
AI and Macroeconomic

Modeling: Deep

Reinforcement Learning

in an RBC Model

Tohid Atashbar and Rui (Aruhan) Shi

WP/23/40

IMF Working Papers describe research in
progress by the author(s) and are published to
elicit comments and to encourage debate.
The views expressed in IMF Working Papers are
those of the author(s) and do not necessarily
represent the views of the IMF, its Executive Board,
or IMF management.

2023

FEB

© 2023 International Monetary Fund WP/23/40

IMF Working Paper*
Strategy, Policy and Review Department

AI and Macroeconomic Modeling: Deep Reinforcement Learning in an RBC Model

Prepared by Tohid Atashbar and Rui (Aruhan) Shi

Authorized for distribution by Stephan Danninger
 February 2023

IMF Working Papers describe research in progress by the author(s) and are published to elicit
comments and to encourage debate. The views expressed in IMF Working Papers are those of the
author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

ABSTRACT: This study seeks to construct a basic reinforcement learning-based AI-macroeconomic simulator.
We use a deep RL (DRL) approach (DDPG) in an RBC macroeconomic model. We set up two learning
scenarios, one of which is deterministic without the technological shock and the other is stochastic. The
objective of the deterministic environment is to compare the learning agent's behavior to a deterministic steady-
state scenario. We demonstrate that in both deterministic and stochastic scenarios, the agent's choices are
close to their optimal value. We also present cases of unstable learning behaviours. This AI-macro model may
be enhanced in future research by adding additional variables or sectors to the model or by incorporating
different DRL algorithms.

RECOMMENDED CITATION: Atashbar,T. and Shi, R.A. 2023. “AI and Macroeconomic Modeling: Deep
Reinforcement Learning in an RBC model”, IMF Working Papers, WP/22/40.

JEL Classification Numbers: C63, C54; D83; D87; E37

Keywords:

Reinforcement learning; Deep reinforcement learning; Artificial
intelligence, RL; DRL; Learning algorithms; Macro modeling, RBC;
Real business cycles; DDPG; Deep deterministic policy gradient;
Actor-critic algorithms

Author’s E-Mail Address: tatashbar@imf.org; ashi@imf.org

* The authors would like to thank Stephan Danninger for his helpful comments and suggestions. We appreciate the views and

suggestions provided by Mico Mrkaic, Dmitry Plotnikov, Sergio Rodriguez and attendees at the IMF SPR Macro Policy Division

Brownbag Seminar. Comments by Allan Dizioli are also gratefully acknowledged. All errors remain our own.

mailto:tatashbar@imf.org
mailto:ashi@imf.org

WORKING PAPERS

AI and Macroeconomic Modeling:

Deep Reinforcement Learning in

an RBC Model

Prepared by Tohid Atashbar and Rui (Aruhan) Shi

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 2

Contents

GLOSSARY ... 3

INTRODUCTION .. 4

I. AN OVERVIEW OF THE LITERATURE ... 5

II. A REAL BUSINESS CYCLE (RBC) MODEL ... 8

A. Households .. 8

B. Firms ... 9

C. Functional forms and parameters ...10

D. A deterministic steady state ..10

III. AI EXPERIMENTS .. 11

A. Experiment I: deterministic environment ...15

B. Experiment II: stochastic environment ..19

C. Issues during learning ..22

IV. CONCLUSION ... 24

ANNEX I. DDPG ALGORITHM ... 26

REFERENCES ... 27

FIGURES

Figure 1. SL, UL and RL in ML .. 7
Figure 2 Labor hours during training (200 episodes) ... 17
Figure 3 Labor hour series during training and testing ... 17
Figure 4 Distance the steady state (SS) values for labor hour and consumption ... 18
Figure 5 Productivity shock series zt ... 19
Figure 6 Simulated series during 100 testing periods ... 20
Figure 7 Labor hour choice before and after learning (200 episode) .. 21
Figure 8 Distance to deterministic steady states (SS) for labor hour and consumption ... 22
Figure 9 Distance to deterministic steady states (SS) for output and investment ... 22
Figure 10 Output per unit of labor... 23
Figure 11 Investment per unit of labor .. 24

TABLES

Table 1. Baseline parameters for RBC model ... 10
Table 2 Algorithm related parameters ... 13
Table 3 RL set up of the RBC model .. 15

file:///C:/Users/tatashbar/Desktop/WP2_AI%20and%20Macroeconomic%20Modeling_%20Deep%20Reinforcement%20Learning%20in%20an%20RBC%20model_v4.1_SD.docx%23_Toc122347063

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 3

Glossary

AGI Artificial General Intelligence

AI Artificial Intelligence

ANN Artificial Neural Networks

DDPG Deep Deterministic Policy Gradient

DL Deep learning

DNN Deep Neural Network

DPG Deterministic Policy Gradient

DQN Deep Q-Network

DRL Deep Reinforcement Learning

MADDPG Multi-Agent Deep Deterministic Policy Gradient

RBC Real Business Cycle

RL Reinforcement Learning

SAC Soft Actor-Critic

SL Supervised Learning

TD3 Twin Delayed DDPG

UL Unsupervised Learning

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 4

Introduction

Macroeconomic modeling is the process of constructing a model that describes the behavior of a
macroeconomic system. This process can be used to develop predictions about the future behavior of the
system, to understand the relationships between different variables in the system, or to simulate behavior.

Artificial intelligence (AI) is a branch of computer science that deals with the design and development of
intelligent computer systems. AI research deals with the question of how to create programs that are capable of
intelligent behavior, i.e., the kind of behavior that is associated with human beings, such as reasoning, learning,
problem-solving, and acting autonomously.

The two fields could be conceptually combined, as AI techniques could be used to develop more accurate
macroeconomic models, or one could use macroeconomic models to help design artificial general intelligent
systems that are better able to simulate economic (or more broadly social) behaviors, among many other tasks.
AI can be used to automatically identify relationships between variables, or to develop new ways of
representing economic systems. AI can also be used to develop methods for automatically learning from data,
which can be used to improve the accuracy of predictions. AI also could be used to develop more sophisticated
models that take into account a wider range of factors, including non-economic factors such as political
instability or weather patterns.

An increasing body of work leverages machine learning for forecasting (Atashbar and Shi, 2022), besides some
recent developments in optimization, market design, and algorithmic game theory, but AI's impact on
economics, especially in the field of macroeconomic modeling, has been modest so far. This has been caused
by a combination of factors including the relatively newness of the field, the difficulty of designing AI agents
capable of realistically imitating human behavior in an economy, the lack of data available for training AI
models, and the lack of computational resources needed to train and run large macroeconomic simulations.

But with the emergence of a new generation of AI models called reinforcement learning (RL), there's a growing
belief that AI will have a transformative impact on macroeconomic modeling (Tilbury, 2022). This is primarily
because RL models are much better suited than previous AI models for imitating human behavior. In addition,
RL models require much less data to be trained (they generate their own data through interaction with their
environment) and could be much more efficient in terms of computational resources in specific settings or
algorithms.

