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1 Introduction

A recent survey of the scientific literature found a nearly unanimous consensus on human-caused
climate change (Lynas et al., 2021), and a large number of countries have now committed to
reducing carbon emissions. The European Union is a pioneer in this effort. In 2005, it set a cap on
CO2 emissions and established the EU Emissions Trading System (ETS) which was the world’s first
international emissions trading scheme. In December 2020, EU leaders committed to a European
Green Deal which, among other goals, aims at a 55 percent reduction in greenhouse gas emissions
by 2030 and climate neutrality by 2050. In June 2021, the European Council adopted the European
Climate Law which legally commits member countries to these goals. Meeting these commitments
requires directing financial resources towards the low-carbon economy. Carbon pricing policies
such as the EU ETS are therefore more effective if they cause financial markets to price in emission
externalities, and ultimately raise the cost of capital for emission-intensive firms with respect to
their low-emission counterparts.

In this paper, we provide evidence that carbon policy has the potential to encourage markets
to price in transition risk. Specifically, we use a large sample of European firms to study how the
impact of carbon policy on stock returns varies with carbon emissions. After accounting for the
endogeneity of the relationship between carbon prices and stock returns, we find that EU ETS
regulatory events resulting in higher carbon prices lead to negative realized returns. This negative
impact increases with a firm’s carbon emissions. Thus, we document that EU ETS announcements
which tighten carbon policy raise the cost of capital for emission-intensive firms.

We start by sourcing firm-level annual data on carbon emissions for over 2000 listed firms in the
EU during 2011–21, and merge them with daily data on stock returns. We then show that emission
intensity (i.e., total emissions scaled by revenues) is positively associated with stock returns. Our
data thus corroborate existing work that has found that investors demand a carbon premium—
compensation for their exposure to carbon transition risk (Bolton and Kacperczyk, 2021, 2022;
Busch et al., 2022; Cheema-Fox et al., 2021; Delmas et al., 2015). To illustrate the link between
studies exploring the carbon premium hypothesis and the focus of our paper, we also put forward a
conceptual framework which describes the heterogeneous impact of carbon policy shocks on firms’
value due to different emission characteristics.

Next, we interact firm-level carbon emissions with daily changes in EU ETS carbon prices to
study whether carbon emissions affect the relationship between carbon prices and stock returns.
Perhaps surprisingly, we find that companies that are more carbon intensive have returns that are
positively correlated with carbon prices. This result is robust to controlling for both country-sector-
time fixed effects and firm-year-quarter fixed effects. The positive correlation between carbon prices
and stock returns for emission-intensive firms is likely to be driven by endogeneity. Consider for
instance an exogenous shock, such as unusually warm weather, that reduces the demand for the
products of some carbon-intensive companies. Since the shock would lead to lower expected profits
for those firms and lower demand for carbon emission allowances, it would generate a positive
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correlation between carbon prices and stock returns of emission-intensive firms.
A natural question is how to capture shocks which lead to a repricing of carbon risk. We follow

Känzig (2022) who constructs a series of carbon policy surprises documenting the change in carbon
prices around regulatory events related to the EU ETS. Specifically, we extend his data to 2021 and
use 98 regulatory events regarding the supply of EU carbon allowances (EUAs) to identify a daily
measure of carbon policy shocks—computed as the percentage change in EUA futures prices on the
day of regulatory events. Positive (negative) values of the carbon policy surprise series indicate a
tighter-than-anticipated (looser-than-anticipated) policy announcement. Quantifying these carbon
policy surprises allows us to move to our main question of interest, and test how carbon policy
affects the relationship between stock returns and company-level carbon emissions.

Our findings suggest that carbon policy surprises have a statistically significant negative impact
on stock returns. This relationship increases with a firm’s carbon intensity. Our point estimates
imply that a one standard deviation increase in the price of carbon on regulatory event days (i.e.,
a positive carbon policy surprise) lowers the return of a firm with median carbon emissions by
around 2 percent relative to the average daily return in our sample.1 The estimated impact is even
larger once we adjust for the downward bias in the carbon policy surprise. Thus, we provide novel
firm-level evidence in support of the hypothesis that climate policy tightness negatively affects
emission-intensive firms. This result is robust to jointly controlling for country-sector-time fixed
effects and firm-year-quarter fixed effects, and to a vast battery of robustness checks. Our findings
are also in line with those of Berthold et al. (2023), Bolton et al. (2023), and Millischer et al. (2022)
who, using different approaches, find that shocks which tighten carbon policies negatively affect
brown firms.

There are two possible explanations for the negative impact of tighter carbon policy on stock
returns of emission-intensive firms. The first explanation relates to the fact that regulatory events
resulting in higher carbon prices lead to an increase in input costs for firms that need to surrender
emission allowances under the EU ETS. According to this explanation, there is a direct input cost
channel linking carbon policy and stock returns of emission-intensive firms. The second explanation
pertains to the fact that tighter-than-expected carbon policy might signal policymakers’ resolve to
reduce carbon emissions. Such a policy surprise, thus, can be taken as an indication that policy
tightening will continue in the future, with the ultimate objective of ensuring that that all firms
(including firms that do not currently participate in the EU ETS) internalize the externalities
which their emissions create. This explanation is consistent with the presence of a transition risk
channel (see Bolton and Kacperczyk, 2021, 2022) which links carbon policy with stock returns
of emission-intensive firms. While the two channels are not mutually exclusive, the fact that our
results are stronger when we drop firms in sectors that participate in the EU ETS suggests that
carbon transition risk does matter.

We also test for the presence of asymmetries between days when carbon prices increase and
1While our key explanatory variable is the daily change in carbon prices, for ease of reading we refer to changes

in the carbon price when interpreting the regression results.
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days when carbon prices decrease. We find evidence of asymmetries on non-regulatory event days.
Specifically, we show that the positive correlation between carbon prices and stock returns for
emission-intensive firms is driven by days when carbon prices decreases. On days when carbon prices
increase, instead, carbon emissions do not matter. There is no statistically significant asymmetry
for our main variable of interest—the carbon policy surprise. However, we do find that the effect
is about three times as large in absolute value when a regulatory surprise leads to an increase as
opposed to a decrease in carbon prices. This result provides further evidence that a tightening in
carbon policy is particularly effective in increasing the cost of equity capital for emission-intensive
firms.

Related Literature

Our paper contributes to a growing body of literature on the impact of climate risk and carbon
policy on financial markets. Bolton and Kacperczyk (2021, 2022) find that high levels of and
growth in carbon emissions lead to higher stock returns in a cross-section of firms. They describe
three mechanisms that could lead to a positive link between carbon emissions and stock returns:
(i) a carbon risk premium; (ii) disinvestment; and (iii) carbon alpha. According to the carbon
risk premium hypothesis, companies with high carbon emissions are exposed to carbon pricing and
regulation risk. Hence, forward-looking investors require higher returns to hold stocks that carry
these risks. According to the disinvestment hypothesis, instead, companies with high emissions
are equivalent to “sin stocks” (Hong and Kacperczyk, 2009): as socially responsible institutional
investors turn away from emission-intensive stocks, their prices decrease and, for any given level of
profits, their returns increase. According to the carbon alpha hypothesis, markets are inefficient and
underprice carbon risk. Bolton and Kacperczyk (2021) conclude that there is no strong evidence in
support of the disinvestment and carbon alpha hypotheses, and that their results are in line with
the carbon risk premium hypothesis.2

One important methodological issue relates to whether researchers should focus on total car-
bon emission or carbon intensity (for differing views, see Aswani et al., 2023a,b and Bolton and
Kacperczyk, 2023). In our view, this choice depends on the question under examination. We
focus on emission intensity because this measure is better suited to estimate the relationship be-
tween policy shocks and stock returns and, as discussed by Bolton and Kacperczyk (2021, p.519):
“emission-intensive firms might well be the first to become unprofitable should the carbon price
rise.” In addition, as highlighted in Bauer et al. (2022), emission intensity is an industry standard
and widely used in finance research to measure the exposure to transition risk. Atilgan et al. (2023)
find that both the level of and change in emissions are positively associated with earnings surprises
but that this relationship disappears when focusing on emission intensities or disclosed emissions.
They suggest that the carbon premium, where it exists, partially reflects an unpriced externality
requiring government action.

