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1 Introduction

2021 provided vivid evidence of how large shocks to aggregate demand and supply can lead to sharp

surges in inflation; Figure 1 illustrates the jump in CPI inflation experienced by the US, countries

in the Euro area, Japan, and the UK. The belief that the rise in inflation was due to temporary

factors, including reopenings after COVID shutdowns, supply chain disruptions, and large fiscal

expansions designed to mitigate the impact of COVID, the war in Ukraine, and energy price spikes,

combined with the belief that ten years of low inflation had firmly anchored inflation expectations,

produced a view among central banks that inflation would quickly return to pre-COVID levels. As

a consequence, many central banks, including the Federal Reserve, the Bank of England and the

European Central Bank, delayed responding as inflation rose well above the banks’ official targets.

In the U.S., the Federal Reserve only moved to raise its policy rate in March 2022, a full year after

PCE inflation had breached its 2-percent target.

Figure 1: CPI inflation across countries (year-over-year percentage change. Source: IMF IFS,
FRED.)

The inflation surge persisted for much longer than central banks expected. For the U.S. case,

Figure 2 shows PCE inflation projections from the December and June meetings of the Federal

Reserve Open Market Committee (FOMC), beginning in December 2020 and ending in December

2023. In Dec. 2020, the FOMC was projecting inflation at the end of 2021 would be less than its 2

percent target. By June 2021, this estimate had risen to 3.4. The actual year-over-year inflation for

2021 was 6.2 percent. The FOMC was still projecting inflation to return to roughly 2 percent by

the end of 2022; it ended up equaling 5.4 percent by the end of 2022. The sequence of projections
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until June of 2023 showed a consistent upward shift at each new meeting. These projections reveal

underestimates of inflation and overestimates of the speed with which inflation would decline. The

initial 2021 surge in inflation persisted to a degree that policymakers failed to foresee.

Figure 2: FOMC projections for 4-quarter PCE inflation at different meeting dates (Source: FOMC
Summary of Economic Projections, various meeting minutes)

In this paper, we evaluate the costs and benefits of waiting to react in the face of a surge

in inflation caused by a transitory shock. Standard analyses of monetary policy assume that the

monetary authority reacts immediately when a shock to inflation occurs. The failure to react in 2021

raised the specter of a return to the high inflation of the 1960s and 1970s when disruptions in energy

markets created surges in inflation and declines in economic activity – the era of “stagflation”.

Figure 3 shows U.S. inflation and unemployment from 1960 until 1985.1 The two large oil price

shocks in the 1970s generated increases in inflation that are clearly visible in the figure. Even

though core PCE excludes food and energy prices, both inflation measures paint a similar picture.

The red line shows a linear trend estimated using PCE inflation between 1960 and 1981 as inflation

drifted upwards from around 2 percent to almost 10 percent.

1Inflation is measured by both the PCE price index and core PCE (PCE less food and energy); the unemployment
rate gap is measured by civilian unemployment less the CBO’s estimate of the natural rate of unemployment.
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Figure 3: U.S. PCE inflation (year-over-year percentage change), core-PCE inflation (year-over-
year percentage change), and the civilian unemployment rate (percent): 1960-1985.

In hindsight, the major policy error during the 1970s was not the volatility of inflation caused

by oil shocks. It was allowing inflation to have a decades-long upward trend. Only with a major

shift in monetary policy did countries bring inflation back to low levels, but the cost of doing so

was reflected in significant recessions. In the case of the U.S., disinflation was associated with back-

to-back recessions in 1980 and 1982. Central bankers learned much from this earlier experience.

And unlike the post-financial crisis decade of zero nominal interest rates during which many central

banks found themselves in an unfamiliar environment (Japan being the exception here), by the time

of the recent inflation surge, central bankers should have been well-schooled in how to deal with

a resurgence of inflation. Yet the slow reaction to inflation during 2021 raises several important

questions: How costly is delay when fighting a surge in inflation? If a policy is delayed, should

it then be more aggressive? Is a credible promise to eventually fight inflation a substitute for

undertaking an immediate policy action?

We employ a new Keynesian model with endogenous sources of persistence to address these

questions. Monetary policy is modelled by an inertial Taylor rule and agents hold rational ex-

pectations. We model the inflation surge of 2021 as the result of a negative innovation to the

economy’s flexible-price output that pushes up firms’ real marginal costs. This is clearly a stylized

representation of the factors, which included disruptions to supply chains, to energy markets, and

fiscal policies, that played out during 2021 and 2022. We assume the shock to inflation is persis-

tent but transitory; the policies we consider, which all satisfy the Taylor principle, ensure inflation
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will eventually revert to its steady-state level. Our approach neglects the COVID-related fiscal

contributions to inflation. This reflects our main objective, which is not to model the specifics of

recent inflation experiences but to address the more general issue of how a failure by the monetary

authority to react promptly to a jump in inflation affects the subsequent paths of inflation and

the output gap. For this same reason, we ignore issues associated with the zero lower bound on

the nominal policy rate. Our experiment, consisting of a positive and persistent shock to inflation,

never results in the policy rate dipping below its initial value.

We show that waiting to respond, as central banks did in 2021 and early 2022, can amplify

the rise in inflation, but simultaneously it can boost output and dampen any subsequent recession.

A metric is needed to evaluate the net effect of these different impacts on economic activity and

inflation. We employ two measures to rank outcomes. One is based on a standard quadratic loss

function. The second is based on the notion that, for a given disinflationary path for inflation,

policymakers prefer paths that avoid recessions or even boost output, in keeping with the desire

for a “soft landing”.

We find that on both measures, delay is always costly, and the marginal cost of additional delay

is increasing. Importantly, we find that adopting a more aggressive response to inflation in the

sense of implementing a rule with a large coefficient on inflation reduces loss, as does adopting a

less inertial policy rule. Conditional on delay, loss is lowest if policy reacts with both a stronger

response to inflation and with less inertia.

Because expectations of future policy actions play an important role, a credible promise to re-

spond in the future can serve as a substitute for an immediate reaction. We assess the consequences

of policy delay when agents’ expectations systematically differ from full information rational ex-

pectations.

To evaluate the consequences of non-rational expectations, we follow the behavioral-based ap-

proach of Gabaix (2014; 2020). He uses both micro and macro empirical findings to argue for

cognitive discounting – the systematic tendency for agents to discount more heavily the future rel-

ative to what would occur under rational expectations. Pfäuti and Seyrich (2022) provide evidence

of agents’ underreaction due to cognitive discounting by estimating the discounting parameter us-

ing US consumer survey data. Hirose and Iiboshi (2022) estimate a New Keynesian model that

incorporates bounded rationality and the effective lower bound on the nominal interest rate. Their

Bayesian estimation results find their model with bounded rationality fits US data better than the

version of the model that assumes rational expectations. Ilabaca, Meggiorini, and Milani (2020)

also estimate a new Keynesian model that incorporates behavioral expectations in the form of cog-

nitive discounting. They find a substantial degree of bounded rationality and estimate that this

helped prevent the pre-Volcker economy from falling into indeterminacy. Andrade, Coredeiro, and

Lambais (2019) integrated cognitive discounting into the new Keynesian framework and provide

estimates that offer support for the presence of such discounting.
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Cognitive discounting reduces the power of forward guidance. Both inflation and the output

gap are less volatile when agents display cognitive discounting. However, the general conclusions

obtained under rational expectations still hold. Both measures of loss are lowest when there is no

delay in responding, and conditional on delay, loss is lower when policy reacts more aggressively.

Our paper is part of the large literature that evaluates the role of monetary policy rules in

affecting the dynamic response of the economy to exogenous shocks. This literature has played a

major role in the design and evaluation of monetary policy in the 30 years since the seminal work

of Taylor (1993). This research has investigated the implications of adding or replacing variables in

the original Taylor rule, estimating or optimizing the coefficients in the rule, and comparing non-

inertial versus inertial rules. However, this work has assumed that the monetary authority reacts

immediately to movements in the endogenous variables that appear in the rule. An exception is

Walsh (2022), who investigated the consequences of a delayed policy reaction to a persistent inflation

shock. Walsh’s analysis had three important limitations. First, delay was modeled as involving both

a failure to react when the shock occurs and backward-looking policy when the monetary authority

finally did react. We instead assume that once the monetary authority does react, it does so by

responding to current inflation and the output gap. Second, he only examined the case of rational

expectations. Beliefs that the policy authority will respond in the future can have large effects

immediately through the power of forward guidance. We evaluate the consequences of deviations

from rational expectations to investigate how the costs of delay are effected when forward guidance

is less powerful. Third, delay can affect the behavior of inflation and unemployment differently, but

Walsh did not provide a metric which could be used to assess the costs of policy delay. We adopt

two measures of loss that allow us to evaluate the costs of delay.

The cognitive discounting approach has been used by Budianto, Nakata, and Schmidt (2023) to

evaluate average inflation targeting relative to inflation targeting. They find that while price level

targeting dominates finite-period average inflation targeting under rational expectations, this is no

longer the case with boundedly rational expectations, unless the deviation of expectations from

rational expectations is small. If such deviations are large, inflation targeting can perform better

than either price level of average inflation targeting. Nakata, Ogaki, Schmidt, and Yoo (2019) show

that forward guidance at the effective lower bound is less effective under cognitive discounting and

that this implies it is optimal for the central bank to keep the policy rate at the effective bound for

longer.