The goal of this paper is to build a relatively simple and extendable macroeconomic model based on RL that
can generate realistic macroeconomic dynamics that are comparable to models under the rational expectations
assumption while not imposing unrealistic restrictions like perfect foresight on economic agents. The resulting
model will be used as a prototype for future extensions in policy experiment or to customize it to better match
the conditions, shocks or data of a particular or global economy.

To this end, we implement an advanced deep RL (DRL) algorithm (the deep deterministic policy gradient
(DDPG)) in a real business cycle (RBC) macroeconomic model. We chose the DDPG algorithm for this basic
model (with an eye on the possible extensions of the model in the future) for several reasons (Sutton and Barto
(2018), Graesser and Keng (2019), Zai and Brown (2020) and Powell (2021)):

First, it is one of the modern RL algorithms that can be applied to continuous action space problems, which is
crucial for modeling macroeconomic variables. Second, it is one of the RL algorithms that can handle high-
dimensional state and action spaces, which are typical in macroeconomic models (e.g., the number of different
economic sectors). Third, the separation of policy and value functions in the algorithm allows for analyzing each
component independently during the learning process. Fourth, the DDPG algorithm is one of the few RL
algorithms that can be applied to non-stationary problems, which are common in macroeconomic modeling.
Fifth, it is one of the few RL algorithms that can be applied to problems with a very long-time horizon, which
might be important for macroeconomic modeling. Sixth, the DDPG algorithm is one of the few RL algorithms
that can be applied, in specific settings, to partially observable Markov decision process (POMDP) problems or,

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 5

in other words, to problems with a limited observation window or limited information settings. This could be
important for some macroeconomic modeling works since the observation window is often limited by the
frequency of the data. Finally, The DDPG algorithm has been shown to perform well in a variety of challenging
problems in the RL literature. However, similar to other RL algorithms, the DDPG algorithm is also known to be
unstable in some settings and can diverge if the learning process is not properly tuned.

We find that the RL augmented RBC model performs similar to the RBC model under the rational expectations
assumption once the learning representative agent has learnt for many simulation periods. This is achieved
from the stage when the representative agent does not understand the economic structure, its preference or
how the economy transitions over time. However, the training takes a significant amount of simulation periods,
in part due to the mechanism that the agent needs to generate its own experience to learn from it. To simulate
realistic households’ behaviors that match empirical learning periods, further work is needed to calibrate the
parameters, or transfer past experience to the learning agent as a starting point of learning.

These encouraging results need to be put in perspective. In addition to the rudimentary (but extendible)
character of our model structure, a disadvantage of our work is also the restricted scope of the RBC models.
The business cycle variations are only propagated through an exogenous productivity shock. The empirically
implied magnitude of true technology shock is likely to be smaller than what the RBC models predict.
Unemployment is also explained in an overly simplified manner: intertemporal substitutions between labor and
leisure explains employment variations. For workers to gain high utility, it is better to work more in productive
periods, and less in unproductive periods. However, RBC models are the core component of the DSGE models
that are largely applied in policy institutions and central banks. It is scalable and easily built on. It is well known
and studied, and thus easy to compare learning results with existing theory.

We hope this work will encourage further research in the application of AI and deep RL for macroeconomic
problems and will open up a new direction of research to combine deep RL with standard macroeconomic
models. In particular, we expect it to be a base and extension for more advanced applications at the Fund that
explore the use of deep RL for macroeconomic policy analysis.

The rest of the paper is organized as follows. Section I provides a brief literature review of AI and RL/deep RL
applications in macroeconomic policy. Section II describes the RBC model. Section III introduces the DRL
algorithm, the environment and the AI experiments we conduct, the results, and the issues during learning, and
Section IV concludes.

I. An overview of the literature

Artificial intelligence (AI) is a growing field of computer science focused on creating intelligent computer
systems, or machines, that can reason, learn, and act autonomously. AI systems are designed to mimic human
cognitive abilities, such as learning, problem solving, and natural language processing.

The term “artificial intelligence” was first coined in 1956 by computer scientist John McCarthy (Andresen,
2002). AI research is highly interdisciplinary, involving disciplines such as computer science, psychology,
neuroscience, linguistics, philosophy, and anthropology.

There are three broad categories of AI systems (Goertzel, 2007):

1. Narrow AI or weak AI systems are designed to perform a specific task, such as facial recognition or
model financial markets.

2. General AI or strong AI systems are designed to perform a wide range of tasks, such as reasoning and
planning.

3. Super AI or artificial general intelligence (AGI) are hypothetical AI systems that match or exceed
human intelligence.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 6

AI is already being heavily used across multiple fields and industries including health care, retail, finance,

image processing, autonomous driving, and many more. The application of AI in economics is still in its early

stages and has yet to be sufficiently developed in its application. Nonetheless, some theorize that sooner or

later, AI-economist machines could catch up with the human economists in many areas (Atashbar, 2021a,

2021b). AI has been used in economics mostly for predictions and forecasts, market analysis and the impact

analysis of alternative policies. Lu & Zhou (2021), Ruiz-Real et. al., (2021), Goldfarb et. al., (2019), Cao (2020),

and Veloso et al., (2021) look at how AI is/could be used in economics and finance.

Machine learning (ML) is a branch of artificial intelligence that uses artificial neural networks (ANN) to learn
from data, without being explicitly programmed. ANN is a data-driven approach to machine learning that is
based on the idea of artificial neurons, or nodes, that are connected in layers. The input layer receives the input
data, and the output layer produces the output. The hidden layers in between perform the learning by adjusting
the weights of the connections between the nodes. Deep learning (DL) is a subset of machine learning that
uses a deep neural network (DNN) to model complex patterns in data. A DNN is an ANN with a deep
architecture. This means that the neural network contains not only an input layer and an output layer, but also
one or more layers in between to add further non-linearities in order to recognize complex patterns in a dataset.

There are three general approaches to the learning processes in machine learning:

1. Supervised learning (SL): The machine is provided with a set of training data, which includes both the
input data and the desired output. The data is labeled. The machine is then able to learn and
generalize from this data in order to produce the desired output for new data. The main applications of
supervised learning are classification, regression, and prediction.

2. Unsupervised learning (UL): The machine is provided with a set of input data, but not the desired
output. The input is not labeled. The machine must then learn to find patterns and relationships in the
data in order to produce the desired output. Semi-Supervised Learning combines supervised and
unsupervised learning. This means that the training dataset contains both labelled data (i.e., every
piece of input data is attached to a desired output) and unlabeled data (i.e., input data is not attached
to a desired output). The main applications of unsupervised learning are clustering, dimensionality
reduction (e.g., principal components), and association rule learning.

3. Reinforcement learning (RL): It is different from both supervised and unsupervised learning in that it is

not given a set of training data. The machine is given a set of rules or objectives, and it must learn how
to best achieve these objectives through repeated interactions with the environment. The main
applications of reinforcement learning are control, robotics, optimization and gaming.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 7

Figure 1. SL, UL and RL in ML

Source: authors’ construction

Deep reinforcement learning (DRL) is a machine learning technique that combines reinforcement learning (RL)
with deep learning (DL), meaning that it uses a DNN to represent the RL agent (Li, 2017). This approach is
used to solve problems that are too difficult for simple RL algorithms alone. For an introduction of the theory
and several algorithms in RL/RDL, see Atashbar and Shi (2022a).

