐷𝐷𝐷𝐷�2029

𝑆𝑆𝑆𝑆�2022
⋮

𝑆𝑆𝑆𝑆�2029

𝐺𝐺𝐺𝐺𝐺𝐺�2023𝑄𝑄2
⋮

𝐺𝐺𝐺𝐺𝐺𝐺�2029𝑄𝑄4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (26) 

 
As in section 3.2, the estimation method of the 59 × 59 covariance matrix of forecast errors 𝑊𝑊�  is OASD (17). 
 
We impose both accounting identities and ad-hoc information on the second-step forecast 𝑦𝑦�. The accounting 
identities are analogous to (23) and include the GDP expenditure approach identity. 
 

𝐹𝐹𝐵𝐵2022 = 𝐹𝐹𝐵𝐵2022𝑊𝑊𝑊𝑊𝑊𝑊, 
𝐷𝐷𝐷𝐷2022 = 𝐷𝐷𝐷𝐷2022𝑊𝑊𝑊𝑊𝑊𝑊, 
𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊, 𝑡𝑡 = 2022, 2023𝑄𝑄2, 

4𝐺𝐺𝐺𝐺𝐺𝐺2023 − 𝐺𝐺𝐺𝐺𝐺𝐺2023𝑄𝑄3 − 𝐺𝐺𝐺𝐺𝐺𝐺2023𝑄𝑄4 = 𝐺𝐺𝐺𝐺𝐺𝐺2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 + 𝐺𝐺𝐺𝐺𝐺𝐺2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊 , 
4𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 − 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡𝑡𝑡1 − 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡𝑡𝑡2 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡3 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡4 = 0, 𝑡𝑡 = 2024, … ,2029, 

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 − 𝐹𝐹𝐵𝐵𝑡𝑡 − 𝐷𝐷𝐷𝐷𝑡𝑡 − 𝑆𝑆𝐷𝐷𝑡𝑡 = 0, 𝑡𝑡 = 2022, … ,2029. (27) 



IMF WORKING PAPERS Smooth Forecast Reconciliation 

INTERNATIONAL MONETARY FUND 19 

Ad-hoc information is analogous to (25) and includes 

𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊, 𝑡𝑡 = 2023, 2024, 2025, 

𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 −
𝐺𝐺𝐺𝐺𝑃𝑃2028𝑊𝑊𝑊𝑊𝑊𝑊

𝐺𝐺𝐺𝐺𝑃𝑃2027𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡−1 = 0, 𝑡𝑡 = 2028, 2029, 

𝐹𝐹𝐵𝐵𝑡𝑡 −
𝐹𝐹𝐵𝐵2028𝑊𝑊𝑊𝑊𝑊𝑊

𝐺𝐺𝐺𝐺𝑃𝑃2028𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = 0, 𝑡𝑡 = 2028, 2029, 

𝐷𝐷𝐷𝐷𝑡𝑡 −
𝐷𝐷𝐷𝐷2028𝑊𝑊𝑊𝑊𝑊𝑊

𝐺𝐺𝐺𝐺𝑃𝑃2028𝑊𝑊𝑊𝑊𝑊𝑊 𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = 0, 𝑡𝑡 = 2028, 2029. (28) 

As in section 3.3.3, the constraints on the medium-term GDP reflect the ad-hoc information on recession and 
recovery in the WEO forecast. The constraints for 2028 and 2029 reflect the long-run information that 
forecasters may have from various long-run analyses, such as the modellings of potential growth and external 
balance. Note that we do not require the foreign balance and domestic demand to coincide with the WEO 
forecast from 2023 to 2025, unlike the annual GDP. This is to see how subcomponents track the WEO forecast 
when the annual GDP exhibits a recession. In matrix form, the constraints can be written using a 28 × 59 matrix 
𝐶𝐶 and 28 × 1 vector 𝑑𝑑. 

Finally, the smoothness matrix Φ is a block-diagonal matrix. 

Φ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
100
𝜎𝜎�𝐴𝐴2

𝐹𝐹𝐴𝐴

100
𝜎𝜎�𝐹𝐹𝐹𝐹2

𝐹𝐹𝐴𝐴

100
𝜎𝜎�𝐷𝐷𝐷𝐷2

𝐹𝐹𝐴𝐴

100
𝜎𝜎�𝑆𝑆𝑆𝑆2

𝐹𝐹𝐴𝐴

1600
𝜎𝜎�𝑄𝑄2

𝐹𝐹𝑄𝑄⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (29) 

where �𝐹𝐹𝐴𝐴,𝐹𝐹𝑄𝑄� are the same penta-diagonal matrices as (24), and the variances are estimated by 

𝜎𝜎�𝐴𝐴2 = min
𝑖𝑖=1,…,8

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝜎𝜎�𝐹𝐹𝐹𝐹2 = min
𝑖𝑖=9,…,16

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝜎𝜎�𝐷𝐷𝐷𝐷2 = min
𝑖𝑖=17,…,24

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝜎𝜎�𝑆𝑆𝑆𝑆2 = min
𝑖𝑖=25,…,32

𝑊𝑊�𝑖𝑖𝑖𝑖 , 𝜎𝜎�𝑄𝑄2 = min
𝑖𝑖=33,…,59

𝑊𝑊�𝑖𝑖𝑖𝑖 . (30)

Given the first-step forecast and its associated covariance matrix of forecast errors �𝑦𝑦�,𝑊𝑊��, constraints (𝐶𝐶, 𝑑𝑑), 
and the smoothness matrix Φ, the second-step forecast 𝑦𝑦� can be derived by (11). 