The organization of the rest of the paper is as follows. In section 2, we use a simple three-period

model to illustrate how policy delay has opposing effects on the paths of inflation and the output

gap. Section 3 develops the basic model we use to analyze policy delay. The model incorporates

indexation to trend inflation, habits in consumption and inertia in the policy rule. In section 4 we

compare outcomes when these beliefs are formed under rational expectations. To investigate how

sensitive these results are to the rational expectations assumption, we then consider a behavioral
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approach to expectations formation in section 5. Conclusions are summarized in section 7.2

2 A simple example

In this section, we set out a simple, three-period example designed to illustrate the effects of policy

delay. The economy is characterized by an Euler condition and a new Keynesian Phillips curve.

Let πi and xi denote inflation and the output gap in period i, i = 1, 2, 3. The economy experiences

a positive inflation shock e1 > 0 in period 1; the shock persists but decays and equals e2 = ρe1,

0 ≤ ρ < 1, in period 2. Note that ρ can also be interpreted as the probability that the shock in

period 2 is either e1 or 0. There are no shocks in period 3, and π3 = x3 = 0.

In period 2, the equilibrium conditions are

π2 = βE2π3 + κx2 + e2 = κx2 + e2,

x2 = E2x3 −
1

σ
(i2 − E2π3) = − 1

σ
i2,

and

i2 = γ2ϕπ2.

The last equation is the policy rule in which ϕ is the response to inflation, conditional on the central

bank responding, and γ2 is an index variable that equals 1 if policy responds in period 2 and 0

otherwise. Note that the assumption that π3 = x3 = 0 has been used to set E2π3 = E2x3 = 0. It

follows that

π2 = −γ2κϕ2

σ
π2 + e2 ⇒ 0 <

(
σ

σ + γ2κϕ

)
e2 ≤ e2 (1)

and

x2 = − 1

σ
i2 = −γ2ϕ

σ
π2 ⇒ −e2 ≤ −

(
γ2ϕ

σ + γ2κϕ

)
e2 ≤ 0 < 0. (2)

When policy does act, inflation is partially stabilized and rises less than e2, while output is desta-

bilized as a consequence. Note that if γ2 = 0 (no policy response in period 2), π2 = e2 and

x2 = 0.

In period 1, equilibrium is determined by

π1 = βE1π2 + κx1 + e1,

and

x1 = E1x2 −
1

σ
(γ1ϕπ1 − E1π2) .

The parameter γ1 is an index that equals 0 if policy does not respond in period 1 and 1 if it does.

2The appendix provides details on derivations and robustness results.
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Using (1) and (2) in the period 1 equilibrium conditions yields algebraic expressions for π1 and x1.

See Appendix 1 for details.

We assume that if the central bank responds in period 1, it also responds in period 2. That leaves

three alternative policy specifications to consider. First, with γ1 = γ2 = 0, the central bank does

not respond in either period 1 or 2. Second, with γ1 = 0 but γ2 = 1, the central bank delays until

period 2 but does respond at that point. Finally, the third case to consider is when γ1 = γ2 = 1;

policy responds without any delay. Let πs(λ1, λ2) and xs(λ1, λ2) denote the equilibrium values of

inflation and the output gap in period s as a function of the policy choices. The appendix shows

that

π1(0, 0) =
[
1 + ρe

(
β +

κ

σ

)]
e1,

π1(0, 1) =
[
1 + ρe

(
β +

κ

σ
(1− ϕ)

)]
e1,

π1(1, 1) = δ
[
1 + δρe

(
β +

κ

σ
(1− ϕ)

)]
e1,

where

δ =

(
σ

σ + κϕ

)
≤ 1.

it follows that

π1(0, 0) > π1(0, 1) > π1(1, 1),

and the rise in inflation in period 1 is increasing in delay.

For period 2,

π2(0, 0) = ρee1,

π2(0, 1) = δρee1 = δπ2(0, 0) < π2(0, 0),

π2(1, 1) = δρee1 = δπ2(0, 0) < π2(0, 0),

implying

π2(0, 0) > π2(0, 1) = π2(1, 1).

The rise in period 2 is also increasing in delay. Delay is detrimental to controlling inflation.

For the output gap in period 1,

x1(0, 0) =
ρe
σ
e1 > 0,

x1(0, 1) =
ρe
σ

(1− ϕ) e1 < 0 < x1(0, 0),
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and

x1(1, 1) = δ

[
−ϕ

σ
+ δ

ρe
σ

(1− ϕ− βϕ)

]
e1 = δ2x1(0, 1)− δ

ϕ

σ
(1 + δρeβ) e1 < x1(0, 1) < 0.

For period 2,

x2(0, 0) = 0,

x2(0, 1) = −δ
ρeϕ

σ
e1 < 0 = x2(0, 0),

x2(1, 1) = x2(0, 1) < x2(0, 0).

Thus, the absence of a policy reaction (λ1 = λ2 = 0) leads to an output expansion in the first

period due to the fall in the real interest rate caused by the rise in expected future (i.e., period 2)

inflation coupled with the lack of a policy response. The output gap then returns to zero in the

second period. When policy delays buts then does respond in period 2, output in the second period

falls as policy responds more than one-to-one to the rise in inflation (ϕ > 1). This, in turn, causes

output to fall in period 1. Absent any delay (λ1 = λ2 = 1), output falls in period 1 by more than

when λ1 = λ2 = 0 or when λ1 = 0 and λ2 = 0, while output in period 2 is independent of any

period 1 policy response and declines the least if policy does not respond in period 2.

This simple example suggests that the consequences of delay depend, in a significant way, on

the persistence of the shock, as measured by ρe, and on the strength of the policy reaction, as

measured by ϕ. For example,

To illustrate the properties of the equilibrium and the consequences of policy delay, we nu-

merically evaluate the model. We chose standard parameter values for the model. Specifically,

β = 0.995, κ = 0.17, σ = 1, and ϕ = 2. We consider a one-unit inflation shock, e1 = 1, and set

ρ = 0.9.

Figure 4 shows the outcomes for the policy interest rate (left panel), inflation (center panel),

and the output gap (right panel). The standard analysis would have policy respond when the shock

first occurs in period 1; this is shown by the black (crosses) line in the left panel (γ1 = 1, γ2 = 1).

The policy interest rate is increased in response to the positive inflation shock. Since the shock

persists into period 2 (ρ = 0.9), i2 remains high. When the shock disappears in period 3, i3 = 0.

As a consequence, the center panel shows that this policy does a good job of stabilizing inflation.

However, it does so at the cost of a sharp drop in the output gap, which remains negative in period

2.

Next, consider a policy that delays one period before responding to the shock (γ1 = 0, γ2 = 1).

This scenario is denoted by red (diamonds). Because this rate hike in period 2 is anticipated in

period 1, it succeeds in limiting the rise in π1 through the impact of expected period 2 inflation on

π1. Inflation behaves similarly to the γ1 = γ2 = 1 case. The output gap does as well, though the
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Figure 4: Three period example: shock e1 occurs in period 1 and ρe1 in period 2. If γ = 0 (q = 0),
there is no policy response in period 1 (period 2); if γ = 1 (q = 1), policy does respond in period 1
(period 2).

drop in output in period 2 is somewhat smaller.

Finally, the blue (circles) lines show outcomes in the face of no policy response in either period

1 or 2 (γ1 = 0, γ2 = 0). Inflation is much more volatile than in the other two cases. However,

the output gap rises in period 1 rather than falls, and has returned to its steady state by period 2.

This result is due to the decline of the real interest rate when the policy rate is unchanged while

inflation falls.

We take away two conclusions from this simple example. First, delay affects inflation and the

output gap differently. Greater delay causes a larger rise in inflation, while it leads to a smaller

decline and potentially even a rise in the output gap. Second, if policy outcomes are evaluated

using a standard quadratic loss function in inflation and output gap volatility, the loss associated

with policy delay will depend critically on the relative weight placed on output gap volatility in the

loss function. If it is large, delay may be optimal; if it is small, delay will be costly.

We next turn to a more fully specified NK model to see whether the basic insights from this

simple example continue to hold.

3 A NK model with indexation and habit formation

We work with a calibrated Keynesian model incorporating habits in consumption choice and in-

dexation to the central bank’s inflation target in firm pricing decisions. This latter assumption
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implies transitory inflation shocks will not affect trend inflation as long as the policy rule ensures a

unique determinate equilibrium.3. Key components of the model are an intertemporal optimality

condition derived from household consumption choice, a new Keynesian Phillips curve, and a rule

specifying the behavior of monetary policy. Because we will be considering both rational and non-

rational expectations, we use Ẽ to denote a general expectations operator, while E denotes rational

expectations.