Surveys by Athey (2018), Cameron (2019), Nosratabadi et al., (2020) and Hull (2021) provide a comprehensive
review of the methods and use cases of ML and DL in economics. The application of RL and DRL in economics
has a relatively short history and is in its early stages. The literature on deep reinforcement learning in
economics mainly focuses on the application of deep reinforcement learning in microeconomic settings.
Reinforcement learning has been applied to various economic problems, such as dynamic pricing in electricity
markets, auction theory, portfolio management and asset pricing.

Feng et al. (2018) model the rules of an auction as a neural network and use deep learning for the automated
design of optimal auctions. They discover new auctions with high revenue for multi-unit auctions with private
budgets, including problems with unit-demand bidders. Zheng et al. (2020) employ reinforcement learning to
examine and decide on the actions of agents and a social planner in a gather-and-build environment. They
demonstrate that AI-driven tax policies enhance the trade-off between equality and productivity over baseline
policies.

Dütting et al. (2021) model an auction as a multi-layer neural network, frame optimal auction design as a
constrained learning problem, and show how it can be solved using standard machine learning pipelines. They
demonstrate generalization limits and describe extensive experiments, recovering essentially all known
analytical solutions for multi-item settings, and propose new mechanisms for settings in which the optimal
mechanism is unknown.

While being limited, there is also a growing body of literature on the application of reinforcement learning to
macroeconomic models. In macroeconomics literature, Deep RL algorithms have largely been used in a few
domains. One of them is to use reinforcement algorithms to find the optimal possible policy or policy response
function, as in Hinterlang and Tänzer (2022) and Covarrubias (2022). This field encompasses general
equilibrium model solving as well, as demonstrated by Curry et al (2022).

The learnability of rational expectation solutions in a general equilibrium model with multiple equilibria is also a
topic Chen et al (2021) study. By using a representative agent with numerous equilibria in a monetary model,

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 8

they demonstrate that the RL agent can locally converge to all of the stable states that the monetary model
describes.

Modeling rationality and bounded rationality is another area of emphasis. Hill et al. (2021) demonstrate how to
solve three rational expectations equilibrium models using discrete heterogeneous agents as opposed to a
continuum of agents or a single representative agent. Shi (2021) investigates RL agents' consumption-saving
behavior in a stochastic growth setting. She focuses on the differences in learning behaviors that occur when
RL agents vary in terms of their exploration levels, and how this affects the convergence of optimum policy.

Similar to previous research, our work adds additional evidence testing a DRL algorithm in a macroeconomic
model. However, we implement a representative DRL agent in an RBC model, which is served as a
fundamental building block for the commonly used New Keynesian DSGE models.

II. A Real Business Cycle (RBC) Model

The baseline RBC model contains identical and infinitely lived households and firms. The business cycle
fluctuations are generated by real shocks, i.e., a technology shock to productivity. In this specification, the
households own the firms and rent out capital. The firms issue both debt (bonds) and equity (dividend).

A. Households

A household makes consumption-saving and work-leisure decisions. He maximizes expected utility:

𝐸0 ∑ 𝛽𝑡𝑢(𝑐𝑡 , 1 − ℎ𝑡)

∞

𝑡=0

subject to the constraints:
𝑥𝑡 + 𝑐𝑡 + 𝑏𝑡+1 ≤ 𝑤𝑡ℎ𝑡 + 𝑟𝑡𝑘𝑡 + 𝑅𝑡𝑏𝑡 + Π𝑡

𝑘𝑡+1 ≤ (1 − 𝛿)𝑘𝑡 + 𝑥𝑡

𝑘𝑡 ≥ 0

𝑘0 is given and the maximization also satisfies the transversality condition.

𝑐𝑡 denotes consumption, 𝑥𝑡 denotes investment, 𝑏𝑡+1 denotes bond holding, 𝑤𝑡 hourly wage rate, ℎ𝑡 denotes

hours worked, 𝑟𝑡 denotes return on capital, 𝑘𝑡 denotes capital, 𝑅𝑡 denotes interest rate on bond holding, and Π𝑡
denotes dividend payment.

ℎ𝑡 ∈ [0,1] in period 𝑡, and the consumer receives utility from leisure.

The choices the consumer makes at time 𝑡 are (𝑥𝑡 𝑜𝑟 𝑘𝑡+1, 𝑐𝑡 , 𝑏𝑡+1, ℎ𝑡), given time 𝑡 information and the interest

rate on bonds, 𝑅𝑡+1.

 A.1 Optimization under Rational Expectation

This section as well as Section B.1 derive the optimization conditions under the rational expectations
assumption. The aim is to compare learning results of a DRL RBC model with the rational expectations
solution. In implementing a DRL algorithm, the first order conditions including the Euler equation are not
required. The representative household’s Lagrangian is,

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 9

𝐿 = 𝐸0 ∑ 𝛽𝑡{𝑢(𝑐𝑡 , ℎ𝑡) + 𝜆𝑡(𝑤𝑡ℎ𝑡 + 𝑟𝑡𝑘𝑡 + 𝑅𝑡𝑏𝑡 + Π𝑡 − 𝑐𝑡 − 𝑘𝑡+1 + (1 − 𝛿)𝑘𝑡 − 𝑏𝑡+1)

∞

𝑡=0

}

The first order conditions are:

𝜕𝐿

𝜕𝑐𝑡

= 0 ↔ 𝑢𝑐(𝑐𝑡 , ℎ𝑡) = 𝜆𝑡

𝜕𝐿

𝜕ℎ𝑡

= 0 ↔ 𝑢ℎ(𝑐𝑡 , ℎ𝑡) = 𝜆𝑡𝑤𝑡

𝜕𝐿

𝜕𝑘𝑡+1

= 0 ↔ 𝜆𝑡 = 𝛽𝐸𝑡𝜆𝑡+1{𝑟𝑡+1 + (1 − 𝛿)}

𝜕𝐿

𝜕𝑏𝑡+1

= 0 ↔ 𝜆𝑡 = 𝛽𝐸𝑡𝜆𝑡+1(𝑅𝑡+1)

𝜕𝐿

𝜕𝑐𝑡
 and

𝜕𝐿

𝜕𝑘𝑡+1
 yield:

𝑢𝑐(𝑐𝑡 , ℎ𝑡) = 𝛽𝐸𝑡𝑢𝑐(𝑐𝑡+1, ℎ𝑡+1)(𝑟𝑡+1 + 1 − 𝛿)

𝜕𝐿

𝜕𝑐𝑡
 and

𝜕𝐿

𝜕𝑏𝑡+1
 yield:

𝑢𝑐(𝑐𝑡 , ℎ𝑡) = 𝛽𝐸𝑡𝑢𝑐(𝑐𝑡+1, ℎ𝑡+1)𝑅𝑡+1

𝜕𝐿

𝜕𝑐𝑡
 and

𝜕𝐿

𝜕ℎ𝑡
 yield:

𝑢ℎ(𝑐𝑡 , ℎ𝑡) = 𝑤𝑡𝑢ℎ(𝑐𝑡, ℎ𝑡)

B. Firms

A profit maximizing firm’s problem is:

max
Kt,Ht

𝑒𝑧𝑡 𝐹(𝐾𝑡, 𝐻𝑡) − 𝑤𝑡𝐻𝑡 − 𝑟𝑡𝐾𝑡

where 𝐾𝑡 is the capital input, 𝐻𝑡 is the labour input, F is a neoclassical production function, such as the Cobb-

Douglas production function, 𝑧𝑡 follows an AR(1) process as follows.