3.4.2. Output 
Figure 7 shows that the second-step forecast 𝑦𝑦� by the proposed method is smooth and traces the WEO 
forecast better than the first-step and reconciled-but-not-smoothed forecasts. The reconciled-but-not-smoothed 
forecast is more volatile than in section 3.3 and exhibits kinks that are not easy to explain. The kinks are so 
large that the difference between the WEO forecast and the proposed method is almost invisible except for the 
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statistical discrepancy. The foreign balance in GDP and domestic demand in GDP trace the WEO forecast 
satisfactorily with a smoother path, even though no ad-hoc information except for the initial and terminal values 
is imposed. 
 

Figure 7. Forecast of Mixed-Frequency GDP and Subcomponents 

  

  

 

 

Note: Growth rates are in percentage. Ratios are not multiplied by 100. 
 

4. Conclusion 
This paper proposes a smooth reconciliation method that allows the forecast to satisfy constraints and the time 
series to be smooth. The method can be used for multivariate forecasts of mixed-frequency time series. Its 



IMF WORKING PAPERS Smooth Forecast Reconciliation 

 

INTERNATIONAL MONETARY FUND 21 

 

closed-form solution is amenable to a high-dimensional environment. The method is flexible enough to 
incorporate accounting identities, within or across time, and other ad-hoc information that the forecasters may 
want to incorporate. Imposing smoothness does not incur loss in forecast performance and improves practical 
usefulness by highlighting the kinks that forecasters intentionally introduce and suppressing unintended noises.  
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Annex I. Comparison with Modified Denton 
The problem of adjusting the quarterly path given the annual path, called benchmarking, has been studied in 
the context of national accounts statistics. A modified version of Denton (1971) by Cholette (1984) can be 
applied to the problem as follows. 
 

{𝑦𝑦�𝑡𝑡}𝑡𝑡=2023𝑄𝑄3
2024𝑄𝑄4 = argmin

{𝑦𝑦𝑡𝑡}𝑡𝑡=2023𝑄𝑄3
2024𝑄𝑄4

� �
𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
𝑦𝑦�𝑡𝑡

−
𝑦𝑦𝑡𝑡−1 − 𝑦𝑦�𝑡𝑡−1

𝑦𝑦�𝑡𝑡−1
�
22024𝑄𝑄4

𝑡𝑡=2023𝑄𝑄4

 

 𝑠𝑠. 𝑡𝑡.  �
𝑦𝑦2023𝑄𝑄3 + 𝑦𝑦2023𝑄𝑄4 = 4𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊

𝑦𝑦2024𝑄𝑄1 + 𝑦𝑦2024𝑄𝑄2 + 𝑦𝑦2024𝑄𝑄3 + 𝑦𝑦2024𝑄𝑄4 = 4𝑦𝑦2024𝑊𝑊𝑊𝑊𝑊𝑊 , (31) 

 

where 𝑦𝑦�𝑡𝑡 and 𝑦𝑦𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊 denote the same first-step forecast and WEO data as in section 3.2. The problem can be 
written as a quadratic form in {𝑦𝑦𝑡𝑡}𝑡𝑡=2023𝑄𝑄3

2024𝑄𝑄4  and interpreted as another projection problem, similar to (1), although 
it doesn’t have a mechanism to ensure smoothness. Since the HP filter is not involved, the time series are not 
extended beyond the periods of interest and denoted by 𝑠𝑠 representing “short.” 

 

min
𝑠𝑠

(𝑠𝑠 − 𝑠̂𝑠)′Ω(𝑠𝑠 − 𝑠̂𝑠)  𝑠𝑠. 𝑡𝑡.  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑠𝑠 = �𝑦𝑦2023𝑄𝑄3, … ,𝑦𝑦2024𝑄𝑄4�

′, 𝑠̂𝑠 = �𝑦𝑦�2023𝑄𝑄3, … , 𝑦𝑦�2024𝑄𝑄4�
′  

𝐴𝐴𝐴𝐴 = 𝑏𝑏, 𝐴𝐴 = �1 1 0 0 0 0
0 0 1 1 1 1� , 𝑏𝑏 = �

4𝑦𝑦2023𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄1𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑦𝑦2023𝑄𝑄2𝑊𝑊𝑊𝑊𝑊𝑊

4𝑦𝑦2024𝑊𝑊𝑊𝑊𝑊𝑊 �

Ω = 𝐿𝐿𝐿𝐿, 𝑅𝑅 = 𝐿𝐿′ =

⎣
⎢
⎢
⎢
⎡
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑦𝑦�2023𝑄𝑄3

⋱
1

𝑦𝑦�2024𝑄𝑄4⎦
⎥
⎥
⎥
⎥
⎤ . (32) 

 
Although the weight matrix Ω in the modified Denton method is degenerate, the problem can be solved 
numerically. Figure 8 overlays the modified Denton over Figure 2. The time series is less smooth, like 
reconciliation-only, as expected since it does not have a mechanism to ensure smoothness. 
 

Figure 8. Comparison with Modified Denton 
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Annex II. Alternative First-Step Methods 
Figure 9 shows the back testing by replacing the naïve forecaster by autoregression with four lags. Although 
the quantitative magnitudes differ, the qualitative results remain the same. 
 

Figure 9. Forecast Performance Comparison When the First Step is AR(4) 

 
Note: The chart shows the average root mean squared percentage error for four methods. 

 
Figure 10 shows the back testing by replacing the naïve forecaster by exponential smoothing with automatic 
parameter selection, which is available in many statistical software such as the sktime package by Loning et al. 
(2019). Although the quantitative magnitudes differ, the qualitative results remain the same. 
 

Figure 10. Forecast Performance Comparison When the First Step is AutoETS 

 
Note: The chart shows the average root mean squared percentage error for four methods. 
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