The demand side of the economy is characterized by a log-linearized Euler equation consistent

with the presence of external habits in consumption. The preferences of household i are given by

U i
t = νt

[(
Ci
t − hCt−1

)1−σ

1− σ
− χt

(
N i

t

)1+η

1 + η

]
,

where νt and χt are taste shocks, Ci
t is the standard Dixit-Stiglitz basket of differentiated finals

goods and Nt represents hours of labor supplied. Habits are external, depending on aggregate

consumption Ct, though in equilibrium, Ci
t = Ct. Agents with higher h display a stronger effect of

others’ consumption on their own consumption choice. The household’s problem is to choose Ci
t+i

and N i
t+i to maximize

∞∑
i=0

βiEtU
i
t+i

(
Ci
t+i, Ct+i−1, N

i
t+i

)
,

where 0 < β < 1, subject to the budget constraint

WtN
i
t + (1 + int )B

i
t−1 = PtC

i
t +Bi

t,

where Pt is the price of a unit of Ci
t , Wt is the nominal wage, int is the nominal interest rate on one

period bonds, and Bi
t is the quantity of bonds held from t to t+ 1. Nominal wages are assumed to

be flexible. The two optimality conditions implied by the household problem are the intertemporal

condition

νt
(
Ci
t − hCt−1

)−σ
= β (1 + int ) Et

(
Pt

Pt+1

)
νt+1

(
Ci
t+1 − hCt

)−σ
(3)

and the intratemporal optimal condition equating the real wage to the marginal rate of substitution

between leisure and consumption given by

Wt

Pt
=

χt

(
N i

t

)η(
Ci
t − hCt−1

)−σ . (4)

3The capital stock and nominal wage stickiness are additional factors affecting dynamics in empirical DSGE
models such as Christiano, Eichenbaum, and Evans (2005), Smets and Wouter (2007) Del Negro, Schorfheide, Smets
and Wouter (2007), Justiniano, Primiceri, and Tambalotti (2013), and Cai, Del Negro, Herbst, Matlin, Sarfati, and
Schorfheide (2021)
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Define πt as the deviation of inflation around steady-state inflation, π, and let ıt = int −(ρ+π) be

the deviation of the nominal interest rate around its steady-state, where ρ = β−1− 1. For all other

variables, we use a hat to denote log-deviation around steady state; for example, ĉt ≡ log (Ct/C),

where C without a time subscript is the variable’s non-stochastic steady-state value.

Taking log deviations around steady state and imposing the equilibrium condition that ĉit = ĉt

and goods clearing ĉt = ŷt, (3) becomes

ŷt =

(
1

1 + h

)
Ẽtŷt+1 +

(
h

1 + h

)
ŷt−1 −

1

σ

(
1− h

1 + h

)(
it − Ẽtπt+1 + Etν̂t+1 − ν̂t

)
. (5)

Let ŷft denote output (as a log-deviation around steady state) in a flex-price, zero inflation

equilibrium when appropriate subsidies ensure an efficient steady state. Then (5) can be written

in terms of the output gap xt ≡ ŷt − ŷft as

xt =

(
1

1 + h

)
Ẽtxt+1 +

(
h

1 + h

)
xt−1 −

1

σ

(
1− h

1 + h

)(
it − Ẽtπt+1 − r̂∗t

)
, (6)

where

r̂∗t = − (Etν̂t+1 − ν̂t)− σ

(
1 + h

1− h

)[
∆ŷft −

(
1

1 + h

)
Ẽt∆ŷft+1 −

(
h

1 + h

)
∆ŷft−1

]
. (7)

We derive an explicit expression for ŷft below as a function of lagged output, the labor taste (χ̂t),

and productivity (ẑt) shocks; see (10).

There is a continuum of firms, each of which is the monopoly supplier of a differentiated final

consumption good. Firms operate with a common production technology. The output of the firm

j is

Yj,t = ZtN
1−α
j,t , (8)

where Zt is a stochastic, aggregate productivity factor. Firm j faces a downward-sloping demand

curve with price elasticity ϵ and receives a subsidy at rate τ > 0. With flexible prices, firm j would

set its price Pj,t as a markup ϵ/ (ϵ− 1) > 1 over nominal marginal cost (1− τ)PtMCj,t. With all

firms charging the same price, Pt(j) equals the average price Pt and the markup is equal to one over

real marginal cost. Real marginal cost is equal to the real wage divided by the marginal product

of labor, or

MCt =
Wt/Pt

ZtN
−α
t

=
1

1− τ

ϵ− 1

ϵ
, (9)

where we drop the j index as, with all firms setting the same price, employment is equalized across

firms. Assume the subsidy τ is set at 1/ϵ to offset the steady-state distortion due to the markup.

With flexible prices, the real wage is also equal to the marginal rate of substitution of the
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household given by (4). Setting Ct = Yt, and letting a superscript f denote variables when prices

and wages are flexible, the equilibrium real wage ωf
t is given by

ωf
t =

χt

(
Nf

t

)η

(
Y f
t − hY f

t−1

)−σ = ZtN
f−α
t .

Expressing this condition in terms of log deviations around the steady state and then using the

production function (26), which implies to first-order n̂f
t = (1− α)−1

(
yft − ẑt

)
, one obtains

ŷft =

[
σ

1− h
+

α+ η

1− α

]−1 [( σh

1− h

)
ŷft−1 +

(
1

1− α

)
ẑt − χ̂t

]
. (10)

In a flexble-price, flexible-wage equilibrium, output follows an AR(1) process with innovations

arising from productivity and labor supply shocks.4

When prices are sticky, we assume a standard Calvo adjustment process in which each period a

randomly chosen fraction 1− ω of firms optimally adjust their price, while the remaining fraction

ω udaptes their price based on steady-state inflation.5 The reduced form inflation adjustment

equation takes the form

πt = βẼtπt+1 + κ (m̂ct + êt) , (11)

where πt is inflation, m̂ct is real marginal cost, and êt is an inflation shock reflecting inefficiencies

that result in stochastic fluctuations around the efficient steady-state, and

κ =
(1− ω) (1− ωβ)

ω

1− α

1− α+ ϵα
.

In the expression for κ, ϵ > 1 denotes the elasticity of substitution among varieties of goods and

α denotes the degree of decreasing returns to labor in production. While we specify the inflation

process to be consistent with nonzero trend inflation, we do not consider changes in trend inflation

and therefore normalize trend inflation to equal zero: π = 0.

Average real marginal cost in log-deviation form is the real wage minus the marginal product

of labor, or, using (26),

m̂ct = ω̂t − ẑt + αn̂t. (12)

The average marginal rate of substitution (MRS) between leisure and consumption depends on

4The process is stable; the coefficient on ŷf
t−1 is positive and less than one.

5See Cogley and Sbordone (2008, p. 2105). As surveyed in Ascari and Sbordone (2014), introducing non-zero
trend inflation into a standard Calvo model of price adjustment without indexation (consistent with micro firm-level
data) leads to a NKPC in which the reduced form coefficients are functions of trend inflation.
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habits. Log-linearizing (4) yields

ω̂t = ηn̂t +
σ

1− h
(ĉt − hĉt−1) + χ̂t. (13)

Using (13) in (12), together with the log-linearized production function, n̂t = (ŷt − ẑt) / (1− α)

and goods market clearing, ĉt = ŷt, imply

m̂ct =

[
σ

1− h
+

α+ η

1− α

]
ŷt −

σh

1− h
ŷt−1 + χ̂t −

(
1 + η

1− α

)
ẑt.

Combining these results with (10), one obtains

πt = βẼtπt+1 + κ

[(
σ

1− h
+

α+ η

1− α

)
xt −

(
σh

1− h

)
xt−1 + êt

]
. (14)

The final component of our baseline model is a specification of monetary policy. We allow for

policy inertia (0 < ρ < 1) and policy delay in which policy responds to inflation and the output gap

with a k-period delay. Letting t0 denote the period in which the shock occurs. Policy is represented

by an instrument rule of the form

it =

{
0 for t = t0, t0 + 1, ..., t0 + k − 1

ρiit−1 + (1− ρi) (ϕππt + ϕxxt) for t ≥ t0 + k.
(15)

When t = t0 + k, the monetary authority begins to implement an inertial Taylor rule.

To summarize, our basic model consists of equations (6), (7), (10), (14), and (15), plus the

definition of the output gap as xt = ŷt−ŷft and the specification of the exogenous shocks. The model,

though simple, contains aspects that will affect the dynamic response to shocks. Consumption

habits, inertia in the policy rule, and serial correlation in the shock are fairly standard sources

of persistence, One additional property affecting the model dynamics is not standard: delay, as

distinct from inertia, in the reaction of policy to shock realizations.

3.1 Basic Calibration

Table 1 summarizes the parameters appearing in the model equations. We set the discount factor

β = 0.995, implying a steady-state real interest rate ρ equal to 2% at an annual rate. From Gaĺı

(2015), σ = 1, η = 5 and α = 0.25. Setting ϵ = 9 implies a steady-state price markup of 12.5%.

For the Calvo adjustment parameter, we set ω = 0.75 which is consistent with an average duration

of price spells of one year (four periods in the model). These values imply κ = 0.169 in (14).

In the policy rule (15), we set ϕπ = 1.5, ϕx = 0.5/4 = 0.125, consistent with a basic Taylor rule.

For policy inertia, we set ρi = 0.85, a common value in the literature. We allow policy delay to be

zero to 6 periods, k = {0 2 4 6}. To represent a more aggressive response to inflation, we evaluate
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Table 1: Baseline Parameters

β 0.995 Discount Rate Gaĺı (2015)
σ 1 Goods Elasticity Gaĺı (2015)
η 5 Frisch Elasticity of Labor Gaĺı (2015)
h 0.761 Habit Parameter Afsar et al. (2023)
α 0.25 Capital Share Gaĺı (2015)
ϵ 9 Markup Parameter Steady-state markup of 12.5%
ω 0.75 Calvo Parameter Average duration of one year Gaĺı (2015)
ρi 0.85 Persistence in the Policy Rule Dennis (2009)
ϕπ 1.5 Coefficient on Inflation in the Policy Rule Gaĺı (2015)
ϕx 0.5/4 Coefficient on the Output Gap in the Policy Rule Gaĺı (2015)

outcomes when ϕπ is doubled from 1.5 to 3.0. As a second way to capture a more aggressive policy

response to inflation, we also reduce policy inertia from 0.85 to 0.5. When ϕπ = 1.5, this increases

the impact effect of inflation on the policy rate from 0.225 to 0.75.