2There is also a large literature which uses portfolio returns (instead of firm-level returns) and finds that green
stocks (proxied by low emissions) outperform brown stocks (see Bauer et al., 2022; Garvey et al., 2018; Huij et al.,
2022; In et al., 2019).
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Another methodological choice relates to whether stock returns should be linked to contempora-
neous or lagged carbon emissions. While Bolton and Kacperczyk (2021, 2022) use contemporaneous
stock returns, Zhang (2023) suggests that researchers should focus on lagged emissions as this is
the information available to investors. Using data on lagged emissions, she finds a negative carbon
premium for US firms. She also shows that there is significant cross-country heterogeneity and that
the carbon premium is not statistically significant for a joint sample of firms located in advanced
and emerging economies. We use lagged carbon emissions for our baseline specification, and also
show that our results are robust to alternative lagging strategies.

Two other papers that are closely related to our work are Bolton et al. (2023) and Millischer
et al. (2022). One key difference between our work and theirs is that while we use all listed firms for
which we have data on carbon emissions, Bolton et al. (2023) and Millischer et al. (2022) focus on
firms that participate in the EU ETS and study how carbon prices affect stock returns conditional
on the share of firm emissions covered by freely allocated allowances. Bolton et al. (2023) find
that for firms that have shortfalls in freely allocated emission allowances, a higher carbon price
translates to lower returns, while the opposite is true for firms that have free allowances exceeding
their emissions. Exploiting a novel dataset on free and paid emissions, Millischer et al. (2022)
find that higher paid carbon intensity leads to significantly lower stock returns when carbon prices
increase. These results are consistent with the idea that, within the EU ETS, the cost channel
dominates the risk compensation channel. Our findings on firms in non-EU ETS sectors suggest
that transition risk also plays a role. Our results are also in line with the findings of Berthold et al.
(2023) who show that a brown firm sees its equity price decrease more than a comparable green
firm following a carbon pricing shock.

Our paper also connects to the literature which analyzes financial market reactions to major
climate policy initiatives. Seltzer et al. (2022) use the Paris Agreement of December 2015 as a
natural experiment to show that bonds issued by listed US non-financial companies with poor
environmental profiles or high carbon footprints tend to have lower credit ratings and face higher
yield spreads, particularly if they have plants in US states with stricter regulatory enforcement.
Monasterolo and de Angelis (2020) also focus on the Paris Agreement and, using data on EU, US
and global stock indices, show that the agreement has led to an increase in systematic risk and a
decrease of the portfolio weights of carbon-intensive indices. Investigating equity price reactions to
two events associated with the US Inflation Reduction Act, Bauer et al. (2023) provide evidence
that financial markets respond to transition policies whereby brown (green) events lower the stock
market value of green (brown) firms and boost the value of brown (green) firms.

Finally, related work has shown that investors monitor and differentiate firms across their per-
ceived exposure to climate-related risks. Based on textual and narrative analysis of climate change
related news, Faccini et al. (2023) find that climate risk associated with imminent government
interventions is priced in US stocks and that firm exposure to regulatory shocks is negatively asso-
ciated with valuation changes. Sautner et al. (2021) apply text analysis to earning calls transcripts
to build a firm-level time-varying measures of market participants’ perception of firm exposures
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to climate change for firms in 34 countries. They show that exposure to regulatory events has a
negative effect on stock valuations. Engle et al. (2020) also rely on text analysis but focus on news
and show how to build portfolios that can hedge climate news. Using data for US and global equity
markets, Bansal et al. (2016) provide evidence that higher temperatures lower equity valuations. In
a survey, Krueger et al. (2020) find that institutional investors worry about climate and regulatory
risks but that these risks are not fully reflected in equity valuations.

The remainder of the paper is organized as follows. Section 2 describes our data. Section 3
presents our empirical strategy with a special focus on how we estimate the causal effect of carbon
policy shocks. Section 4 presents our baseline results, together with a set of extensions focusing on
potential asymmetries and a battery of robustness checks. Section 5 provides concluding remarks.

2 Data

Our analysis brings together information on firm-level carbon emissions, the EU carbon futures
market—which is a cornerstone of the EU’s climate change mitigation policy—and firms’ stock
market performance. Our baseline dataset spans 2,149 firms across 38 sectors in 23 EU countries
over January 2011–December 2021.3

We obtain annual data on Greenhouse Gas Protocol defined emissions (referred to as carbon
emissions in this paper) from Urgentem.4 The year of our emission variables refers to the reporting
year, i.e. the year in which data on companies’ emissions was published. The database reports
absolute emissions (tCO2e) and emission intensity (tCO2e/$m revenue) for scope 1, scope 2, and
scope 3 emissions. Scope 1 emissions are direct emissions by each firm. Scope 2 emissions are
indirect emissions from the purchase of electricity, steam, heating, or cooling for own use. Scope 3
emissions are all indirect emissions (not included in scope 2 emissions) that occur in the upstream
and downstream value chain of the firm. Due to challenges in establishing scope 3 emissions (see, for
example, Kruse et al., 2020), our analysis concentrates on scope 1 and 2 emissions. As highlighted
above, we focus on emission intensity which may determine a firm’s profitability as carbon prices
increase.

Table 1 reports the summary statistics for the firms in our baseline sample. The average firm
emits around 170 tCO2e per US$ million revenue. The median emission intensity is considerably
smaller, indicating that the distribution of carbon emission intensity is skewed to the right. We
observe a decline over time in both the average and median cross-section emission intensities (see
Table A.1). As noted in Bolton and Kacperczyk (2021), declining firm-level emissions over time
are expected as a result of innovation and energy efficiency gains as well as the increasing reliance

3In a robustness check, we also include data for the UK until December 2020 when it ended its participation in
the EU ETS. Including the UK increases the sample of firms to 2,502. Our sectoral classification is based on ICB
sectors available on Refinitiv Datastream.

4Greenhouse Gas Protocol is a non-profit organization convened in 1998 by World Business Council for Sustainable
Development (WBCSD) and World Resources Institute (WRI) with the aim of establishing a comprehensive global
standardized frameworks to measure and manage greenhouse gas (GHG) emissions. See Greenhouse Gas Protocol.
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on renewable energy.

Table 1: Summary Statistics

This table reports summary statistics for our baseline sample which consists of 2,149 firms across 38 sectors in 23
EU countries over January 2011–December 2021. The sample excludes observations with daily returns greater than
100%.

Variable Mean Median SD
Daily stock return (percent) R 0.048 0.000 2.364
Scope 1 + 2 carbon emissions intensity (tCO2e/$m revenue) CE 169.24 26.26 503.96
Daily change in EUA futures price (percent) ∆CP 0.11 0.00 3.21
Daily change in EUA futures price on event days (percent) ∆CP × EV -1.10 -0.70 5.19

Zooming in on emission intensities across sectors shows that energy producers, utilities, and
mining are the most carbon-intensive sectors. Firms in these sectors account for 58.4 percent of
total emissions and roughly 6 percent of total observations in our sample. Firms in the financial and
insurance sector are on the other end of the spectrum, accounting for 0.4 percent of total emissions
and about 15 percent of observations (Figure 1).

Figure 1: Carbon Emission Intensity across Sectors

This figure shows the median scope 1 plus scope 2 carbon emission intensity across sectors.
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We complement our firm-level dataset with information on the EU ETS carbon market. The
EU ETS was launched in 2005 and relies on a cap and trade principle. Firms participating in the
scheme need to surrender a quantity of EUAs (carbon allowances) equivalent to their emissions
on an annual basis.5 EUAs are traded on several spot and futures markets. In line with Känzig

5Each EUA entitles the holder to emit one tonne of carbon dioxide or carbon-equivalent greenhouse gas (tCO2e).
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(2022), we focus on EUA futures traded on the Intercontinental Exchange (ICE) which dominate
the price discovery in the EU ETS.

Figure 2 illustrates the evolution of the EUA futures price over our sample period. The EU
carbon price has increased over time, with the average daily change amounting to 0.11 percent
between 2011–2021 (Table 1). Demand side factors as well as regulation are key drivers of the EUA
price. The substantial increase in the EUA price in 2018 and 2019 is linked to more stringent EU
climate policies and to changes to the EU ETS design. In 2021, the price accelerated further partly
because of cold weather, which led to higher demand for energy, and also because of legislation
which affirmed the role of the EU ETS. Changes to the supply of EUAs also played a role (Ampudia
et al., 2022). On average, prices have been particularly volatile over 2020-2021. However, there
have also been volatility spikes in 2013 and 2016.