𝑧𝑡 = 𝜌𝑧𝑡−1 + 𝜖𝑡

𝜖𝑡 is sampled from a white noise process.

B.1 Optimization under Rational Expectations

The firms first order conditions give wage rate and capital rental rate equations:

𝑤𝑡 = 𝑒𝑧𝑡𝐹𝐾(𝐾𝑡, 𝐻𝑡)

𝑟𝑡 = 𝑒𝑧𝑡𝐹𝐻(𝐾𝑡, 𝐻𝑡)

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 10

The debt the firm issues is indeterminate in this setup.

C. Functional forms and parameters

Table 1 presents baseline parameters follow Cooley and Prescott (1995) for the US data.

Table 1. Baseline parameters for RBC model

Description Parameter value Relevant equations

Utility function parameters 𝜒 = 1 (logarithmic utility)

𝛼 = 0.64 𝑢(𝑐𝑡 , ℎ𝑡) =
(𝑐𝑡

1−𝛼 (1 − ℎ𝑡)𝛼)1−𝜒

1 − 𝜒

𝑢(𝑐𝑡 , ℎ𝑡) = (1 − 𝛼) ln 𝑐𝑡 + 𝛼 ln (1 − ℎ𝑡)

Production function

𝜃 = 0.4 𝐹(𝐾, 𝐻) = 𝐾𝜃𝐻1−𝜃

Discount rate – 𝛽

0.99
𝐸0 ∑ 𝛽𝑡𝑢(𝑐𝑡 , 1 − ℎ𝑡)

∞

𝑡=0

Autoregressive parameter - 𝜌

0.95 𝑧𝑡 = 𝜌𝑧𝑡−1 + 𝜖𝑡

Standard deviation of 𝜖𝑡, 𝜎𝜖

0.007 𝑧𝑡 = 𝜌𝑧𝑡−1 + 𝜖𝑡

Capital depreciation – 𝛿

0.012 𝑘𝑡+1 ≤ (1 − 𝛿)𝑘𝑡 + 𝑥𝑡

D. A deterministic steady state

Assume for the parameter values and functional forms presented in section C. At a deterministic steady state,
𝑧𝑡 = 0, 𝑘𝑡+1 = 𝑘𝑡 = 𝑘∗, 𝑐𝑡+1 = 𝑐𝑡 = 𝑐∗. The first order conditions in section A.1 and B.1 become the following
steady state conditions:

1

𝛽
− 1 + 𝛿 = 𝜃 (

𝑘∗

ℎ∗
)

𝜃−1

↔
𝑘∗

ℎ∗
= (

1
𝛽

− 1 + 𝛿

𝜃
)

1
𝜃−1

(= 124.7)

𝑦∗ = (
𝑘∗

ℎ∗
)

𝜃

ℎ∗ ↔
𝑦∗

ℎ∗
= (

𝑘∗

ℎ∗
)

𝜃

(= 6.89)

𝑖∗ = 𝛿𝑘∗ = 𝛿 (
𝑘∗

ℎ∗
) ℎ∗ ↔

𝑖∗

ℎ∗
= 𝛿 (

𝑘∗

ℎ∗
) (= 1.5)

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 11

The accounting identity gives the value of consumption1:

𝑐∗ = 𝑦∗ − 𝑖∗ ↔
𝑐∗

ℎ∗
=

𝑦∗

ℎ∗
−

𝑖∗

ℎ∗
(= 5.39)

The values in parenthesis are steady state values calculated based on the parameters presented in Table 1.

The steady state values can be calculated for all real variables per unit of labor input, i.e.,
𝑘∗

ℎ∗
,

𝑦∗

ℎ∗
,

𝑐∗

ℎ∗
,

𝑖∗

ℎ∗
. Wage

rate and capital rental rate are as follows.

𝑤∗ = (1 − 𝜃) (
𝑘∗

ℎ∗
)

𝜃

𝑟∗ = 𝜃 (
𝑘∗

ℎ∗
)

𝜃−1

− 𝛿

III. AI Experiments

The following simulations demonstrate the learning behaviors of a representative RL agent and the economic
dynamics. We first compare the agent’s decisions (e.g., choice of labor hour) at the beginning of a learning
process with the same agent’s decisions after many simulation periods of learning. This is to show that the
agent’s progress of learning in an unknown environment following the framework of learning from past its own
experience. We then compare the learning agent’s decisions with what a rational expectations agent would
make in the same environment. We also plot series of macroeconomic variables to show that the RBC model
with a RL agent makes similar qualitative predictions to a conventional RBC model.

We setup two environments, one is a dynamic3 and deterministic environment without any shocks, and the
other is stochastic with technology shocks. This is to first offer a clear comparison of RL agent’s behaviors with
a rational expectations agent in a deterministic environment. As most macro insights are derived from
stochastic models, we then highlight that the RL agent behaves and learns well in a stochastic environment as
well.

Implementation

We implement DDPG algorithm in this paper. It is first introduced by Lillicrap et al (2015)4 in the paper
"Continuous Control with Deep Reinforcement Learning". The algorithm was designed to improve the issue of
applying RL methods to continuous action spaces. The main idea behind DDPG is to use a DNN to
approximate the action-value function. DDPG was an extension of DPG (Deterministic Policy Gradient) to
continuous action spaces, using DQN (Deep Q-Network) to estimate the Q-function. Q-function refers to an
action-value function. It reflects expected cumulative rewards. It is a mapping from a state-action pair to the
expected value. For more information on deep RL algorithms, please refer to Atashbar and Shi (2022a).

DDPG algorithm has been the harbinger of modern Reinforcement Learning and has been the launchpad for
the development of many other interesting RL algorithms. One offshoot of DDPG is called TD3 (Twin Delayed
DDPG) which uses a clipped double-Q function for learning policies. Another offshoot is MADDPG (Multi-Agent
Deep Deterministic Policy Gradient), which is an extension of DDPG to the so-called "centralized training with

1 Ratio
𝑖∗

𝑦∗
= 1 − (

𝑐∗

ℎ∗

𝑦∗

ℎ∗

) = 0.28

3 The state variables depend on past actions of the AI agent, as illustrated in the transition equations cell in Table 3. The first

environment is both deterministic (absence of exogenous shocks) and dynamic.
4 Full algorithm is attached in the annex. More advanced algorithm such as soft actor critic is also developed that can achieve a

more stable learning.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 12

decentralized execution" or learning to play multi-agent environments that are partially observable to each
agent. DDPG also inspired a more recent algorithm called SAC (Soft Actor-Critic), which is a variation of TD3
that uses entropy to encourage exploration. As DDPG was developed by Google DeepMind, it is sometimes
called DeepMind DDPG.