We calibrate the variance of the inflation shock innovation to generate a peak rise of inflation of

9 percent when expressed as a deviation from the target and at an annual rate when policy delays

four periods before reacting. This delay corresponds to the wait of a year before the Fed reacted.

With the inflation target equal to 2 percent, this roughly captures the jump in inflation to over 11

percent that occurred in early 2022. We set the AR(1) coefficient for the inflation shock at 0.85.

Next, we present the responses of key variables to an inflation shock based on the calibration

of Table 1. This is done first under the assumption of rational expectations and then for cognitive

discounting.

4 Delay under rational expectations

In this section, we adopt the assumption of rational expectations: Ẽ = ẼRE. We define an inflation

surge as an unexpected positive innovation to ϵt, the disturbance term in the inflation equation.

The resulting impulse responses for the nominal interest rate (the policy rate), the real interest

rate, the output gap, and inflation are shown in Figure 5. The results are shown for k = 0 (black

circles), k = 1 (cyan squares), k = 2 (blue dashed diamonds), k = 3 (red asterisks), k = 4 (blue

dashed diamonds), and k = 5 (black circles). Interest rates and inflation are reported at annual

rates. Section A.2 of the appendix outlines the solution method to obtain the impulse responses as

well as a link to the Matlab code employed to obtain the solutions.

The results for k = 0 in each panel serve as a reference, since standard analyses assume policy

reacts contemporaneously to any shock. The policy rate, shown in the upper left panel, rises

immediately and peaks two periods after the shock hits. However, the real interest rate falls (upper

right panel) reflecting the jump in inflation (lower right panel) that is much larger than the rise

in the nominal rate. Inflation peaks immediately, reaching just over 3 percent at an annual rate.
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Figure 5: Impulse Responses to Positive Inflation Shock under Rational Expectations when policy
delays k periods after the shock (interest rates and inflation at annual rates).

Inflation is less than 10 basis points above its steady state after seven periods. The output gap

(lower left panel) initially declines, reaching a trough four periods after the shock before slowly

returning to steady state from below. The rise in inflation is limited but at the cost of a recession.

Now consider the consequences of a delay in the response of policy. The upper left panel shows

the path of the nominal rate when it is kept constant for k periods before responding. When

the delay is more than 1 period, the output gap in the period of the shock increases, rather than

decreases. As k increases, the increase in the output gap also rises at an increasing rate; the effect

of delaying from 4 to 5 is much greater than the impact of increasing k from 3 to 4. A similar

effect for inflation is seen in the lower right panel. Delaying four periods increases the peak rise in

inflation from 3 percent (annual rate) when k = 0 to 9.1 percent. Delaying one additional period,

to k = 5, raises peak inflation to 13.5 percent. Delay leads to a rise in the output gap and larger

increases in the initial rise in inflation, results consistent with the simple example of section 2 and

with figure 4.

The higher output gap as policy reacts with a longer delay contributes to explaining the higher

path of inflation. The output gap rises because delay produces a fall in the real interest rate (upper
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left panel). This is also consistent with the marginal increases of the output gap in delayed policy

in simple three-periods example in section 2. The output gap will depend on the entire path of

expected future real interest rates. As can be seen in the figure, policy delay results in a larger

and more persistent fall in the real interest rate. The lower future path of the real interest rate

stimulates output in the period of the shock due to the forward-looking nature of demand.

In the section A.2 of the appendix, we show that the responses from t+ k forward depend only

on the state at time t+ k − 1. A long delay by the monetary authority in reacting to the inflation

shock leaves both the output gap and inflation higher at t+ k − 1, ensuring that inflation and the

output gap persist in exceeding outcomes obtained when policy reacts immediately to the shock.

In section 4.2, we assess the costs of delay using a metric for evaluating alternative policies. Be-

fore doing so, notice that in Figure 5, the k = 3 policy might almost be described as an immaculate

disinflation. Inflation is higher than when delay is shorter, and the output gap is positive for a few

periods before experiencing a milder recession than that achieved when policy reacts immediately.

4.1 Reacting more strongly to inflation

Does delay call for a stronger response to inflation once policy does act? This question was raised

during 2022 as the Fed began lifting its policy rate, and the FOMC did embark on a series of

rate increases that were larger than what had been its normal practice of moving in 25 basis point

increments. While the first move in March 2022 was a 25 basis point increase, this was followed by

a 50 basis point hike in May 2022. Four further increases of 75 basis points followed.6

We consider two interpretations of a more aggressive policy response. The first interpretation

treats an aggressive policy as one that assigns a larger value to ϕπ, the coefficient on inflation in

the policy rule. The second interpretations views a more aggressive policy as one that assigns a

smaller weight ρi to lagged inflation and that, therefore, displays less inertia. The contemporaneous

response of the policy rate to inflation is equal to (1−ρi)ϕπ, which increases with a rise in ϕπ, (i.e.,

a stronger response to inflation) or a fall in ρi, (i.e., less inertia).

We begin with the first form of aggressive policy by doubling the coefficient on inflation in the

policy rule from 1.5 to 3.0. Results are shown in Figure 6. To reduce the clutter in the figure, we

only show the results for k = 0 and k = 4. The solid lines for k = 0 (black circles) and k = 4 (blue

diamonds) replicate those in the previous figure with ϕπ = 1.5. The dashed lines are obtained when

ϕπ = 3.0. When k = 0, reacting more strongly to inflation has the expected results; inflation is

stabilized more, and output declines rather than increases.

When k = 0, the stronger response to inflation causes the policy rate to peak at a higher level.

The real interest rate is higher, leading to a larger fall in the output gap. As a consequence, inflation

6In January 2023, the funds rate target was raised by 50 basis points, and in March 2023, financial instability
brought about in the wake of the failure of Silicon Valley Bank and Signature Bank led the FOMC to increase the
funds rate target by only 25 basis points.
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Figure 6: Impulse Responses to Positive Inflation Shock under Rational Expectations – Comparing
ϕπ = 1.5 and ϕπ = 3.0

rises less. Lower inflation and a lower output gap reduce the upward pressure on the policy rate,

leading the policy rate to fall and end up slightly lower than under the less aggressive response to

inflation after t+ 5.

When k = 4, the dampening effect on the output gap and inflation when ϕπ = 3.0 is apparent,

even though the path of the nominal rate ends up little affected (see upper left panel). Lower

inflation produces a smaller fall in the real interest rate and a smaller expansion in the output gap.

The latter helps account for the lower path of inflation. Offsetting effects on the nominal policy rate

leave the path of the nominal rate little affected. Conditional on delay, a more aggressive policy

response, interpreted as a higher value for ϕπ, results in lower output and inflation paths. Because

both π and x are too high under the baseline value of ϕπ, the more aggressive response moves both

both closer to their steady-state values for several periods compared to the less aggressive response

to inflation. Furthermore, the delayed case shows larger changes (toward the steady-state) with

the larger value ofϕπ, implying that the stronger policy responses under the delayed policy would

help stabilize both inflation and the output gap.

Next, we consider the second form of aggressive policy by holding ϕπ at its baseline value of 1.5
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Figure 7: Impulse Responses to Positive Inflation Shock under Rational Expectations – Comparing
ρi = 0.85 and ρi = 0.5 when ϕπ = 1.5

while reducing inertia by lowering ρi from 0.85 to 0.5. Results are shown in Figure 7. We again

show results only for k = 0 and k = 4. Thus, the solid lines are the same as those in the previous

figure. The dashed lines show impulse responses when ρi = 0.5. Starting with the no-delay case

(k = 0), a reduction in policy inertia leads to a much larger rise in the nominal rate, both initially

and throughout the convergence back to steady state. This is also the case when k = 4; less inertia

front-loads the interest rate increase.

Absent any policy delay, the less inertial policy rule produces a higher real interest rate path

and has a small effect in lowering the path of the output gap until t+ 5. The effect on inflation of

the less inertial policy is small.

Figure 9 illustrates the effects of less inertia combined with a stronger response to inflation.

Setting ϕπ = 3.0, the figure compares response when ρi = 0.85, the baseline degree of inertia, to

ρi = 0.5. When k = 4, this more aggressive policy dampens the rise in the output gap and in the

inflation rate. However, the output gap then turns negative sooner and for longer than under a

more inertial policy. Whether this represents an improvement will depend on how lower inflation

is balanced against a deeper and more prolonged period during which the output gap is negative.
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Figure 8: Impulse Responses to Positive Inflation Shock under Rational Expectations – Comparing
ρi = 0.85 and ρi = 0.5 when ϕπ = 3.0

We return to this trade-off in section 4.2.

Under the baseline calibration of the policy rule, extending the delay in the policy reaction

beyond 4 periods significantly increases the peak rise in the output gap and inflation. This is illus-

trated in Figure 9; the blue line (diamonds) shows the impulse response for k = 4 and corresponds

to the similar line in Figure 6. When delay is increased further to k = 6, peak inflation rises from

9.1 percent to 24.6 percent. The peak output gap jumps from 0.9 percent to 3.4 percent. This

implies that significantly delayed policy responses – more than one year of delay – can substantially

increase the fluctuations of the output gap and inflation in the economy.