Figure 2: EU ETS Carbon Price

This figure shows the level of the EUA futures price (in EUR) and its daily change (RHS) over 2011–2021.
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To measure firms’ stock market returns, we collect data on daily stock prices for active listed
firms from Refinitiv Datastream. Table 1 shows that the firms in our sample have an average daily
return of 0.05 percent with a standard deviation of 2.36 percent.6

3 Conceptual Framework and Empirical Strategy

Several studies explore the relationship between carbon emissions and the firm-level cross section
of stock returns, although with ambiguous findings on whether a premium exists (for example,
Aswani et al., 2023a; Bolton and Kacperczyk, 2022; Zhang, 2022). To describe the link between

6We exclude observations with daily returns greater than 100 percent to limit the impact of outliers.
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what we do and existing cross-sectional analyses, it is useful to consider two firms that produce at
no cost one asset which will have value C at time T and assume that the firms are identical except
for the fact that firm A produces a “green” asset (imagine the patent for a new type of solar panel)
and firm B a “brown” asset (for instance, a new oil field).7 Further assume that at time t < T

investors do not know that there is a risk associated with the brown asset produced by firm B (or
they do not know that B is brown) and that the required daily (without loss of generality) rate of
return for both firms is r. Firm value at time t is then given by:

V A
t = V B

t = C

(1 + r)T −t

Let us now assume that at time t′ > t, the value of the asset produced by firm B is subject to
a carbon shock. To fix ideas, consider the following three scenarios for a carbon shock:

1. Investors think that the expected value of the asset produced by firm B is still C. However,
this value is no longer certain. This could be because the time t′ shock has revealed the
“browness” of firm B. Alternatively, the shock might have convinced investors that there is
now a risk of future regulatory actions that could affect the value of the asset produced by
firm B. If investors are risk averse, B’s stocks need to be repriced to reflect the increased risk.
If we assume that the relevant risk premium is ρ > 0, on day t′ the price of stock B will drop
from V B

t = C
(1+r)T −t′ to V B

t′ = C
(1+r+ρ)T −t′ . After t′, the daily return increases to r + ρ > r. In

this set up, ρ measures the difference in cross sectional returns after the carbon shock. The
black solid line in Figure 3 plots the value of firm B under this scenario (the thick green line
plots the value of firm A which does not change across scenarios).

2. Investors think that at time T the asset produced by firm B will be δC (with δ < 1) with
certainty. Under this scenario, on day t′ the price of stock B drops from V B

t = C
(1+r)T −t′ to

V B
t′ = δC

(1+r)T −t′ . After t′, the daily return goes back to r. The gray solid line plots the value
of firm B under this scenario.

3. Investor think that at time T the asset produced by firm B will have an expected but uncertain
value δC (with δ < 1) and want to be compensated for the risk associated with holding B

stocks. The relevant risk premium is ρ > 0. Under this scenario, on day t′ the price of stock
B drops from V B

t = C
(1+r)T −t′ to V B

t′ = δC
(1+r+ρ)T −t′ . After t′, the daily return increases to

r + ρ > r. The black dashed line plots the value of firm B under this scenario.

In this example, the carbon shock always reduces the firm value on impact and therefore leads
to negative returns on day t′. Shocks that increase carbon risk also lead to higher cross-sectional
returns. However, this is not the case for the shock under the second scenario. In this case, there
is a drop in the value of the firm but no increase in risk because the future value of the asset is
now lower with certainty.

7Alternatively, we could assume that the “green” asset is produced with low-carbon emitting technologies whereas
the production of the “brown” asset is carbon intensive.
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Figure 3: Simulation

This figure simulates the evolution of the values of firm A (the thick green line) and firm B under three
scenarios: 1. investors think that the expected value of the asset produced by firm B is unchanged but that
the value is no longer certain (the black solid line); 2. investors think that the expected value of the asset
produced by firm B will be lower with certainty (the gray solid line); and 3. investors think that the expected
value of the asset produced by firm B is lower but uncertain (the black dashed line). The simulations assume
that C = 1, T = 5000, t′ = 500, r = 0.0001, ρ = 0.00005, and δ = 0.9.
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As mentioned, the purpose of the simulation described above is to illustrate the difference
between the literature aimed at estimating how carbon emissions affect cross-sectional returns and
our objective of estimating how carbon policy affects stock returns on impact. If we only had one
shock, we could discriminate among the three scenarios and assess the impact of a carbon shock
by estimating the following model:

Ri,t = CEi (α1 + α2POSTt + βSHOCKt) (1)

where Ri,t measures the daily return for firm i on day t, CEi is a firm-level measure of carbon
emissions, POSTt is a dummy that takes value one after the day of the shock (t′ in our simulation
above), and SHOCKt is the carbon shock which takes a nonzero value on t′. Equation (1) and
all other equations in the remainder of this section abstract from other control variables and fixed
effects.

In Equation (1), α2 measures the impact of the carbon shock on cross-sectional returns (ρ in
our example; as carbon emissions do not affect returns prior to the shock, we expect α1 = 0) and
β measures the impact on the day of the shock (V B

t′ − V B
t in our example).

There are two challenges related to estimating Equation (1). The first challenge has to do with
the presence of multiple shocks. In our example we only have one shock and the difference in
returns before and after the shock is captured by α2. Keeping track of a large number of shocks
would require a model with innumerable interactive dummies. One way to address this issue is to
estimate the model without the CEi × POSTt interaction:

Ri,t = CEi (α + βSHOCKt) (2)

and use α as a measure of the impact of carbon emissions on cross-sectional stock returns. Equation
(2) will underestimate the true value of the impact of carbon emissions on stock returns in the post
shock period because α is a weighted average of α1 and α2. Yet, a positive value of α would still be
consistent with the idea that investors price carbon risk and that this leads to higher cross-sectional
returns for firms with high carbon emissions.8

The second challenge relates to quantifying the carbon shock. While we do not directly observe
the policy shock, Känzig (2022) suggests that we can measure it through its effect on the price of
carbon allowances. Specifically, he builds a carbon policy surprise by interacting percentage changes
in carbon prices with EU ETS regulatory events regarding the supply of EUAs. These events may
concern the auctioning and allocation of EUAs or the overall EU ETS cap, for example. EU ETS
regulatory events occur frequently in our sample period as the EU has continuously adjusted the
novel scheme to increase its perimeter and address shortcomings such as market distortions (see
Känzig, 2022).

8Another advantage of Equation (2) is that we do not need to worry about possible anticipation effects for the
t′ event. Such anticipation effects are potentially important because if the event that takes place at t′ is not a pure
shock, forward-looking investors will price carbon risk before t′. In this case, we should find that α1 > 0. In fact, if
the event is fully anticipated (i.e., it is not a shock), we would get α1 > 0 and α2 = β = 0.
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We thus take 83 regulatory events over January 2011–December 2018 from Känzig (2022) and
extend his list with 15 events over January 2019–December 2021 (see Table A.2) which we identify
based on the European Commission Climate Action news archive.9 We then compute the carbon
policy surprise CPSd(y) on day d in year y as the percentage change in the EUA futures price on
the day of regulatory events EVd(y) relative to the previous day:

CPSd(y) = (Fd(y)/Fd−1(y) − 1) ∗ 100︸ ︷︷ ︸
∆CPd(y)

×EVd(y) (3)

where Fd(y) is the price of the EUA futures contract and EVd(y) is a dummy that takes value one
on days of regulatory events and zero otherwise.

Figure 4 depicts the daily carbon policy surprise series. Carbon policy surprises are relatively
frequent and take both positive and negative values (Table 1 shows that the mean of the carbon
policy surprise series is -1.1 percent). Regulatory news resulting in large carbon policy surprises
relate, for example, to a vote by the European Parliament against an EUA back-loading proposal
(April 2013) and a decision on industrial free allocations (September 2013). During the period for
which we extended the series, events that had a sizeable impact were the decision on free EUA
allocations from the New Entrants’ Reserve (July 2019) and updated information on the use of
international credits (May 2021), among others.