DDPG has been used in a variety of tasks and has been shown to be successful in learning a variety of control
tasks. In particular, DDPG has been used to control robotic arms, flying drones, and walking robots.

DDPG concurrently learns a Q-function and a policy. It uses the Bellman equation to learn the Q-function and
uses the Q-function to learn the policy. The DDPG algorithm is an Actor-Critic algorithm. The Actor represents
the policy, and the Critic represents the Q-function. The Actor Network is trained using the Policy Gradient,
while the Critic Network is trained using Temporal Difference Learning.

The algorithm uses replay memory in order to break the correlation between samples. The replay memory
stores samples and then randomly selects a batch of samples to train on. This prevents the algorithm from
getting stuck in a local minimum.

The algorithm also uses a target network for both the Actor and the Critic. The target network is a copy of the
original network which is updated using a Polyak averaging. This prevents the algorithm from diverging.

One advantage of DDPG is that it can learn from actions that are suboptimal or even wrong according to the
current policy. The off-policy nature of DDPG is useful in real-world situations where the agent is allowed to
explore to find the optimal policy. It's also useful in many tasks where the agent may not always have complete
information about the environment, so it may have to learn from suboptimal actions. For example, in a 3D
game, the agent may not always know where enemies are, so it may have to learn from its mistakes in order to
find them. In another example, the agent has to learn to open a door and occasionally smashes it with its head.
DDPG can learn from this mistake and still learn to open the door correctly most of the time.

In an economic example, a central bank may want to keep inflation low, but sometimes it will have to allow
some inflation in order to achieve other goals, such as full employment. The central bank can learn from its
mistakes during fine-tuning and still keep inflation low most of the time.

A disadvantage of DDPG is that it can take a long time to converge to the optimal policy. This is because the
agent is constantly exploring and trying new actions, even if they are suboptimal. This can be a problem in
tasks where the agent needs to find the optimal policy quickly, such as in a real-time game.

Another disadvantage of DDPG is that it can be unstable. This is because the agent is constantly updating its
policy and value function, which can lead to oscillations in the values. This can make it difficult for the agent to
converge to the optimal policy. In the DDPG algorithm, the agent must collect experience by directly interacting
with the environment. The experience for each period contains state, action, reward and next state. The
collected experience is used to update the agent’s policy and value functions. Both policy and value functions
are approximated by their respective ANNs. The policy network updates with the goal of maximizing the
prediction made by the value function. The value function parameters update with the goal of minimizing the
temporal difference errors.

In a typical DDPG algorithm, there are generally four types of parameters that need to be tuned:

1. Hyperparameters (exploration parameters): These parameters are used to control the learning rate,
exploration rate, and related factors.

2. Neural network parameters: These parameters are used to control the weights and biases of the neural
networks.

3. Replay parameters (Memory parameters): The size of the replay buffer and the batch size for training need
to be tuned.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 13

4. Algorithm parameters: The parameters of the DDPG algorithm itself need to be tuned. Actor and Critic
learning rates, soft update parameters, and other parameters may need to be tuned. These parameters are
also used to control the algorithm's behavior, such as the number of episodes or the number of steps per
episode.

Table 2 shows parameters related to the AI algorithm and the ANN architecture. Parameters such as number of
episode and steps per episode indicate the length of simulation periods and can be adjusted depends on the
underlying question. Feedforward ANN with two hidden layers are used to approximate the policy and the value
functions. Each hidden layer has 16 nodes, which is a simple ANN architecture comparing to those used for the
game of Go5, or speech recognition.

Table 2 Algorithm related parameters

Parameters Baseline Descriptions

Number of episodes 200 A measure of simulation periods. The number of
episodes can affect the performance of the agent in
reinforcement learning. If the agent experiences too
few episodes, it may not have enough data to learn
from. If the agent experiences too many episodes, it
may overfit to the data and not generalize well to new
situations.

Steps per episode 2000 The number of periods within an episode. It is a
measure of how difficult the task is. A task that is easy
to learn will require fewer timesteps to complete an
episode, while a task that is difficult to learn will require
more timesteps. The number of timesteps can also be
used as a measure of how efficient the learning
algorithm is. A learning algorithm that is very efficient
will require fewer timesteps to complete an episode,
while a learning algorithm that is less efficient will
require more timesteps.

Updates per step 5 Number of times the ANNs are updated within a
simulation period. In reinforcement learning, updates
per step can be thought of as an analogy for how many
times an agent has experienced a particular
environment. In general, the more updates per step,
the faster the learning process. However, too many
updates per step can lead to instability and divergence.

Batch size 128 Sample size refers to the number of episodes or
experiences sampled in each training iteration. A larger
batch size generally results in a model that converges
faster, but may be more prone to overfitting, instability
and poorer performance. A smaller batch size allows
for more fine-grained updates but may take longer to
converge.

Hidden layer size 16 Number of neurons in a hidden layer. Size of hidden
layers is important because it determines the capacity
of the network to learn complex patterns. If the hidden
layer size is too small, the network will not be able to
learn complex patterns. If the hidden layer size is too
large, the network will overfit the data.

Number of hidden layers 2 Number of hidden layers. The number of hidden layers
in a deep neural network is often referred to as the

5 Due to its enormous search space and the difficulty of evaluating board positions and moves, Go has long been

regarded as the most difficult of the traditional board games for artificial intelligence. (Silver et al., 2016).

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 14

model's depth. The more hidden layers in a network,
the more complex the model. In general, as the depth
of a network increases, the network becomes more
difficult to train. This is because each additional layer
introduces more parameters that need to be optimized,
and the optimization problem becomes more non-
linear.

Learning rate Actor: 1e-4
Critic: 1e-3

Governs how quickly the ANN updates based on new
information. It controls to what extent newly acquired
information overrides old information.

Activation functions Actor: ReLU6 for
each linear layer
and Tanh for output
layer
Critic: ReLU for all

 Activation functions are used in artificial neural
networks to map the output of the network to a value
that is usable by the next layer. In DDPG, a common
activation function is ReLU, or Rectified Linear Unit.
ReLU is a common activation function because it is
simple to compute and has a range of 0 to 1. ReLU is
also a common activation function because it is
differentiable. This means that the gradient of the
ReLU function can be computed, which is important for
training the neural network. Tanh is another common
activation function and maps the output of a node to a
value between -1 and 1. Tanh is also differentiable,
which means that the gradient of the Tanh function can
be computed. There are a variety of other activation
functions that can be used, such as sigmoid, softmax,
and linear. Each of these activation functions has
different properties that make it suitable for different
types of neural networks.