4.2 Measuring the costs of delay under rational expectations

To evaluate alternative policy rules and the consequences of delayed reaction to inflation surges, we

need a metric with which to rank the results under different assumptions about k. One approach

would be to employ a second-order approximation to the welfare of the representative agent, an

approach pioneered by Woodford (2003) and common in the literature on optimal monetary policy.

In a basic sticky price new Keynesian model with Calvo pricing but without habits in consumption
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Figure 9: Impulse Responses to Positive Inflation Shock under Rational Expectations – k = 4 and
6 when ϕπ = 3.0 and ρi = 0.5

or price indexation, Woodford shows that the period-loss in such a welfare approximation depends

on the volatility of inflation and the output gap. The simple example of section 2 indicated that

delay may worsen inflation outcomes but improve output gap performance. Thus, any ranking will

depend on the relative weight applied to the volatility of π and x. If this weight is chosen based on

a second-order approximation to the welfare of the representative agent in a baseline NK model,

this weight would be quite small; for example, under the calibration adopted by Woodford (2003),

if the weight on inflation volatility is normalized to equal 1, the weight on the volatility of the

output gap would be 0.048.7

However, the recent macroeconomic research on heterogeneity and the distributional impact of

monetary policy has highlighted the limits of relying on the fiction of a representative agent to design

aggregate economic policies. In addition, modern approaches to monetary policy implementation

stress the importance of being transparent and communicating clearly about policy. This task

becomes more difficult if a central bank attempts to balance conflicts between multiple conflicting

7Amato and Laubach (2004) and Leith, Moldovan, and Rossi (2012) derive welfare approximations in new Key-
nesian models characterized by habit persistence and sticky prices, components of the model we use. Both employ
Rotemberg price adjustment models.

20



objectives. Fewer objectives simplify this communications challenge. For formal inflation targeting

central banks, inflation is usually taken to be the primary objective, but, in practice, inflation

targeters are flexible inflation targeters, implicitly if not explicitly incorporating a concern for

stabilizing real economic activity as an appropriate objective.

Therefore, we choose to adopt an ad hoc loss function that involves inflation volatility and the

volatility of an output gap measure. This leaves the choice of the relative weight to place on the two

objectives to be determined. Debortoli, Kim, Lindé, and Nunes (2019) show that policies designed

to minimize a simple loss function, such as

L =
1

2

( ϵ

κ

)
[var (πt) + λvar (xt)] . (16)

can generate outcomes in empirically relevant models such as that of Smets and Wouter (2007)

that compare favorably to fully-optimal policies based on maximizing the model-consistent welfare

of the model’s representative agent as long as λ is optimally chosen.8 Achieving good outcomes

using a simple loss function requires that more weight be placed on output stabilization than

the welfare-approximation approach would typically imply. This suggests using a value for λ that

exceeds Woodford’s 0.048. For example, Debortoli, et al (2019, p. 2021) find that for the Smets and

Wouter (2007) model, a policy with λ = 0.25 achieves a welfare loss that is one-third that obtained

using λ = 0.048. As Debortoli, et al note, a weight of 0.25 on the output gap approximates the

loss function Yellen (2012) characterized as reflecting a dual mandate, one with equal weights on

output volatility and unemployment rate volatility. Assuming an Okun’s Law coefficient of 2,

var (πt) + var (ut) = var (πt) + 0.25var (xt). In this case, (16) becomes

L =
1

2

( ϵ

κ

)
[var (πt) + 0.25var (xt)] . (17)

Equation (17) provides a measure of loss when the economy is subject to new realizations of the

shock processes each period. Because our focus is on how policy affects the dynamic adjustment

of real activity and inflation after a single realization of the inflation shock innovation, ranking

policies based on the performance of an instrument rule in a stochastic equilibrium in which new

shocks occur each period may fail to capture the impact of an episode of surging inflation during

which the monetary authorities waits as much as a year to react.

For that reason, we define two metrics that we use to rank outcomes. Each is based on the

impulse responses from a single realization of the innovation to the inflation equation. The first

metric is an extension of a balanced loss function in output gap and inflation volatility. It focuses

8The factor (1/2)(ϵ/κ) in (16) expresses loss as a fraction of steady-state consumption.
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specifically on the paths of x and π in response to the inflation shock. This measure is defined as

L1
T (k, ϕπ, ρi) =

1

2

( ϵ

κ

)
Et

 1

T

T∑
j=0

βjπ2
t+j + λ

1

T

T∑
j=0

βjx2t+j

 , (18)

where πt+j and xt+j are both functions of the parameters in the monetary policy rule that we will

vary (i.e., ϕπ, ρi, and k). L1
T is the cumulative average discounted squared deviation from steady

state from the time of shock to T periods after the shock. It depends on the inflation and output

gap realizations as functions of the policy rule parameters k, ϕπ, and ρi, as well as the size of the

shock innovation. In line with the balanced loss approach, we set λ = 0.25.

L1
T gives equal weight to positive and negative deviations from steady state. In 2022, policy-

makers expressed the desire to bring inflation down while also aiming for a “soft landing” or, even

better, an “immaculate disinflation.” We interpret these sentiments as reflecting a desire for a pol-

icy that avoids or minimizes negative output gaps while also reducing above-target inflation rates.

The measure of loss given by (18), however, treats an immaculate disinflation, defined as a decline

in inflation while maintaining a zero output gap as worse than the same disinflation accompanied

by an economic expansion because x2t is positive in the latter case. If the natural rate of output

used to define the output gap is inefficiently low, policymakers should rank the latter outcome as

better than the former.

This suggests our second measure, defined as

L2
T (k, ϕπ, ρi) =

1

2

( ϵ

κ

)
Et

 1

T

T∑
j=0

βjπt+j − λ
1

T

T∑
j=0

βjxt+j

 . (19)

This measure equals the average cumulative discounted deviations of the level of inflation from

steady state from t to t + T minus the average cumulative discounted deviations over the same

period of the output gap. It penalizes positive deviations of inflation and negative deviations of the

output gap. Equation (19) is a simple way of allowing positive values of the output gap to lower

the measure of loss. We employ λ = 0.25 for both (18) and (19).

Figure 10 reports loss as measured by (18) for four alternative specifications of the monetary

policy rule. In each quadrant, the horizontal axis gives the number of periods since the shock

(T ), and each line represents L1
T for a different k. The upper left quadrant reports results for the

baseline policy rule with ϕπ = 1.5 and ρi = 0.85. Values are shown for delay lags of k = [0 1 3 4 5].

The black solid line marked with circles is for k = 0, the case in which policy reacts immediately to

the shock. In the period the shock occurs, volatility is lowest when policy reacts immediately and

is then increasing with k. Delaying just one period before reacting (k = 1) leads to only a small

increase in the loss measure. The marginal increase in loss as k rises from 3 to 5 is increasing. A
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Figure 10: Average Volatility Defined by (18) under Rational Expectations: Periods since shock
on horizontal axis

delay of more than 4 quarters causes a very significant deterioration in performance.

Are there advantages to adopting a more aggressive response? The upper right quadrant of Fig-

ure 10 illustrates the volatility measure given by (18) when ϕπ is doubled from 1.5 to 3. Comparing

the upper left and right quadrants reveals that reacting more strongly to inflation reduces overall

loss for all k at each horizon T . Volatility again increases monotonically in k; at each horizon T ,

volatility is lowest when k = 0, and highest when k = 5.

The second notion of a more aggressive policy is one that displays less inertia. The lower two

quadrants of Figure 10 illustrate the impact of adopting a less inertial policy rule, with ρi reduced

from 0.85 to 0.5. Comparing a lower quadrant with the corresponding upper quadrant reveals that

reducing inertia lowers volatility for all k and T . This is the case whether ϕπ equals 1.5 or 3.0. As

with the more inertial policy in the right upper panel, less inertia in the policy rule indicates that

a very short delay (k = 1) roughly approximates outcomes when there is no delay. Longer delays

significantly increase loss.

Finally, comparing all four panels shows that adopting both notions of an aggressive policy

response by increasing ϕπ and reducing ρi produces the lowest losses for all k and all T without
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affecting the relative rankings across values of k. If k = 4, moving from the baseline policy to one

with a stronger response to inflation lowers the value of L1
0 by 48 percent (from 0.82 to 0.43) while

combining a stronger response to inflation with a less inertial rule results in a further reduction

from 0.43 to 0.29. The total percentage reduction in moving from the baseline rule to the most

aggressive rule when k = 4) is 65 percent (from 0.82 to 0.29). When reacting late, it pays to be

aggressive.

These results support the idea that a more aggressive policy, one that both responds more

strongly to inflation and displays less inertia, should be adopted if the central bank has initially

been slow to respond. What is not supported is any argument for delay; given the parameters of

the policy rule, loss is increasing in delay. However, aggression can compensate for delay; the loss

for k = 1 under the most aggressive policy outperforms the baseline policy with k = 0, and the

aggressive policy with a delay of k = 2 yields essentially the same loss as the baseline rule with no

delay. The best outcomes, as measured by (18), are obtained by responding aggressively, with less

inertia and with at most a short delay.