Figure 4: Carbon Policy Surprises

This figure shows the daily series of carbon policy surprises for the EU ETS.
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9We identified 16 events over 2019–21. However, since two events occurred on the same day, we classified them as
one event.
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Figure 5: Endogeneity Associated with an Unobserved Demand Shock

This figure shows a Directed Acyclic Graph that illustrates how an unobserved demand shock D leads to an
endogeneity bias by directly affecting carbon prices ∆CP and stock returns R. The policy shock P also has
a direct effect on carbon prices and on stock returns.

∆CP R

D

P

U

Having identified a proxy for regulatory shocks, we could replace SHOCKt in Equation (2)
with the daily carbon policy surprise CPSt and estimate the following model:

Ri,t = CEi (α + βCPSt) (4)

However, our proxy for the carbon policy surprise CPS is potentially contaminated by other
shocks because it is built using carbon prices data. Formally, let us assume that the change in the
price of carbon depends on three uncorrelated shocks: ∆CP = f(D, P, U), where D is a demand
shock,10 P is the policy shock we care about, and U is a residual shock. The Directed Acyclic
Graph (DAG) of Figure 5 illustrates the role of these shocks.

If we could observe the three shocks, we could estimate the causal effect of the policy shock
(i.e., the sum of the direct link P → R and the indirect link P → ∆CP → R) by regressing stock
returns on these three shocks without controlling for ∆CP (controlling for ∆CP would lead to
“collider bias”, see Pearl, 2009 and VanderWeele, 2014).

Rt = CEi(a + bDt + cUt + gPt) + εt (5)

The problem is that we do not observe P but only a proxy that also includes D and U . Never-
theless, we can achieve our objective of estimating the total effect of carbon policy on stock returns

10Assume that, for exogenous reasons, there is an increase in the demand for goods produced by carbon-intensive
companies (perhaps a particularly cold winter or high demand for certain chemical products). Such a shock is likely to
increase the profits of emission-intensive companies that produce these goods while also increasing the prices of carbon
emission allowances because these companies (or their suppliers) need to buy allowances to scale up production. This
mechanism can lead to a positive correlation between carbon prices and firms’ profits which, in turn, results in a
downward bias (in absolute magnitude) in the estimate of β.
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(i.e., the sum of the direct and indirect effects) by estimating a model that includes both carbon
prices and the carbon policy shock, and adjusting for the resulting bias.

As CPS is equal to the change in carbon prices on event days, we start by estimating the
following interactive model:

Ri,t = CEi (α + β1∆CPt + EVt(β2 + β3∆CPt)) (6)

where EV is a dummy that takes value 1 on regulatory event days.
In the set-up of Equation (6), for a given level of carbon emissions, β3 measures the difference

between the correlation of ∆CP and R on event days and the correlation of ∆CP and R on non-
event days. While β3 does not measure the causal effect of a regulatory policy surprise on stock
returns (i.e., parameter g in Equation (5)), we can recover the impact, g, from the parameters of
Equation (6). Specifically, as shown in Appendix B:

g = β̂1 + β̂3
k

k − 1 (7)

where k ≥ 1 is the ratio between the variance of ∆CPt on event days and the variance of ∆CPt on
non-event days. Equation (7) implies that β̂3 is a downward (in absolute value) biased estimate of
ĝ as long as β̂1(k − 1) < −β̂3.

4 Results

In this section, we test whether carbon policy has an impact on the cost of equity capital and
whether this relationship depends on carbon intensity.

4.1 Baseline Estimations

Before moving to our main result, we test whether carbon emissions affect stock returns in our
daily sample of European firms. Formally, we start by estimating the following model:

Ri,d(y) = αCEi,y−1 + ϕi + τd(y) + εi,d(y) (8)

where Ri,d(y) measures the stock return of company i on day d in year y, CEi,y−1 measures carbon
intensity (defined as scope 1 plus scope 2 carbon emissions over revenues) of company i published
in year y −1, ϕi are firm fixed effects, τd(y) are time fixed effects which implicitly control for market
returns plus all possible factors and shocks that may affect daily returns, and εi,d(y) is the error
term. Our variable of interest is α.

Column 1 of Table 2 shows that there is a positive and statistically significant relationship
between carbon emissions and stock returns. This result is robust to replacing the time fixed
effects with country-sector-time fixed effects τc,s,d(y) (column 2), however, it does not hold when

13



we drop the firm fixed effects. Controlling for firm fixed effects and for all possible shocks that are
specific to a given sector in a given country on a given day, we find that a one standard deviation
increase in carbon intensity is associated with a 0.6 basis point increase in daily returns, or 1.5
percent compounded at the annual frequency (column 3). This finding suggests that investors in
European stocks demand a carbon risk premium.

Table 2: Baseline Estimations

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: firm-year carbon emission intensity (CE); the interaction between CE and percentage
change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value one on key
regulatory event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting
∆CP and EV. Column 1 controls for firm and time fixed effects and columns 2-6 control for firm and country-sector-
time fixed effects (time fixed effects absorb the main effects of ∆CP and EV). All regressions are estimated with
robust standard errors double clustered at the firm and day level. The standard errors immediately below the value
of β̂1 + β̂3 × k

k−1 consider k as non-stochastic; the following line uses the bootstrapped value of k. Regression results
exclude observations with daily returns greater than 100%.

(1) (2) (3) (4) (5) (6)
CE 2.27*** 1.27** 1.17** 1.36*** 1.27** 1.25**

[0.606] [0.501] [0.507] [0.504] [0.502] [0.510]
CE × ∆CP 0.58*** 0.63***

[0.213] [0.220]
CE × EV -3.71* -3.96*

[2.212] [2.198]
CE × ∆CP × EV -1.08* -1.81***

[0.621] [0.645]
ĝ = β̂1 + β̂3 × k

k−1 -2.20**
[0.969]
[1.088]

Observations 1,247,870 1,247,870 1,247,870 1,247,870 1,247,870 1,247,870
R-squared 0.16 0.4 0.4 0.4 0.4 0.4
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes No No No No No
Country-Sector-Time FE No Yes Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

We now study how emission intensity affects the relationship between stock returns and carbon
prices in the EU futures market by estimating the following model:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y) (9)

where ∆CPd(y) measures the daily change in carbon prices in the EU futures market and all other
variables are defined as in Equation (8).11

In the set up of Equation (9), α measures the correlation between emission intensity and stock
returns on days when carbon prices do not change (∆CPd(y) = 0) and β1 measures how carbon
emission intensity affects the relationship between carbon prices and stock returns. Column 3

11As our main variable of interest (the interaction between the day-level carbon price and firm-year level carbon
intensity) varies at the firm and day level, we double cluster our standard errors at the firm and day level. Our results
are robust to alternative clustering strategies.
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of Table 2 shows that carbon-intensive companies tend to have higher returns when the price of
carbon increases. The point estimate (β1) indicates that when the price of carbon increases by one
standard deviation, the daily return of a company with a median carbon emission intensity will be
about 1 percent above the average daily return in our sample.12

There are two possible explanations for this result. The first has to do with the fact that firms
that receive free allowances within the EU ETS could benefit from the increased value of these
allowances associated with a higher carbon price. However, this is an unlikely explanation for two
reasons. First, the share of free allowances has been decreasing over time and we find a positive
correlation between carbon prices and stock returns for emission-intensive firms also when we focus
on post phase 2 of the EU ETS. Second, our sample includes a large number of firms that do not
receive free allowances. In fact, this result is robust to dropping firms in sectors that participate in
the EU ETS as we further elaborate on below.

A more likely explanation for the positive correlation between carbon prices and stock returns
for carbon-intensive companies has to do with the presence of an unobserved demand shock (see the
discussion in Section 3). Consider, for instance, the case of an exogenous increase in the demand
for electricity. Such exogenous shock is likely to increase both the profit (and hence the returns)
of electricity generation companies and the production of electricity. The increase in electricity
production will, in turn, lead to a higher demand for emission allowances and a higher carbon
price. In this example, and as illustrated in Figure 5, the positive correlation between carbon
prices and stock returns of carbon-intensive companies is caused by an unobserved third variable.