Exploration From 1.0 to 0.3,
diminish by episode

 It is used to control the amount of randomness in the
exploration of the state space. A higher exploration
parameter results in more randomness, meaning that
the agent is more likely to explore new states that it
has not visited before. A lower exploration parameter
results in less randomness, meaning that the agent is
more likely to exploit the states that it has already
visited and that it knows are rewarding.

Table 3 shows different components of RL that are represented in the RBC model. For the learning
representative household, only its utility function and budget constraint are needed. Its first order conditions,
such as the Euler equation, is not used when implementing the RL algorithm. This means that the only
information needed for setting up a RL agent is the state variables, the choices of the agents and how state
transitions without needing the agent’s optimality conditions.

At each period, the agent observes the state variables, and makes an action. The action includes labor hour,

ℎ𝑡, proportion of investment, 𝜆𝑡
𝑖 , and changes in bond position, 𝜆𝑡

𝑏. The reward this agent receives is dependent
on the consumption level and labor hour, and the reward function is logarithmic. As we consider an RBC model
in this paper, the state space and action space are relatively small. DRL algorithms are designed to function
well in a situation that involves large state and action spaces, such as learning the game of Go. Depends on
the economic question and the models adopted, the algorithms can be implemented with large state and action
spaces.7

6 ReLU is short for rectified linear unit. Is it the default activation function for most recent applications of feedforward ANNs. Tanh is

short for hyperbolic tangent activation function, and it is often used when the desired output is within range (-1, 1).
7 This may require a larger ANN, i.e., an ANN with more depth or more nodes per layer.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 15

The state of the environment transitions according to the transition equations presented in Table 3. Only
objective functions, budget constraints, as well as aggregate identities are used for the DRL learning
implementation. When modelling through a DRL algorithm, the agent does not need to know the first order
conditions (including the Euler equation). It gathers experiences through taking actions and exploring the
environment. This means that at each period the RL agent observes realized state variables, takes an action,
and receives the reward given its action. The experiences are then used as past data to update the policy and
value functions (two ANNs).

Table 3 RL set up of the RBC model

Component Setup

State Period t state variables include: 𝑘𝑡, 𝑧𝑡 ,
𝑘𝑡−1

ℎ𝑡−1
, 𝜆𝑡−1

𝑏 , 𝑅𝑡−1

Action and action space Period t action variables include:
ℎ𝑡 ∈ (0,1)

𝜆𝑡
𝑖 ∈ (0,1)

𝜆𝑡
𝑏 ∈ [1,2]

Reward function Logarithmic utility:
𝑢(𝑐𝑡 , ℎ𝑡) = (1 − 𝛼) ln 𝑐𝑡 + 𝛼 ln (1 − ℎ𝑡)

Transition equations
𝐾𝑡 = 𝑘𝑡

𝐻𝑡 = ℎ𝑡

𝑦𝑡 = 𝑒𝑧𝑡𝐾𝑡
𝜃𝐻𝑡

(1−𝜃)

𝑖𝑡 = 𝜆𝑡
𝑖 𝑦𝑡

𝑟𝑡 = 𝜃𝑒𝑧𝑡𝐾𝑡
𝜃−1𝐻1−𝜃

𝑅𝑡 = 𝑟𝑡 + 1 − 𝛿

Δ𝑡+1
𝑏 =

𝑏𝑡+1

𝑏𝑡

− 𝑅𝑡 = 𝜆𝑡
𝑏 − 𝑅𝑡

8

𝑐𝑡 = (𝑦𝑡 − 𝑖𝑡) − 𝑎Δ𝑡+1
𝑏

𝑎 > 0 is a constant and assumed to be 𝑎 = 10

A. Experiment I: deterministic environment

In reinforcement learning, an environment is said to be deterministic if the next state of the environment is
completely determined by the current state and the agent's current action. For instance, in chess, the next state
of the board is completely determined by the current state of the board and the move that the agent makes. In
contrast, an environment is stochastic if the next state is only partially determined by the current state and the
agent's current action. For instance, in backgammon, the next state of the board is determined by the current
state of the board and the roll of the dice, which is random.

The type of environment can have a significant impact on the performance of a reinforcement learning
algorithm. In general, algorithms tend to perform better in deterministic environments than in stochastic
environments. This is because in a deterministic environment, the agent can always be sure of what the next

8 Does not run into issues with negative Δ𝑏 because the production is Cobb-Douglas and its first derivative with respect to capital is

greater than 0.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 16

state will be, and so it can plan its actions accordingly. In a stochastic environment, on the other hand, the
agent can never be sure of what the next state will be, and so it has to take into account the possibility of
different outcomes. However, they can also be difficult to learn in since the agent may become stuck in a local
optimum. In contrast, stochastic environments may be more difficult to learn initially, but can often lead to better
long-term performance, since the agent can explore different states and find new optimums.

We first assume for a deterministic environment, and no productivity shock, i.e., 𝑒𝑧𝑡 = 1 and 𝑧𝑡 = 0. This is for
an easy comparison between learning behaviors and the optimal behaviors under rational expectation
scenario.

The representative household is assumed to be the learning agent. Firms are “rational”, meaning it maximizes
profit, sets competitive wage and assume for a rational household. Rate of return on capital and return on
bonds satisfy the equilibrium condition: 𝑅𝑡 = 𝑟𝑡 + 1 − 𝛿.

Results

This section shows simulation results under the baseline parameters in Table 2. Most figures show simulated
series during both training and testing periods. When an agent engages in exploratory behavior to interact with
the environment, it is referred to as training. The agent's policy and value functions are then updated as a result
of the interactive experience. Testing entails demonstrating how the agent behaves if the learning process is
halted, i.e., when the policy and value functions are not updated and when the agent's actions are not
accompanied by noise from exploration.

Following our analytical strategy, Figure 2 compares a RL agent’s choices of labor hour at the beginning of a
learning process with its decisions after it has learnt for 190 episodes. It plots the frequencies of labor hour
choices within the action set, i.e., (0, 1). The green bins denote choices made at the first 10,000 steps, whereas
the blue bins plot the last 10,000 steps of training. The green bins show that at the beginning of a learning
process, the agent makes more random actions. As the agent acquires more knowledge about the environment
and learns more about its own preference, its decision of labor hour is more centered and concentrate towards
the deterministic steady state value of 0.33.

Figure 3 plots the simulated series of labor hours for 500 periods (or steps). The dash-dot line represents the
deterministic steady state value of labor hour. The solid line is the series during testing periods. The dotted line
is the series during training period. We demonstrate that the agent learns to choose the labor hour that is close
to the optimal choice as measured by the deterministic steady state value.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 17

Figure 2 Labor hours during training (200 episodes)

Figure 3 Labor hour series during training and testing

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 18

To compare and illustrate the learning process, we calculate the mean squared distance between the RL
agent’s choice and the deterministic steady state value, similar to Shi (2021) and Chen et al (2021). In
particular, the distance is calculated as

𝑑𝑡 = (�̅�𝑡 − 𝑥𝑠𝑠)2

where 𝑡 denotes episode, 𝑥 denotes a variable of interest, e.g., labor hour or consumption. �̅�𝑡 represents the

mean of variable of interest for learning episode 𝑡. 𝑥𝑠𝑠 represents the steady state value.