Figure 11: Average loss defined by (19) under Rational Expectations: Periods since the shock are
shown on the horizontal axis

Figure 11 shows the values of our second loss measure given by (19) for different policy param-
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eters, following the same organization as Figure 10. This measure of loss reveals a similar ranking

as (18); loss is increasing in k. Even though delays increase the output component of (19), that is

not enough to offset the poorer inflation performance. This would still be the case even if λ, the

weight on the output term, were increased from 0.25 to 2. The overall behavior of both (18) and

(19) is dominated by the inflation component.

To summarize, under rational expectations and holding the policy rule fixed, any delay increases

loss. The marginal cost of delaying an additional period are increasing as k rises. A short delay

of one period can improve over the baseline, no delay policy rule if delay is accompanied with a

stronger response to inflation and a less inertial response.

These results are all based on a model that incorporates backward-looking aspects through

habits in consumption and policy inertia, but the model also incorporates forward-looking compo-

nents; expectations of future policy are very important. As is well known, in basic new Keynesian

models, the credible promise of a future increase in the policy rate can be more powerful than an

actual rise in the current rate (see McKay, Nakamura, and Steinsson 2016). The power of forward

guidance plays a role in explaining why even a delay as long as a year (k = 4) might not be very

costly if combined with an aggressive policy rule. In the next section, we drop the assumption that

expectations are formed rationally and consider how the adoption of a behavioral-based alterna-

tive model of expectations formation due to Gabaix (2014; 2020) that reduces the effectiveness of

forward guidance affects the costs of delay.

5 Deviations from rational expectations: Cognitive Discounting

In this section, we adopt the assumption of cognitive discounting of future events: Ẽ = ECD, where

the superscript CD denotes cognitive discounting as developed in Gabaix (2014; 2020). Gabaix

models expectations of a future variable qt+d as given by

ECD
t qt+d = m̄dEtqt+d, 0 < m̄ ≤ 1,

where m̄ denote the degree of cognitive discounting and E denotes rational expectation.

When m̄ = 1, expectations correspond to the standard assumption of rational expectations.

As Gabaix showed, policies such as forward guidance become less powerful in the face of cognitive

discounting. This suggests that a policy that delays in responding to inflation promises to eventually

react may lead to a less immediate dampening of inflation and a larger initial rise in output than

would be the case with rational expectations.

With rational expectations, the model was given by (6), (14) and (15). This model is modified
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under cognitive discounting to take the form9

xt =

(
1

1 + h

)
m̄Etxt+1 +

(
h

1 + h

)
xt−1 −

(
1

σ

)
(it − m̄Etπt+1 − r∗t ) , (20)

πt = βMfEtπt+1 + κ

[(
σ

1− h
+

α+ η

1− α

)
xt −

(
σh

1− h

)
xt−1 + êt

]
, (21)

and

ît = ρiît−1 + (1− ρi) [ϕππt−k + ϕxxt−k] , (22)

where

Mf = m̄

[
ω + (1− ω)

(
1− βω

1− βωm̄

)]
≤ 1. (23)

The additional discounting of expected future inflation in (21) as measured by Mf arises from

general equilibrium considerations. In resetting their price, an individual firm discounts the future

but also takes into account that other firms are discounting the future as well.

As is clear from (20) and (21), the role that forward guidance plays through future expectations

can be significantly reduced by cognitive discounting, depending on the value of m̄. Gabaix (2020)

suggests m̄ = 0.85, based on indirect evidence from both micro and macro sources. Using typical

parameter values employed in calibrated NK models (ω = 0.75, β = 0.995), setting m̄ = 0.85

would imply Mf = 0.79. Ilabaca, Meggiorini, and Milani (2020) estimate a new Keynesian model

with cognitive discounting and find m̄ = 0.71 from their post-1982 sample estimates of the Euler

relationship and Mf = 0.41 from the Phillips curve. We adopt m̄ = 0.85 for our baseline and use

(23) to calibrateMf to be consistent with the underlying theory. However, Andrade, Coredeiro, and

Lambais (2019) integrated cognitive discounting into the New Keynesian framework and obtained

a robust confidence range for m̄ of between 0.013 and 0.645, suggesting a high level of uncertainty

as to the value of m̄. Therefore, we report robustness results for alternative values of m̄ in the

appendix.

5.1 Results under cognitive discounting

To assess the effects of cognitive discounting, we first compare them to the results under rational

expectations for the baseline policy rule with no delay. The impulse responses are shown in Figure

12. The black circles denote outcomes under rational expectations10, while the blue diamonds

denote results with cognitive discounting. If agents apply cognitive discounting, both the nominal

and real interest rates rises more and remain higher for longer, the output gap falls less, and

9For the derivation of Mf under constant returns to scale, see the proofs of Lemma 2 and Proposition 2 in appendix
X.B of Gabaix 2020, p. 2322. For the adaptation to the case of decreasing returns to scale (α < 1), see Billi and
Walsh (2022). This generalization only affects the mapping from real marginal cost to the output gap.

10These IRFs are the same as those shown as k = 0 in Figure 5
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Figure 12: Impulse Responses to Positive Inflation Shock with Baseline Policy Rule under Rational
Expectations (black solid line) and Cognitive Discounting (dashed blue diamonds)

inflation is somewhat higher and more persistent than with rational expectations. The more muted

recession and the higher inflation rate help account through the policy rule for the higher nominal

interest rate. The muted recession contributes to higher inflation. The difference in the paths of

the output gap under alternative assumptions about expectations is a reflection of the dampened

impact of expected future output on current output under cognitive discounting. Under rational

expectations, the expected decline in the output gap causes the output gap to fall immediately when

the shock occurs. This effect of expected future output is dampened with cognitive discounting,

and the output gap actually rises slightly. The higher level of the output gap contributes to the

higher path of inflation.

Figure 13 shows the effects under cognitive discounting for different values of k when the baseline

policy rule is implemented after delays of zero to five periods. This figure should be compared to the

responses under rational expectations shown in Figure 5. With cognitive discounting, the nominal

interest rate reaches its highest peak when k = 0. Delay reduces the policy rate peak, with the peak

decreasing as k increases. The nominal rate peaks at higher levels than under rational expectations.

Both the output gap and inflation are more stable when future expectations are discounted. For
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Figure 13: Impulse Responses to Positive Inflation Shock under Cognitive Discounting (interest
rates and inflation at annual rates)

example, with cognitive discounting, x varies between a high of just under 0.006 when k = 5 and

a low of −0.003 when k = 0. In contrast, under rational expectations the highs and lows are 0.021

(k = 5) and −0.008 (k = 0). The baseline policy under cognitive discounting results in increases

in inflation that are similar to those with the aggressive policy under rational expectations seen in

Figure 8.

The other noticeable effect of cognitive discounting is to reduce the marginal impact of an

increase in k. This is especially true of the impulse responses of the output gap. An increase of k

from 4 to 5 has about the same impact as an increase from 3 to 4. This was not the case under

rational expectations, where the consequences of increasing k from 4 to 5 were much larger than

going from 3 to 4. Forward guidance implies changes in the future path of the policy rate can have

large effects on current output, and the effects are larger the further into the future the rate change

occurs. Cognitive discounting reduces the power of forward guidance and reduces the marginal

impact of increasing the delay before policy acts.
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Figure 14: Impulse Responses to Positive Inflation Shock under Cognitive Discounting – ϕπ = 3.0,
comparing ρi = 0.85 and ρi = 0.5

5.2 Reacting more strongly to inflation

The implications of policy delay under cognitive discounting combined with a stronger response to

inflation when policy finally acts are qualitatively similar to the findings under rational expectations.

The amplitude of output swings is smaller and the rise in inflation is dampened under cognitive

discounting. Figures corresponding to Figures 6 to 7 are reported in section A.3 of the appendix.

Figure 14, which corresponds to Figure 8 for the case of rational expectations, illustrates the effect

under cognitive discounting of a policy rule that responds strongly to inflation, ϕπ = 3.0 and displays

less inertia ρi = 0.5. Both the output gap and inflation are less volatile when expectations of the

future are discounted, reflecting the dampening of future expectations under cognitive discounting.

We directly compare outcomes for rational expectations and cognitive discounting in Figure

15 for k = 0 and k = 4 under the most aggressive policy rule that sets ϕπ = 3.0 and ρi = 0.5.

The rational expectations outcomes are denoted by black circles, cognitive discounting by blue

diamonds. Solid lines indicate the case with k = 0, dashed lines k = 4. Recall that the Fed waiting

4-quarters before raising its policy rate in March 2022.

It is clear that the aggressive policies with no delay result in the policy rate rising sooner and
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Figure 15: impulse Responses under Different Expectations and an Aggressive Policy (ϕπ = 3.0
and ρi = 0.5)

higher, particularly under cognitive discounting. This succeeds in stabilizing inflation, though it

also leads to persistent declines in the output gap. This decline is smaller when expectations of

the future play a smaller role as they do under cognitive discounting. Under either assumption

about expectations, a delay of 4 periods leads to higher inflation, but it also results in a brief rise

in the output gap and a subsequent recession that is smaller than that generated by the policy that

responds immediately to the inflation shock.