To estimate how the causal effect of carbon policy on stock returns varies with company-level
carbon emissions, we need a proxy for the shock. As discussed in Section 3, we follow Känzig (2022)
who builds a series of carbon policy surprises by interacting the change in carbon prices with a
dummy variables that takes value one during EU ETS regulatory events.

Formally, we estimate the following model:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y) + β2EVd(y) + β3∆CPd(y) × EVd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y) (10)

where EVd(y) is a dummy variable that takes value one on days of the regulatory events identified
by Känzig (2022) and extended in this paper. All other variables are defined as in Equation (9).

Equation (10) implies that:

∂R

∂(∆CP ) = CE(β1 + β3EV )

Hence, β1 measures how the correlation between carbon prices and stock returns varies with carbon
intensity on non-regulatory event days and β3 measures the difference in this correlation between
event and non-event days. Thus, β1 + β3 measures how the correlation between carbon prices and

12An increase in carbon prices by one standard deviation results in a 0.05 basis points increase in daily returns for
a firm with a median carbon emissions intensity, equivalent to about 1 percent of the average daily return of 0.048
percent in our sample.
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stock return varies with carbon intensity on regulatory event days. A negative and statistically
significant value of β1 + β3 would indicate that on days of regulatory actions, there is a negative
correlation between carbon prices and stock returns which increases with carbon intensity. Note
that we used the word “correlation” because, as discussed in Section 3, our estimate of β1 cannot be
interpreted as the causal effect of carbon prices on stock returns of carbon-intensive firms. Hence,
β1 + β3 does not measure a causal effect, either.

When we estimate Equation (10), we continue to find a positive correlation between carbon
prices and stock returns on non-regulatory event days which increases with a firm’s carbon intensity
(β1). The coefficient on the interaction between emission intensity and the carbon policy surprise
(β3) suggests that this correlation is negative on regulatory event days. The point estimates imply
that, for a firm with a median carbon emission intensity, a one standard deviation increase in the
carbon price is associated with a daily return which is 1.1 percent above average on non-regulatory
event days and 2.1 percent below average on regulatory event days.

Figure 6 shows the correlation between stock returns and carbon prices at different levels of
emission intensity for both event and non-event days. The slope of the line in the upper part of
the graph depicts β1. It visually confirms the results of column 6 of Table 2 by showing that there
is a positive and statistically significant relationship, which increases in carbon emission intensity,
between stock returns and carbon prices on non-event days. The figure also shows that there is
a negative and statistically significant relationship between carbon prices and stock returns on
event days. Moreover, this negative relationship strengthens with increases in the carbon emission
intensity. The slope of the relationship between stock prices and the change in carbon prices on
event days (β1 + β3) is negative and about twice (in absolute value) the slope on non-event days.

To estimate the causal effect of carbon policy on stock returns, we adjust for the downward bias
in the coefficient on the carbon policy surprise (β3) as derived in Section 3. Our estimate of the
total effect of the carbon policy surprise on stock returns, ĝ, implies that the unbiased coefficient
is roughly twice as large in absolute value (Table 2, column 6).13 Note that the standard errors
reported below ĝ assume that k is non-stochastic. In the table, we also report standard errors
obtained by bootstrapping k and find that the coefficient remains statistically significant at the 5
percent confidence level.14

In addition, we control for all components of the triple interaction separately. We find that the
interaction between carbon emissions and the regulatory event dummy is negative and statistically
significant (this is also the case in column 4 of Table 2, where the event dummy is the only variable
interacted with carbon emission intensity). The triple interaction is negative and statistically
significant even when we do not include its components (column 5). Note that a model which only

13The total impact is ĝ = −2.20 compared with β̂1 + β̂3 = −1.19. k = 26.96/9.65 = 2.79.
14The bootstrapped standard errors are based on 500 draws. Let K = k

k−1 (with K̄ = 1.55), σ2
K its bootstrapped

variance, and seβ1 and seβ3 the standard errors of β1 and β3. Then, the adjusted standard errors of g are: seg =[
se2

β1 + se2
β3 K̄2 + 2cov(β1, β3)K̄ + se2

β3 σ2
K + σ2

Kβ2
3
]0.5, where the last two elements allow for K to be stochastic (we

are assuming that cov(β3, K) = 0). Note that K becomes very large when k approaches one. Thus, we bound
our bootstrapping exercise so that max(K) ≤ 1.5K̄; the results hold, but are only statistically significant at the 10
percent confidence level if we set max(K) ≤ 2K̄.
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Figure 6: Carbon Price and Stock Returns

This figure plots the marginal effect of a change in carbon prices on stock returns at various levels of emission
intensity during non-regulatory event days (the upper line) and regulatory event days (the upper plus the
lower line). The figure is based on the estimation in column 6 of Table 2.
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includes the triple interaction and does not control for the main effect of carbon prices implicitly
assumes that on regulatory event days the endogenous component of carbon prices (D in ∆CP =
f(D, U, P )) is either zero or very small compared to the policy shock P . The fact that the coefficient
on the triple interaction in column 5 is about 60 percent (-1.08 versus -1.81) that of column 6
suggests that this assumption might not hold.

While the regressions of Table 2 control for firm fixed effects, they do not control for time-varying
firm characteristics such as size, profitability, book-to-market value, leverage, plant property and
equipment, sales growth, and a host of other variables which are likely to be correlated with stock
returns. Rather than controlling for these variables individually, we re-estimate Equation (10) by
including firm-year-quarter fixed effects. This set of fixed effects controls for all possible firm-
specific shocks at the quarterly frequency (we use quarterly fixed effects as they coincide with the
highest frequency at which firms report financial information). The inclusion of firm-year-quarter
fixed effects does not allow estimating the main effect of emission intensity which only varies at
the annual frequency. However, it does allow us to estimate our coefficients of interest. When
we estimate Equations (9) and (10) with firm-year-quarter fixed effects, the results are essentially
identical to those of our baseline regressions (compare columns 3 and 6 of Table 2 with columns
1 and 4 of Table 3). This finding confirms that the baseline results in Table 2 are not driven by
time-varying firm-level unobserved heterogeneity.

One important question is whether our results are driven by the direct effect of the price of
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Table 3: Baseline with Firm-Year-Quarter Fixed Effects

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: the interaction between firm-year carbon emission intensity (CE) and percentage change
in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value one on key regulatory
event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting ∆CP and
EV. All regressions control for country-sector-time fixed effects (which absorb the main effects of ∆CP and EV)
and firm-year-quarter fixed effects (which absorb the main effect of CE). All regressions are estimated with robust
standard errors double clustered at the firm and day level. The standard errors immediately below the value of
β̂1 + β̂3 × k

k−1 consider k as non-stochastic; the following line uses the bootstrapped value of k. Regression results
exclude observations with daily returns greater than 100%.

(1) (2) (3) (4)
CE × ∆CP 0.58*** 0.63***

[0.210] [0.217]
CE × EV -3.64* -3.88*

[2.171] [2.199]
CE × ∆CP × EV -1.06* -1.80***

[0.560] [0.589]
ĝ = β̂1 + β̂3 × k

k−1 -2.174**
[0.880]
[1.001]

Observations 1,247,870 1,247,870 1,247,870 1,247,870
R-squared 0.41 0.41 0.41 0.41
Country-Sector-Time FE Yes Yes Yes Yes
Firm-Year-Quarter FE Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

carbon emission allowances on firm profitability or by an increase in the risk premium associated
with transition risk. Focusing on a sample of firms that participate in the EU ETS, Bolton et al.
(2023) find strong evidence in support of the idea that the increase in the cost of carbon is the
dominant element for firms that need to buy carbon allowances. The fact that we find an effect of
carbon policy on stock returns in our sample dominated by companies that do not participate in
the EU ETS suggests that transition risk might also play a role.