A smaller distance, i.e., 𝑑𝑡, means that the RL agent’s decision is close to a rational agent’s decision.

We calculate the distance between the RL agent’s choice and the steady state value for each learning episode.
Figure 4 plots the distance per learning episode for labor hour and consumption per labor hour. The left y-axis
shows the distance series for labor hour over learning episodes, and the righthand y-axis shows the distance
series for consumption. Both lines show gradual decline as the agent learns for longer. However, the decline is
not monotonic to learning episode. This could be due to a number of reasons and requires further investigation.
For example, a change in learning parameters, e.g., exploration level and the neural networks learning rate,
may have an impact on how smooth the series can be over time. In addition, aggregate many simulations might
average out the volatility observed in the plot.

Figure 4 Distance the steady state (SS) values for labor hour and consumption

Using varying parameter values and ANN architectures, the agent could acquire this belief prior to 200
episodes of learning. Due to the fact that the agent must generate its own experience, learning requires a
substantial number of iterations.

In a deterministic environment, we show that an RL agent at first make random decisions. This is part of the
process to collect experiment through an agent-environment interactive process. Once the agent starts to
update its beliefs, its decisions gradually converge to what a rational agent would do in the RBC model. This is
consistent to the findings in Hinterlang and Tänzer (2022), Chen et al (2021), and Shi (2021). Moreover, the
distance between an RL agent’s decision and a rational expectations agent reduces over time. However, the
convergence, as measured by the mean squared distance, is not monotonic in this experiment. This could be
due to the exploration parameter that leads to volatility in the RL agent’s decisions. The extend of this requires
further simulation evidence. Furthermore, in this experiment, parameters of the learning framework is
uncalibrated. This corresponds to a slow learning process.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 19

B. Experiment II: stochastic environment

In the stochastic environment, productivity shock is present, and it is as follows.

𝑧𝑡 = 𝜌𝑧𝑡−1 + 𝜖𝑡

The household is assumed to be the learning agent, and the firm is assumed to be rational.

Figure 5 plots the stochastic factor in this experiment, i.e., the 𝑧𝑡 series for 500 simulation periods.

Figure 5 Productivity shock series 𝑧𝑡

Following five episodes of learning, the agent's consumption, output, and investment per unit of labor are
shown in Figure 6 over the course of 100 testing periods. For the same simulation period, it also plots this
agent's labor hour preference. The blue and green lines (consumption per unit of labor and output per unit of

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 20

labor, respectively) move in the same direction, as predicted by many macro theories and empirical evidence9.
A high investment in one period causes a high output in the following period, as the yellow line shows.

Figure 6 Simulated series during 100 testing periods

Figure 7 plots the frequency histogram of AI agent’s choice of labor hour at the first 10,000 steps of learning
and at the last 10,000 steps of learning. The green bins are the choices the agent made at the beginning of a
learning process. As the agent learns in this environment, its labor hour choices concentrate towards the
optimal choice of 0.3.

9 In such models, as workers become more productive, they also raise their consumption. This is consistent with the models in

which workers are rewarded with wages and consumption growth (more productive workers are typically given higher wages,

and as a result, generally consume more). This is also consistent with the neoclassical growth theory, which suggests that

technological progress is labor augmenting, i.e., it raises both output per worker and consumption per worker. When

technological progress is labor augmenting, the correlation between consumption per worker and output per worker tends to be

positive.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 21

Figure 8 and 9 plots the distance to deterministic steady states for variables including consumption, output,
investment per unit of labor for 200 simulation periods. The distance at each episode is calculated according to
the equation presented in Experiment I, i.e.,

𝑑𝑡 = (�̅�𝑡 − 𝑥𝑠𝑠)2

All distance series in figures 8 and 9 show a gradual decline, which means the RL agent behaves similar to a
rational expectations agent as it learns in the environment for longer. Similar to the results in the deterministic
environment, the decline is not monotonic to learning episodes.

Due to the stochastic nature of this environment, the distance series can still be volatile once the RL agent
acquires enough knowledge and information to act similar to a rational expectations agent. For example, the
series after episode 125 in figure 8 appear to be more volatile than the series plotted in figure 4.

However, an interesting observation is that the RL agent appears to learn quicker in a stochastic environment
than the deterministic one by comparing figure 8 with figure 4. In figure 4, a small distance is only observed
after around episode 165, whereas in figure 8, the RL agent acts similar to a rational expectations agent after
episode 125. One explanation is that in a stochastic environment, the agent gathers experience in a wide range
of states in early learning periods due to the stochasticity in the environment. Hence, the agent learns to act
quicker.

Figure 7 Labor hour choice before and after learning (200 episode)

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 22

Figure 8 Distance to deterministic steady states (SS) for labor hour and consumption

Figure 9 Distance to deterministic steady states (SS) for output and investment

In this experiment with the stochastic environment, we show that the RBC with a representative RL agent
makes similar predictions to the model with a rational expectations agent. Moreover, we show that the RL
agent learns to make optimal decisions over time through a distance metric. Although, the agent’s behaviors
can be more volatile in the stochastic environment, it learns quicker than the agent in a deterministic
environment. We propose that this is because the agent experiences more states in a stochastic environment
than in a deterministic one, Therefore, it learns to make optimal choices quicker than living in a deterministic
environment.

C. Issues during learning

Instability of learning

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 23

Many DRL algorithms are not proven to converge to optimal solutions of a problem. This might be brought on
by the exploration noise that was added to the action. Additionally, it's possible that the learning rate is not set
correctly, the gradient estimation is too noisy, or even the network is not deep enough. These could result in
convergence to suboptimal solutions. Matheron et al. (2019) argue that DDPG algorithm can be unstable in
trivial tasks, which is still not well understood. There are a number of ways to try to improve the stability of
DDPG. One approach is to use a different noise process for exploration, such as adding Ornstein-Uhlenbeck
noise to the actions instead of Gaussian noise. Another approach is to use a different function approximation,
such as a long short-term memory (LSTM) network instead of a fully connected network. Finally, it is also
possible to try to modify the way in which the DDPG algorithm learns, such as using a different learning rate or
using a different optimization algorithm.

In Figure 10 and 11, we plot output and investment per unit of labor after an AI agent learns for 200 episodes in
a deterministic environment. This is an example of the instability of learning. The agent is trapped in a state
where it does not make an optimal choice but refuses to move towards the optimal direction. Even after further
learning and training, the agent remains in this state. Kuriksha (2021) also documented learning traps using
ANNs.

The frequency of such events occurring remains unclear and it is also case-dependent. This requires
researchers’ subjective judgement when analyzing results.

Given that the environment is set up correctly, in some cases, this learning trap can be resolved simply by
starting the learning from the beginning. In other cases, it might imply issues with hyperparameters or ANN
architectures. Different parameter values might need to be explored.

Figure 10 Output per unit of labor

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 24

Figure 11 Investment per unit of labor

Parameter selection

Algorithm-related parameter selection and the choice of ANN architecture can be a challenge. There is no
general guidance on how to set these parameters, and it might be difficult to find values that work well for a
specific problem. But a rule of thumb might be to start with simple ANN architectures and then increase the
complexity if needed. Some techniques for alleviating the issue are to use a grid search or an evolutionary
algorithm.