5.3 Measuring the costs of delay under cognitive discounting

The measures of loss given by (18) and (19) that were used to evaluate loss under rational expec-

tations are also used when we assume agents display cognitive discounting. One might argue that

a policymaker, knowing private agents form non-rational expectations, should also discard rational

expectations in assessing the welfare consequences of alternative policies. In the related context

of the literature on robust control, Sims (2001) argued “...the criteria for acceptable shortcuts in

decision-making by a central bank should generally be much stricter than those applying to, say,

a consumer buying a new washing machine. On the other hand, a ‘representative agent that sum-
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Figure 16: Average Volatility Defined by (18) with Cognitive Discounting: Periods since shock on
horizontal axis

marizes the behavior of many individuals with disparate information sources, coordinated through

many markets, may be well modeled as having fewer computational constraints than a monetary

policy maker. In either case, the criteria for good descriptive modeling and good normative policy

advice ought to be kept distinct.” Sims contrasted this view with that of Hansen and Sargent (2002)

who he characterized as “...recommending to policy-makers the same sub-rational behavior that

they postulate in private agents.” We are sympathetic with Sims’ position, and note that Gabaix

(2020) employs the standard loss appropriate under rational expectations in his analysis of optimal

policy when private agents display cognitive discounting, as do Budianto, Nakata, and Schmidt

(2023) in their analysis of average inflation targeting.

Figure 16 shows volatility as defined by (18) as a function of T for various k and different

parameters for the policy rule. It should be compared to Figure (10) obtained under rational

expectations. The scales on the two figures differ as the measure of volatility is always lower

under cognitive discounting. Cognitive discounting dampens the impact of future deviations from

steady state on current inflation and the output gap and reduces overall volatility, regardless of the

particular values used in the policy rule. Compare, for example, Figure 5 to Figure 13. In each
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of the four quadrants, volatility is increasing in k at each T . For each k, loss is lowest under the

aggressive policy rule (lower right quadrant). The lowest loss as measured by (18) is achieved if

k = 0, that is, if policy reacts immediately to the shock.

The measure of loss given by (19) is shown in Figure 17. This figure also shows that the policy

that responds immediately achieves the lowest loss. As with Figure 16, loss is lowest with the

most aggressive of the four policy rules, and loss is increasing with k. Because delay tends to lead,

initially, to a positive output gap and to a shallower subsequent decline in output, (19), which

depends negatively on the cumulative discounted path of x could do better under a policy that

incorporates a delay if λ is large enough. However, the absolute deviations of x from zero are

much smaller than the deviations of π expressed at annual rates and, in practice, the inflation term

dominates the measure of loss.

Figure 17: Average Volatility Defined by (19) with Cognitive Discounting: Periods since shock on
horizontal axis
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6 Can aggression compensate for delay?

The previous results suggest that a central bank that has delayed in reacting to an inflation shock

might compensation by adopting a more aggressive policy rule. In this section, we compare the

value of the two measures of loss under the baseline policy with no delay (k = 0) and ϕπ = 1.5 and

ρi = 0.85, with more aggressive polices that are implemented with delay. We focus on the policy

rule with ϕπ = 3.0 and ρi = 0.5 and values of k = 1, 2, 3.11

Figure 18 shows (18) as a function periods since the shock for various policies. The large

(red) circles represent the baseline policy implemented without delay. The other lines reflect the

aggressive policy rule and delays of one period (diamonds, solid line), two period (cirles, dashed

line), three periods (squares, dot-dashed line), and four periods (diamonds, dotted line). The top

panel, based on the assumption of rational expectations, shows that a delay of two periods, combined

with the more aggressive respond to inflation and less inertia exactly matches the baseline, no delay

policy. A shorter delay (k = 1) performs better, longer delays (k = 3) do worse. Thus, the central

bank can compensate for a late start in reacting to an inflation shock if it adopts a more aggressive

policy rule, but not if the policymaker has waited too long.

If private sector expectations are characterized by cognitive discounting, the bottom panels

show that the baseline, no delay policy can be replicated by an aggressive policy rule that delays

for three periods. Similarly results (not shown) are obtained using the loss function defined in 19;

with rational expectations a delay of two periods combined with an aggressive policy rule replicates

the baseline policy rule implemented without delay.

11Larger values of k produce higher losses than the baseline policy rule without delay and so are not shown.
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Figure 18: Baseline policy without delay and aggressive policies with delay. Loss measured by (18)

7 Conclusions

In this paper, we first used a simple three-period model to show how policy delay worsens inflation

outcomes but can mitigate or even reverse the output decline that occurs when policy responds

without delay. Then, using a calibrated new Keynesian framework that incorporates habits in

consumption and an inertial Taylor rule, we investigated the dynamic responses of the economy to

an inflation shock when monetary policy reacts with a delay. We further expanded the analyses

to the cognitive discounting model to investigate the robustness of the results under non-rational

expectation.

Under the assumption of both rational expectation and cognitive discounting, we find that delay

increases peak inflation and leads the output gap to rise initially, due to the fall in the real interest

rate. This is consistent with the simple model. We find that delay mitigates subsequent declines

in the output gap during the adjustment back to steady state. This produces a trade-off: reacting

more quickly initially boosts the rise in the output gap but exacerbates the rise and persistence of

inflation.

To evaluate the impacts of policy delay on welfare, we employ a quadratic, balanced-approach
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loss function to rank outcomes. This allows us to address the three questions raised in the Intro-

duction. First, how costly is a delay when fighting a surge in inflation? Not very, if policy delays by

only one or two period; it can be much more costly if delay extends to four periods or longer. Loss is

minimized when policy responds without delay. The volatility of inflation increases monotonically

with delay. For the output gap however, volatility is minimized when delay is two periods.

The answer to our second question – If policy is delayed, should it be more aggressive? – is yes.

We explored the implications of two definitions of what it might mean to adopt a more aggressive

policy response. The first definition focuses on the inflation coefficient in the policy rule; the second

focuses on the degree of inertia in the policy response. A more aggressive policy is one that places

a larger coefficient on inflation or displays less inertia. Conditional on falling behind the curve,

deviations are smallest when policy reacts strongly to inflation and with less inertia. This finding

is true under rational expectations and under cognitive discounting.

The answer to our third question – Is a credible promise to fight inflation in the future a

substitute for undertaking current policy actions? – is yes, but only if the policymaker does not

wait too long and responds aggressively when eventually reacting. Under rational expectations,

loss under the no delay, baseline policy rule is replicated with an aggressive response that involves

responding more strongly to inflation and acting with less inertia if the policymakers wait one

period before responding. Under cognitive discounting, a three-period delay and an aggressive

response can replicate the loss achieved under the no delay, baseline rule.

We found that stronger policy responses combined with less inertia moderate the overall mag-

nitude of losses due to delayed policy under both rational expectations and cognitive discounting.

However, excessive delay is particularly costly when agents hold rational expectations.
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Gaĺı, J. (2015): Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New

Keynesian Framework and Its Applications. Princeton University Press, Princeton, 2nd edn.

Hansen, L. P., and T. J. Sargent (2002): “Robust Control of Forward-Looking Models,”

Journal of Monetary Economics, 50, 581–604.

Hirose, Y., and Y. Hirose (2022): “Estimating a Behavioral New Keynesian Model with the

Zero Lower Bound,” CARF Working Paper F-535.

Holbrook, R. S.(1972): “Optimal Economic Policy and the Problem of Instrument Instability,”

American Economic Review, 62(1), 57–65.

Ilabaca, F., G. Meggiorini, and F. Milani (2020): “Bounded rationality, monetary policy,

and macroeconomic stability,” Economics Letters, 186, 108522.

Justiniano, A., G. E. Primiceri, and A. Tambalotti (2013): “Is There a Trade-Off between

Inflation and Output Stabilization?,” American Economic Journal: Macroeconomics, 5(2), 1–31.

L’Hullier, J.-P., S. Singh, and D. Yoo (2021): “Incorporating Diagnostic Expectations into

the New Keynesian Framework,” Working Paper.

Lane, P. (1984): “Instrument Instability and Short-term Monetary Control” Journal of monetary

Economics, 14(2), 209–224.

Leith, C., I. Moldovan, and R. Rossi (2012): “Optimal monetary policy in a New Keynesian

model with habits in consumption,” Review of Economic Dynamics, 15(3), 416–435.

Levin A. T. and J. C. Williams (2003): “Robust Monetary Policy with Competing Reference

Models,” Journal of Monetary Economics, 50(15), 945–975.

McKay, A., E. Nakamura, and J. Steinsson (2016): “The power of forward guidance revis-

ited,” American Economic Review, 106(10), 3133–3158.

Nakata, T., R. Ogaki, S. Schmidt, and P. Yoo (2019): “Attenuating the forward guidance

puzzle: Implications for optimal monetary policy,” Journal of Economic Dynamics and Control,

105, 90–106.
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A Appendix

A.1 The simple three period example

Remark 1 See simpleexample.tex and simpleexample.m.

Equilibrium in period 2 is given by (1) and (2), written here as[
π2

x2

]
=

(
σ

σ + γ2κϕ

)[
1

−σ−1γ2ϕ

]
e2 (24)

In period 1, the system is[
1 −κ

σ−1γ1ϕ 1

][
π1

x1

]
=

[
β 0

σ−1 1

][
E1π2

E1x2

]
+

[
1

0

]
e1.

Using (24),[
1 −κ

σ−1γ1ϕ 1

][
π1

x1

]
=

(
σ

σ + γ2κϕ

)[
β 0

σ−1 1

][
1

−σ−1γ2ϕ

]
e2 +

[
1

0

]
e1.