To probe further, we re-estimate our baseline models by dropping all firms that belong to
sectors covered by the EU ETS. Specifically, we exclude the following sectors: (i) Chemicals; (ii)
Construction and Materials; (iii) Electricity, Gas, Water and Multiutilities; (iv) Industrial Metals
and Mining; (v) Mining, Oil and Gas Producers; and (vi) Travel and Leisure.15 When we exclude
companies in sectors that participate in the EU ETS our results become stronger. The point
estimate of our key coefficient of interest (β3) changes from approximately −1.8 to −2.4 (compare
column 6 of Table 2 and column 4 of Table 3 with columns 4 and 5 of Table 4). The interaction
between the regulatory event dummy and emission intensity also becomes larger in (absolute)

15The EU ETS covers the following gases: (i) carbon dioxide (CO2) from electricity and heat generation, energy-
intensive industry sectors including oil refineries, steel works, and production of iron, aluminium, metals, cement,
lime, glass, ceramics, pulp, paper, cardboard, acids and bulk organic chemicals, commercial aviation within the
European Economic Area; (ii) nitrous oxide (N2O) from production of nitric, adipic and glyoxylic acids and glyoxal;
and (iii) perfluorocarbons (PFCs) from production of aluminium. We do not exclude “General Industrial.” While
this sector includes “glass” which is one of the industries covered by the EU ETS, it also includes several industries
not covered by the ETS. Our results are robust to also excluding this sector.
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magnitude. This finding is in line with the results of Bolton et al. (2023) who find that for EU
ETS firms, the relationship between carbon prices and stock returns depends on whether firms are
long or short in carbon allowances.

Table 4: Excluding EU ETS Sectors

This table reports the models of columns 3-6 in Table 2 and column 4 of Table 3 by dropping the stocks of firms
in sectors that participate in the EU ETS. The dependent variable is daily stock returns (scaled by 105) and the
explanatory variables are: firm-year carbon emission intensity (CE); the interaction between CE and percentage
change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value one on key
regulatory event days (EV); and the interaction between CE and a carbon policy surprise obtained by interacting
∆CP and EV. Columns 1-4 control for firm and country-sector-time fixed effects (which absorb the main effects
of ∆CP and EV). Column 5 controls for country-sector-time fixed effects and firm-year-quarter fixed effects (which
absorb the main effect of CE). All regressions are estimated with robust standard errors double clustered at the firm
and day level. The standard errors immediately below the value of β̂1 + β̂3 × k

k−1 consider k as non-stochastic; the
following line uses the bootstrapped value of k. Regression results exclude observations with daily returns greater
than 100%.

(1) (2) (3) (4) (5)
CE 0.86 1.02 0.90 0.94

[0.744] [0.735] [0.724] [0.747]
CE × ∆CP 0.36 0.44* 0.45*

[0.236] [0.246] [0.249]
CE × EV -4.57** -5.43*** -5.37***

[2.001] [1.878] [1.856]
CE × ∆CP × EV -1.76** -2.39*** -2.41***

[0.829] [0.833] [0.772]
ĝ = β̂1 + β̂3 × k

k−1 -3.30***
[1.215]
[1.301]

Observations 1,025,509 1,025,509 1,025,509 1,025,509 1,025,509
R-squared 0.38 0.38 0.38 0.38 0.39
Firm FE Yes Yes Yes Yes No
Country-Sector-Time FE Yes Yes Yes Yes Yes
Firm-Year-Quarter FE No No No No Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

4.2 Asymmetries

It is possible that positive and negative carbon price changes have different effects on stock returns
of emission-intensive companies. We test for the presence of such asymmetries by allowing our
coefficients of interest to vary between days on which carbon prices increases and days on which
carbon prices decreases. Formally, we estimate the following equation:

Ri,d(y) = CEi,y−1
(
α + β1∆CPd(y) + β2EVd(y) + β3∆CPd(y) × EVd(y)

)
+

+ CEi,y−1 × ∆CPd(y) × Dd(y)
(
β4 + β5EVd(y)

)
+ ϕi + τc,s,d(y) + εi,d(y)

(11)

where Dd(y) is a dummy variable that takes value one when ∆CPd(y) > 0 and all other variables
are defined as in Equation 10.
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Equation (11) implies that:

∂R

∂(∆CP ) = CE (β1 + β3EV + D(β4 + β5EV ))

Hence, β1 measures how the correlation between carbon prices and stock returns varies with carbon
intensity on non-regulatory event days when ∆CPd(y) < 0; β1 + β3 measures how the correlation
between carbon prices and stock return varies with carbon intensity on regulatory event days when
CPd(y) < 0; β1 + β4 measures how the correlation between carbon prices and stock return varies
with carbon intensity on non-regulatory event days when ∆CPd(y) > 0; and β1 + β3 + β4 + β5

measures how the correlation between carbon prices and stock return varies with carbon intensity
on regulatory event days when ∆CPd(y) > 0.

We estimate Equation (11) on our baseline sample to test for the presence of asymmetries. Table
5 reports the results providing the coefficients from estimations with firm fixed effects and country-
sector-time fixed effects (column 1) and firm-year-quarter fixed effects and country-sector-time fixed
effects (column 2). These two specifications yield almost identical results.

Focusing on non-event days, we find that β1 is positive and statistically significant while β4

is negative and statistically significant with approximately the same magnitude of β1 (in absolute
value; thus, β1 + β4 ≈ 0). Our baseline result of a positive correlation between carbon prices and
stock returns for emission-intensive firms on non-event days is thus driven by days when carbon
prices decreases.16 In contrast, on non-event days characterized by an increase in carbon prices,
there is no significant correlation between carbon prices and stock returns. Therefore, there are
substantial asymmetries in the relationship between carbon prices and stock returns on non-event
days.

There are instead no significant asymmetries during regulatory event days; both β1 + β3 and
β1 +β3 +β4 +β5 are negative and β5 is not statistically significant. Carbon policy surprises lead to a
negative correlation between carbon prices and stock returns of emission-intensive firms regardless
of whether there is a policy tightening or loosening. Nevertheless, we find that the effect is about
three times as large for policy surprises that lead to an increase in carbon prices as opposed to
a decrease in carbon prices. Regulatory surprises which lead to a tightening in policy, i.e. an
increase in carbon prices, are therefore especially effective in raising the equity cost of capital for
carbon-intensive firms.

16Days characterized by a decrease in carbon prices are associated with lower returns for more carbon-intensive
companies.
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Table 5: Testing for Asymmetries

This table reports a set of regressions where the dependent variable is daily stock returns (scaled by 105) and
the explanatory variables are: firm-year carbon emission intensity (CE), the interaction between (CE) and and
percentage change in the EUA futures price (∆CP); the interaction between CE and a dummy that takes value one
on key regulatory event days (EV); the interaction between CE and a carbon policy surprise obtained by interacting
∆CP and EV; the interaction between CE, ∆CP, and a dummy variable D that takes value one on days on which
∆CP>0; and the interaction between CE, the carbon policy surprise, and D. Column 1 controls for firm fixed effects
and country-sector-time fixed effects (which absorb the main effects of ∆CP, EV, and D) and column 2 controls
for country-sector-time fixed effects and firm-year-quarter fixed effects (which absorb the main effect of CE). All
regressions are estimated with robust standard errors double clustered at the firm and day level. Regression results
exclude observations with daily returns greater than 100%.

(1) (2)
CE 2.39***

[0.697]
CE × ∆CP 1.19*** 1.23***

[0.396] [0.415]
CE × EV -3.79 -3.57

[3.482] [3.559]
CE × ∆CP × EV -1.98** -1.92**

[0.920] [0.851]
CE × ∆CP × D -1.10** -1.17*

[0.552] [0.603]
CE × ∆CP × EV × D -0.16 -0.26

[2.392] [2.400]
Observations 1,247,870 1,247,870
R-squared 0.40 0.41
Firm FE Yes No
Country-Sector-Time FE Yes Yes
Firm-Year-Quarter FE No Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

4.3 Robustness Checks

We now subject our results to a battery of robustness checks.
Our carbon policy surprise series relies on daily event windows as we are unable to use intraday

windows due to lack of information on the exact announcement time of our events. A longer event
window, however, might be contaminated by confounding news. Therefore, as a first robustness
check, we implement a standard placebo test to mitigate concerns about background noise within
our daily event window.17 Specifically, we rerun our baseline specification in Equation (8) with an
alternative series of carbon policy surprises generated from 500 random draws. Figure C.1 plots our
main coefficient of interest, β3, for these simulations together with 95 percent confidence intervals.
As expected, the estimated coefficients based on the simulated carbon policy surprise series are not
significant, except for the extremes of the distribution of β.18 This suggests that background noise

17To a large extent, we tackle the presence of other drivers of carbon prices on event days by adjusting for the
downward bias in our main coefficient of interest. Nevertheless, for completeness, we report the results of a placebo
test, a standard application in event studies since Brown and Warner (1985).