Difficulty in reproducing results

It can be difficult to reproduce results with DRL algorithms, since there is a lot of randomness involved in the
learning process. This is especially true for algorithms that use stochasticity in the learning process. To try and
reproduce results, it is important to use the same random seed for the algorithm. Additionally, it is important to
keep track of all the hyperparameters that were used, as well as the specific details of the problem that was
being solved.

IV. Conclusion

This work aimed to develop a reasonably basic and extensible AI-macroeconomic simulator based on
reinforcement learning. To do that, we deployed a modern deep RL (DRL) method (DDPG) in a real business
cycle (RBC) macroeconomic model.

In this AI experiment, we have one learning agent, which is the representative household. It learns to make
consumption-saving, and labor-leisure decisions to maximize long-term rewards. Reward function is assumed
to be the same as a logarithmic utility function. The learning agent’s policy and value functions are
approximated by randomly initialized ANNs. The agent observes current period realized technology shock, and
its previous choices (consumption, investment, bonds, labor).

We setup two learning environments, one is deterministic without the technology shock, and the other is a
stochastic environment. The purpose of a deterministic environment is to compare the learning agent’s
behaviors with a deterministic steady state scenario.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 25

Parameters underlying the RBC model follow Cooley and Prescott (1995). Parameters related to the DDPG
algorithm, and the ANN architecture largely follow existing AI literature with adaptations to the current
problems. For example, most existing DDPG implementation uses a large ANN architecture with at least
hundreds of nodes for each layer. Given the current problem is relatively simple, we reduce the number of ANN
nodes to be 16 per hidden layer.

In the simulation experiments, we plot simulated series of consumption, output, investment, and labor hour. We
show that the deep RL agent RBC model provides predictions that are consistent to conventional RBC models.
As a benchmark, we also plot the deterministic steady state values of the RBC model under the rational
expectations assumption. We demonstrate that in both deterministic and stochastic contexts, the agent's
decisions after learning are near to the optimal value. Due to the stochastic character of the environment,
however, the series in stochastic setup are more volatile than in deterministic setup, and learning tends to be
less stable.

This basic AI-macro structure might be expanded by adding more variables or sectors to the model or using
other DRL algorithms in the model in the next studies.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 26

Annex I. DDPG algorithm

The DDPG algorithm follows from Lillicrap et al (2019, page5)

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 27

References

Andresen, S. L. (2002). John McCarthy: father of AI. IEEE Intelligent Systems, 17(5), 84-85.

Atashbar, T. (2021) The Future of Economics in an AI-Biased World. World Economic Forum.

Atashbar, T. (2021) R4: A transformer machine fine-tuned with the IMF public knowledge, V4.4.2

Atashbar, T., and Shi, R. A., (2022a) Deep Reinforcement Learning: emerging trends in macroeconomics and
future prospects, IMF Working Papers.

Athey, S. (2018). The impact of machine learning on economics. In The economics of artificial intelligence: An
agenda (pp. 507-547). University of Chicago Press.

Cameron, A. C. (2019). Machine Learning Methods in Economics. Machine Learning, 1, 67.

Cao, L. (2020). AI in finance: A review. Available at SSRN 3647625.

Chen, M., Joseph, A., Kumhof, M., Pan, X., Shi, R. and Zhou, X., (2021) Deep reinforcement learning in a
monetary model. arXiv preprint arXiv:2104.09368.

Cooley, T.F. and Prescott, E.C., 1995. Frontiers of business cycle research (Vol. 3). Princeton, NJ:
Princeton University Press.

Covarrubias, M. (2022), Dynamic Oligopoly and Monetary Policy: A Deep Reinforcement Learning Approach.

Curry, M., Trott, A., Phade, S., Bai, Y., & Zheng, S. (2022). Finding General Equilibria in Many-Agent Economic
Simulations Using Deep Reinforcement Learning. arXiv preprint arXiv:2201.01163.

Dangeti, P. (2017). Statistics for machine learning. Packt Publishing Ltd.

Dütting, P., Feng, Z., Narasimhan, H., Parkes, D. C., & Ravindranath, S. S. (2021). Optimal auctions through
deep learning. Communications of the ACM, 64(8), 109-116.

Feng, Z., Narasimhan, H., & Parkes, D. C. (2018, July). Deep learning for revenue-optimal auctions with
budgets. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems (pp. 354-362).

Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York: Springer.

Goldfarb, A., Gans, J., & Agrawal, A. (2019). The Economics of Artificial Intelligence: An Agenda. University of
Chicago Press.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python.
Addison-Wesley Professional.

Hill, E., Bardoscia, M. and Turrell, A., (2021) Solving heterogeneous general equilibrium economic models with
deep reinforcement learning. arXiv preprint arXiv:2103.16977.

Hinterlang, N., & Tänzer, A. (2021). Optimal monetary policy using reinforcement learning.

Hull, I. (2021). Machine Learning and Economics. In Machine Learning for Economics and Finance in
TensorFlow 2 (pp. 61-86). Apress, Berkeley, CA.

Kuriksha, A., 2021. An Economy of Neural Networks: Learning from Heterogeneous Experiences. arXiv
preprint arXiv:2110.11582.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.

Lu, Y., & Zhou, Y. (2021). A review on the economics of artificial intelligence. Journal of Economic Surveys,
35(4), 1045-1072.

Matheron, G., Perrin, N. and Sigaud, O., 2019. The problem with DDPG: understanding failures in deterministic
environments with sparse rewards. arXiv preprint arXiv:1911.11679.

IMF WORKING PAPERS Title of WP

INTERNATIONAL MONETARY FUND 28

Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., ... & Gandomi, A. H. (2020). Data
science in economics: comprehensive review of advanced machine learning and deep learning methods.
Mathematics, 8(10), 1799.

Powell, W. B. (2021). From reinforcement learning to optimal control: A unified framework for sequential
decisions. In Handbook of Reinforcement Learning and Control (pp. 29-74). Springer, Cham.

Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & De Pablo, J. (2021). Artificial intelligence in business and
economics research: Trends and future. Journal of Business Economics and Management, 22(1), 98-117.

Shi, R. A., (2021b) Can an AI agent hit a moving target? arXiv preprint arXiv:2110.02474.

Shi, R.A., (2021a) Learning from Zero: How to Make Consumption-Saving Decisions in a Stochastic
Environment with an AI Algorithm. arXiv preprint arXiv:2105.10099.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016).
Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tilbury, C. (2022). Reinforcement Learning in Macroeconomic Policy Design: A New Frontier? arXiv preprint
arXiv:2206.08781.

Veloso, M., Balch, T., Borrajo, D., Reddy, P., & Shah, S. (2021). Artificial intelligence research in finance:
discussion and examples. Oxford Review of Economic Policy, 37(3), 564-584.

Zai, A., & Brown, B. (2020). Deep reinforcement learning in action. Manning Publications.