Solving, after noting that e2 = ρe1, one obtains[
π1

x1

]
=

(
σ

σ + κϕγ1

)[
1 + ρ σ

σ+κϕγ1
(σβ − κ (ϕγ2 − 1))

−γ1ϕ
σ − ρ 1

σ+κϕγ1
(βϕγ1 − 1 + ϕγ2)

]
e1.

We consider three alternative cases.

1. Policy does not respond in either periods 1 or 2: γ1 = γ2 = 0.[
π1

x1

]
=

[
1 + ρ (σβ + κ)

ρ 1
σ

]
e1.

[
π2

x2

]
=

[
1

0

]
e2

2. Policy does not respond in period 1 but does in period 2: γ1 = 0, γ2 = 1.[
π1

x1

]
=

[
1 + ρσ

σ (σβ − κ (ϕ− 1))

ρ 1
σ (1− ϕ)

]
e1.

[
π2

x2

]
=

(
σ

σ + κϕ

)[
1

−σ−1ϕ

]
e2
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3. Policy responds in periods 1 and 2: γ1 = γ2 = 1.[
π1

x1

]
=

(
σ

σ + κϕ

)[
1 + ρ σ

σ+κϕ (σβ + κ (1− ϕ))

−ϕ
σ − ρ 1

σ+κϕ (βϕ− 1 + ϕ)

]
e1.

[
π2

x2

]
=

(
σ

σ + κϕ

)[
1

−σ−1ϕ

]
e2

A.2 Solution method

These notes lay out how we solve the model in which it is fixed at zero for k periods. The policy

rate then switches to follow an inertial Taylor rule:

it =

{
0 for t = 0, ..., t+ k − 1

ρiit−1 + (1− ρi) qt for t ≥ t+ k
, (25)

where qt = ϕππt + ϕxxt.

We set out the general approach to solving the model in section A.2.1 before turning to our

specific model in section A.2.4.

A.2.1 The general model

Assume the model can be written as

A1Zt = A0Zt−1 +A2EtZt+1 +A3qt +A4vt,

where Zt is an N × 1 vector of endogenous variables, qt is the control variable and vt is the shock

innovation. The matrices A0, A1, and A2 are N × N , while A3 and A4 are N × 1.12 For our

application, there is a shock at time t only, so vt+i = 0 for all i > 0.

The solution is obtain in two steps. First, the equilibrium for Zt+k, ... is obtained as functions

of Zt+k−1 and vt. Second, the equilibrium from t to t+ k− 1 when qt = 0 is characterized by a set

of k equations in k unknowns that are solved to obtain Zt, ..., Zt+k−1, given the initial condition

Zt−1.

A.2.2 Step 1: From t+ k forward

Let the policy instrument qt be given by

qt = FZt. (26)

12If there are S shocks, A4 would be N × S.
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From t+ k forward, the equilibrium of the model satisfies

A1Zt = A0Zt−1 +A2EtZt+1 +A3FZt +A4vt. (27)

This is a standard linear, rational expectations model and can be solved in dynare. We chose

instead to adopt a more direct approach that is outlined here.

Collecting the terms in Zt appearing in (27) yields

(A1 −A3F )Zt = A0Zt−1 +A2EtZt+1 +A4vt. (28)

Guess that the solution takes the form

Zt = H0Zt−1 +H1vt, (29)

where H0 is N ×N and H1 is N × 1. Equation (29) implies

EtZt+1 = H0Zt

under rational expectations. Using this to eliminate EtZt+1 in (28) and solving for Zt gives

Zt = (A1 −A3F −A2H0)
−1 (A0Zt−1 +A4vt) .

For this to agree with our initial guess in (29), it must be the case that

H0 = (A1 −A3F −A2H0)
−1A0 (30)

and

H1 = (A1 −A3F −A2H0)
−1A4. (31)

One can solve (30) for H0 by iterating on H0 to find the matrix H∗
0 such that

H∗
0 = (A1 −A3F −A2H

∗
0 )

−1A0.

H1 is then obtained from (31) as

H∗
1 = (A1 −A3F −A2H

∗
0 )

−1A4.

Because vt+k = 0 for k > 0, for s ≥ k,

Zt+s = H∗
0Zt+s−1. (32)
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A.2.3 Step 2: From t+ k backward

Given (32), the next step is to solve backward to find Zt+k−1, ..., Zt, where t is the period in which

the shock occurs.

From t to t+ k − 1, qt = 0. Hence, (27) becomes

A1Zt = A0Zt−1 +A2EtZt+1 +A4vt (33)

When the model is expressed in terms of deviations from the steady state, the initial condition

becomes Zt−1 = 0. Since no further shocks after period t, EtZt+1 = Zt+1. Therefore

A1Zt −A2Zt+1 = A4vt. (34)

For j = 1, ...k − 2,

A1Zt+j −A0Zt+j−1 −A2Zt+j+1 = 0. (35)

For j = k − 1,

A1Zt+k−1 −A0Zt+k−2 = A2Zt+k = A2H
∗
0Zt+k−1,

where (32) has been used for Zt+k. Rewrite this as

(A1 −A2H
∗
0 )Zt+k−1 −A0Zt+k−2 = 0. (36)

Equations (34), (35) and (36) provide k simultaneous equations for solving for Zt, ..., Zt−k.

For example, suppose k = 4. Stacking (34), (35) and (36) produces
A1 −A2 0 0

−A0 A1 −A2 0

0 −A0 A1 −A2

0 0 −A0 A1 −A2H
∗
0




Zt

Zt+1

Zt+2

Zt+3.

 =


A4vt

0

0

0

 ,

or

RQt = S,

which gives us k equations for obtaining the k unknowns Zt, ..., Zt+k−1, where R is a kN × kN

matrix and Qt as a kN × 1 stacked vector such that

Qt = [Zt;Zt+1;Zt+2; ...;Zt+k−1]
′.
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Equilibrium before the monetary authority reacts is

Qt = R−1S.

A.2.4 Application to our model

et = ρeet−1 + vt

it = ρiit−1 + (1− ρi) zt

qt = ϕππt + ϕxxt.

rt = it − Etπt+1

(1 + βµ)πt = µπt−1 + βEtπt+1 + κ1xt + κ2xt−1 + κ0et

(1 + h)xt = hxt−1 + Etxt+1 −
1

σ
(1− h) (it − Etπt+1)

where

κ0 =
(1− ω) (1− βω)

ω

1− α

1− α+ ϵα

κ1 = κ0

(
σ

1− h
+

α+ η

1− α

)
κ2 = −κ0

(
σh

1− h

)
Define

Zt = [et it rt πt xt]
′.

This system can be rewritten in the form given by (27) with

A0 =


ρe 0 0 0 0

0 ρi 0 0 0

0 0 0 0 0

0 0 0 µ κ2

0 0 0 0 h

 ,

A1 =


1 0 0 0 0

0 1 0 0 0

0 −1 1 0 0

−κ0 0 0 1 + βµ −κ1

0 1−h
σ 0 0 1 + h

 ,
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A2 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 β 0

0 0 0 1−h
σ 1

 ,

A3 =


0

(1− ρi)

0

0

0

 ,

A4 =


1

0

0

0

0

 ,

Ft =
[
0 0 0 ϕπ ϕx

]
.

In section 5, we reformulate the model to incorporate cognitive discounting in expectations

formation. The only modification this requires to our solution methods is in the specification of

the matrix A2, which becomes

A2 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 βMf 0

0 0 0 1−h
σ m̄

 ,

A.2.5 The code

delay model.m calls solvemodel.m and nopolicyv.m to obtain the model solutions and refigures

and cdfigures to generate figures. These are all available at https://people.ucsc.edu/~walshc/

HakamadaWalsh/.

A.3 Reacting more aggressively under cognitive discounting

Figures are reported here for cognitive discounting correspond to Figures 6 - 8 for rational expec-

tations.
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Figure 19: Impulse Responses to Positive Inflation Shock under Cognitive Discounting: Comparing
ϕπ = 1.5 and ϕπ = 3.0
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Figure 20: Impulse Responses to Positive Inflation Shock under Cognitive Discounting – ϕπ = 1.5,
comparing ρi = 0.85 and ρi = 0.5
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Figure 21: Impulse Responses to Positive Inflation Shock under Cognitive Discounting: m̄ = 0.75

A.4 The effects of m̄ with cognitive discounting

The results under cognitive discounting depend of the values assumed for m̄. When m̄ = 1, one

obtains the rational expectations case, so increasing m̄ from our baseline value of 0.85 reduces

the gap between the outcomes with cognitive discounting and those under rational expectations.

However, this does not affect any of the basic conclusions of the paper.

If m̄ is reduced, the power of forward guidance is reduced relative to our baseline. This reduces

the economy’s initial reaction to the inflation as future inflation and the output gap have a smaller

impact on the current equilibrium. This can be seen in Figure 21. The response of both the output

gap and inflation are muted relative to those with m̄ = 0.85, shown in Figure 13 or to those under

rational expectations shown in Figure 5. As a result, the measures of loss are correspondingly

smaller. The values of 18 for various k when m̄ can be seen in Figure 22. This should be compared

to Figure 10 for rational expectations and Figure 16 for cognitive discounting using the baseline

value of m̄.
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Figure 22: Impulse Responses to Positive Inflation Shock under Cognitive Discounting: m̄ = 0.75
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