18A draw from a normal distribution with a mean of zero and a standard deviation of one has a 5 percent likelihood
to obtain values which are 1.96 standard deviations above or below the true mean. Therefore, even when the true
coefficient is zero, we expect that some coefficients are statistically significant.
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is unlikely to have a major impact on our results.
We also examine the window around events. Specifically, we estimate the following specification,

including lags and leads of our explanatory variables:

Ri,d(y) =
2∑

h=−2

[
CEi,y−1

(
α + βh

1 ∆CPd(y+h) + βh
2 EVd(y+h) + βh

3 ∆CPd(y+h) × EVd(y+h)
)]

+ ϕi + τc,s,d(y) + εi,d(y)

(12)

where h takes discrete values from -2 to 2. All other variables are defined as in Equation (10).
Figure C.2 plots βh

3 at various horizons together with 95 percent confidence intervals. The estimated
coefficients are not statistically significant, except for the announcement day (i.e., the coefficient
at h = 0). This result shows that our estimations do not capture the effect of events that happen
around policy days and that carbon prices reflect a true policy surprise which happens on the day
on which a new policy is announced.

The emission intensity variable we use in our estimations measures carbon intensity published
in year y − 1 and realized in y − 2 (see Equation (8)). We opt for this set-up because for part
of year y (the year of our stock returns data) the emission intensity data published in y are not
available to investors. To acknowledge that emissions are published sometime during year y (not at
the end of y) and become available to investors, we implement two alternative lagging strategies.
First, we regress stock returns in year y on emissions published in year y − 1 for quarters 1 and 2
and emissions published in year y for quarters 3 and 4. Second, we regress stock returns in year y

on emissions published in year y − 1 for quarter 1 and emissions published in year y for quarters
2, 3 and 4. Our key results are robust to these alternative lagging strategies (columns 2 and 3 of
Table C.3).

Next, we test whether our results are driven by a specific country. We estimate our baseline
model dropping one country at a time. Appendix Figure C.3 plots β3 with its 90 percent confidence
interval. It shows that our main result remains significant and is not driven by any individual
country.

We also explore whether there are differences between Advanced and Emerging Europe.19 Col-
umn 2 of Table C.4 shows that our results are robust to limiting the sample to Advanced Europe,
while our results no longer hold if we concentrate on Emerging Europe (column 3). It is, however,
worth noting that Emerging Europe represents only around 10 percent of our sample (216 firms
over a total of 2,149).

Our baseline sample does not include the UK as the country ended its participation in the EU
ETS in December 2020, and its exit from the ETS was already anticipated by the time of the
Brexit referendum in June 2016. However, we have data for 353 UK firms, increasing the sample
of firms to 2,502—a total of nearly 500,000 observations at daily frequency. We thus test whether

19Advanced Europe includes: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Ireland, Italy, Lithuania, Luxembourg, Malta, Netherlands, Portugal, Slovakia, Slovenia, Spain,and
Sweden. Emerging Europe includes Bulgaria, Croatia, Hungary, Poland, and Romania.
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our findings are robust to including UK companies for the period during which they were part of
the EU ETS. We find that there is essentially no difference between our sample of EU companies
and a sample that also includes UK companies (columns 1 and 4 of Table C.4).

As a final robustness check, we estimate our baseline regressions by dropping financial institu-
tions. Table C.5 shows that the results are unchanged. All of the robustness exercises discussed
above hold when we include firm-year-quarter fixed effects.

5 Conclusions

There is now near unanimity on human-caused climate change and a large number of countries are
implementing policies aimed at promoting the transition to a low-carbon economy. The European
Union has been at the forefront of this effort with the creation of the EU ETS in 2005. This “cap
and trade” scheme places a limit on the right to emit greenhouse gases and allows companies to
trade emission allowances. The EU has also implemented a series of actions aimed at directing
investment toward green activities.

In this paper, we test if such initiatives have the potential to affect the cost of equity of emission-
intensive companies. After accounting for the endogeneity of the relationship between carbon prices
and stock returns, we show that regulatory surprises that result in an increase in carbon prices have
a negative and statistically significant impact on stock returns which increases with a firm’s carbon
intensity. This negative relationship becomes even stronger when we drop firms in sectors which
participate in the EU ETS, suggesting that investors price in transition risk stemming from the
shift towards a low-carbon economy.

Our findings support the view that regulation which increases the cost of carbon has an impor-
tant role to play in the transition towards a low-carbon economy. As investors demand compensa-
tion for their exposure to transition risk, EU ETS regulatory events might also affect stock returns
for firms in third countries to the extent that tighter EU climate mitigation policy is a driver of
transition risk globally. Exploring global spillovers of EU ETS regulatory actions to non-European
firms’ stock performance could be an interesting avenue for future research. With the proliferation
of carbon pricing schemes in recent years, studying their impact on the cost of capital for firms,
could provide further evidence on whether carbon policy has the potential to encourage markets to
price in transition risk.20

20International Carbon Action Partnership estimates that as of 2023, there are 28 (national, sub-national, and
supra-national) ETS in force and more under different stages of development and consideration.
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Appendix to Carbon Policy Surprises and Stock Returns

A Data

Table A.1: Carbon Emission Intensity over Time

This table reports the cross-sectional average and median of scope 1 plus 2 carbon emission intensity published over
the period 2010–20 which we use in our baseline regressions.

Mean Median
2010 174.99 37.26
2011 172.34 33.24
2012 123.76 30.37
2013 130.89 27.44
2014 188.78 28.66
2015 162.14 25.96
2016 168.20 25.44
2017 181.51 27.66
2018 164.92 23.19
2019 160.43 26.01
2020 108.25 27.43
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Table A.2: Regulatory Events

This table lists the events we identified over 2019–2021 to extend the carbon policy surprise series by Känzig (2022).

Date Event Type
1 Jan 15, 2019 Commission publishes status update for New Entrants’ Reserve Free alloc.
2 April 23, 2019 EU Emissions Trading System: Iceland, Liechtenstein and Norway to start auctions on the common auction platform soon Auction
3 May 15, 2019 ETS Market Stability Reserve to reduce auction volume by almost 400 million allowances between September 2019 and August 2020 Auction
4 June 12, 2019 Poland’s 2020 auction volume to include allowances not used for power sector modernisation Auction
5 June 19, 2019 Updated information on exchange and international credit use in the EU ETS Intl. credits
6 July 15, 2019 Commission publishes status update for New Entrants’ Reserve Free alloc.
7 October 31, 2019 Adoption of the Regulation on adjustments to free allocation of emission allowances due to activity level changes Free alloc.
8 December 12, 2019 The start of auctioning for the Innovation Fund slightly postponed but no delay to the launch of the Innovation Fund Auction
9 January 15, 2020 Commission publishes status update for New Entrants’ Reserve Free alloc.
10a May 8, 2020 Updated information on exchange and international credit use in the EU ETS Intl. credits
10b May 8, 2020 ETS Market Stability Reserve to reduce auction volume by over 330 million allowances between September 2020 and August 2021 Auction
11 December 11, 2020 Further information on the start of phase 4 of the EU ETS in 2021: emission allowances to be issued for aircraft operators and the Market Stability Reserve Cap
12 March 15, 2021 Adoption of the Regulation determining benchmark values for free allocation for the period 2021-2025 Free alloc.
13 May 12, 2021 ETS Market Stability Reserve to reduce auction volume by over 378 million allowances between September 2021 and August 2022 Auction
14 May 25, 2021 Updated information on exchange and international credits’ use in the EU ETS Intl. credits
15 May 31, 2021 Commission adopts the uniform cross-sectoral correction factor to be applied to free allocation for 2021 to 2025 in EU ETS Free alloc.28



B Derivation of Bias

Without loss of generality, assume that CEi = 1 for all firms. Then, if we could observe D and
U , we could estimate the effect of a change in carbon prices on non-regulatory event days with the
following equation:

Rt = a1 + bDt + cUt + εt (13)

where b is the effect of the demand shock and c is the effect of a carbon price shock on stock returns.
Note that b is the total effect of the demand shock on returns. This the sum of the direct effect
(D → R) and the indirect effect through carbon price (D → ∆CP → R). Instead, c measures the
effect on returns of an independent shock U to carbon price.

As we do not observe D and U , we cannot separately estimate b and c. However, we observe
∆CP = D + U and can estimate the following model:

Rt = a2 + m1∆CPt + εt (14)

where m̂1 is a weighted average of b and c. Specifically, m̂1 = b cov(D,∆CPt)
V (∆CPt) +c cov(U,∆CPt)

V (∆CPt) . As D and
U are uncorrelated: V (∆CPt) = V (D)+V (U); cov(D, ∆CPt) = V (D); and cov(U, ∆CPt) = V (U).
Hence:

m̂1 = b
V (D)

V (D) + V (U) + c
V (U)

V (D) + V (U) (15)

Let us now consider regulatory event days. If we observed D, U and P , we could estimate:

Rt = a3 + bDt + cUt + gPt + εt (16)

As before, b is the total effect of the demand shock on returns (D → R plus D → ∆CP → R).
Similarly, g is the total effect of the policy surprise on returns (P → R plus P → ∆CP → R).
Finally, c is the effect of U on returns (not the total effect of carbon price on returns). Given that
we observe ∆CPt = Dt + Ut + Pt, we estimate:

Rt = a4 + m2∆CPt + εt (17)

In this case, m̂2 is a weighted average of b, c, and g, with:

m̂2 = b
V (D)

V (D) + V (U) + V (P ) + c
V (U)

V (D) + V (U) + V (P ) + g
V (P )

V (D) + V (U) + V (P ) (18)

While we do not observe V (D) and V (U) separately, we do observe V (∆CPẼ) = V (D) + V (U)
and V (∆CPE) = V (D) + V (U) + V (P ). The former is the variance of ∆CP on non-event days
and the latter is the variance of ∆CP on event days. Let us write V (∆CPE) = kV (∆CPẼ), with
k > 1 if V (P ) > 0. Using the fact that V (P ) = V (∆CPẼ)(k − 1), we can write Equation (18) as:
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m̂2 =
(

b
V (D)

V (∆CPẼ) + c
V (U)

V (∆CPẼ)

)
1
k

+ g
k − 1

k
(19)

Substituting Equation (15) into Equation (19), we get m̂2 = m̂1
k + g k−1

k . Solving for g, we obtain:

g = m̂2k − m̂1
k − 1 (20)

Given that we can estimate m̂1, m̂2, and we know k, we can recover g. In the set up of Equation
(6), m̂1 = β̂1 and m̂2 = β̂1 + β̂3. Substituting into Equation (20), we can compute the total effect
of P on R:

g = (β̂1 + β̂3)k − β̂1
k − 1 = β̂1 + β̂3

k

k − 1 (21)
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C Robustness Checks

Figure C.1: Placebo Test

This figure plots our main coefficient of interest, β3, from our baseline specification in Equation (8) together
with 95 percent confidence intervals for 500 randomly simulated carbon policy surprise series.
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Figure C.2: Windows around Events

This figure plots our main coefficient of interest, βh
3 , at different horizons for the specification in Equation

(12) together with 95 percent confidence intervals.
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Figure C.3: Dropping one Country at a Time

This figure plots our main coefficient of interest, β3 for the specification in Equation (10) together with 90
percent confidence intervals. The regressions drop one country at a time from the estimation sample (the
column to the right specifies the dropped country).
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Table C.3: Alternative Lagging of Carbon Emissions

This table reports the model of column 6 in Table 2 for different lags of carbon emission intensity. Column 2 shows
the results for a specification in which returns are regressed on carbon emissions published in the previous year for
observations in Q1 and Q2 and on carbon emissions published in the same year for observations in Q3 and Q4.
Column 3 shows the results for a specification in which returns are regressed on carbon emissions published in the
previous year for observations in Q1 and on carbon emissions published in the same year for observations in Q2,
Q3, and Q4. For convenience, column 1 reproduces the estimations of column 6 in Table 2 in which returns are
regressed on carbon emissions published in the previous year for observations in all quarters. The dependent variable
is daily stock returns (scaled by 105) and the explanatory variables are: firm-year carbon emission intensity (CE); the
interaction between CE and percentage change in the EUA futures price (∆CP); the interaction between CE and a
dummy that takes value one on key regulatory event days (EV); and the interaction between CE and a carbon policy
surprise obtained by interacting ∆CP and EV. All regressions control for firm and country-sector-time fixed effects
(which absorb the main effects of ∆CP and EV) and are estimated with robust standard errors double clustered at
the firm and day level. Regression results exclude observations with daily returns greater than 100%.

(1) (2) (3)
CE 1.25** 1.27** 0.56

[0.510] [0.568] [0.629]
CE × ∆CP 0.63*** 0.86*** 1.08***

[0.220] [0.246] [0.267]
CE × EV -3.96* -4.98* -1.85

[2.198] [2.874] [2.876]
CE × ∆CP × EV -1.82*** -1.50** -2.77***

[0.645] [0.700] [0.924]
Observations 1,247,870 1,246,917 1,245,577
R-squared 0.4 0.39 0.38
Firm FE Yes Yes Yes
Country-Sector-Time FE Yes Yes Yes

Robust standard errors in brackets
*** p<0.01, ** p<0.05, * p<0.1
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Table C.4: Heterogeneity across Regions

This table reports the model of column 6 in Table 2 for regional subsamples and the baseline sample plus the UK.
Column 2 shows results for a subsample of advanced European economies; column 3 focuses on economies in emerging
Europe; and column 4 uses all EU countries plus the UK. For convenience, column 1 reproduces the estimations of
column 6 in Table 2. The dependent variable is daily stock returns (scaled by 105) and the explanatory variables
are: firm-year carbon emission intensity (CE); the interaction between CE and percentage change in the EUA futures
price (∆CP); the interaction between CE and a dummy that takes value one on key regulatory event days (EV); and
the interaction between CE and a carbon policy surprise obtained by interacting ∆CP and EV. All regressions control
for firm and country-sector-time fixed effects (which absorb the main effects of ∆CP and EV) and are estimated with
robust standard errors double clustered at the firm and day level. Regression results exclude observations with daily
returns greater than 100%.

(1) (2) (3) (4)
CE 1.25** 1.29** 0.93 0.78

[0.510] [0.526] [2.477] [0.597]
CE × ∆CP 0.63*** 0.65*** -0.12 0.65***

[0.220] [0.222] [1.211] [0.192]
CE × EV -3.96* -3.57 -14.72 -3.04

[2.198] [2.250] [12.623] [2.048]
CE × ∆CP × EV -1.82*** -1.92*** 4.27 -1.86***

[0.645] [0.683] [8.043] [0.477]
Observations 1,247,870 1,172,947 74,923 1,745,630
R-squared 0.4 0.41 0.34 0.39
Firm FE Yes Yes Yes Yes
Country-Sector-Time FE Yes Yes Yes Yes
Sample All AEs EMs All + UK
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

Table C.5: Excluding Financial Institutions

This table estimate the models of columns 3-6 in Table 2 by dropping the stocks of financial institutions. The
dependent variable is daily stock returns (scaled by 105) and the explanatory variables are: firm-year carbon emission
intensity (CE); the interaction between CE and percentage change in the EUA futures price (∆CP); the interaction
between CE and a dummy that takes value one on key regulatory event days (EV); and the interaction between
CE and a carbon policy surprise obtained by interacting ∆CP and EV. All regressions control for firm and country-
sector-time fixed effects (which absorb the main effects of ∆CP and EV) and are estimated with robust standard
errors double clustered at the firm and day level. Regression results exclude observations with daily returns greater
than 100%.

(1) (2) (3) (4)
CE 1.20** 1.39*** 1.30*** 1.28**

[0.510] [0.507] [0.505] [0.513]
CE × ∆CP 0.60*** 0.65***

[0.216] [0.224]
CE × EV -3.70* -3.95*

[2.199] [2.186]
CE × ∆CP × EV -1.06* -1.82***

[0.619] [0.644]
Observations 1,056,020 1,056,020 1,056,020 1,056,020
R-squared 0.37 0.37 0.37 0.37
Firm FE Yes Yes Yes Yes
Country-Sector-Time FE Yes Yes Yes Yes
Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1
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