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I. Introduction

COVID-19 infections and efforts to contain them have driven most of the discussion about
the macroeconomic outlook in the last year and a half. While governments mandated lock-
downs and stay-at-home orders were enacted to prevent health system collapses, we have also
seen voluntary social distancing by agents trying to minimize their virus exposure. All of this
has had important economic implications, with contact-intensive sectors experiencing sharp
downturns.

Meanwhile, when the pandemic seemed to be under control in late 2020, new more infectious
virus variants started to emerge. The alpha variant was the first to spread and it is believed to
be around 50 percent more infectious than the original COVID-19 virus. Later on, the beta,
gamma and more recently the delta variants were identified, with the delta variant believed to
be substantially more infectious than the alpha one. Finally, a massive vaccination campaign
was initiated in late 2020 in a few countries and has spread globally more recently. While for
many months vaccine supply constraints were the most important factor limiting vaccination,
vaccine hesitancy has recently started to bind in a couple of advanced economies. Moreover,
countries have adopted distinct vaccination strategies and have used different vaccines with
diverse effectiveness against virus strains.

This paper presents a simple epidemiological model to make sense of all this information and
to explain the epidemic dynamics in different countries. The major goal of the model is to
produce short-term epidemic forecasts, given projected vaccination rates, agents’ mobility
and the emergence of new more infectious variants. However, the model can also be used to
assess the impact of non-pharmaceutical interventions, the impact of vaccination campaigns
and the quantification of risk scenarios. The model’s link to economic activity comes from
the derivation of a mobility path that is consistent with a controlled path for the pandemic.
Subsequently, other outside models can be used to translate this mobility path into economic
forecasts.

In the results section, we provide several examples of how the model has been used at the In-
ternational Monetary Fund (IMF). We explain the epidemic development in the UK, show the
importance of the alpha variant in explaining infections, and show the impact of their early
vaccination campaign. Moreover, we show how our model predicts that a super infectious var-
iant, inspired on the delta variant, would spread, including among vaccinated people. Simi-
larly, we show some of these features in a model calibrated to the USA. In particular, our sim-
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ulations indicate that the current vaccination levels in the USA are not high enough to curb
another wave of infections in the context of a highly transmissible virus strain. Finally, we
use a model calibrated for Brazil to show how important the assumption about re-infections is
when forecasting deaths and infections going forward.

While this first version of the model does not directly link mobility to economic outcomes, we
provide an example of how a simple model connecting mobility to domestic demand can be
linked to our epidemiological model to produce the economic quantification of a new virus
variant. In the context of a 50 percent more infectious variant that hits all the countries in the
world simultaneously, global growth in 2021 and 2022 is more than 0.8 percentage points
weaker compared to a scenario where this variant did not emerge. Given current lower levels
of vaccination, emerging and developing economies are more negatively affected in growth
terms with GDP growth below baseline by roughly 1 percentage point in 2021 and 2022.
Meanwhile, vaccine hesitancy and global spillovers cost advanced economies around 3/4 per-
centage points in GDP growth in 2021 and 2022. By 2025, global output is still roughly 1/2

percent below baseline, and the cumulative loss by 2025 is just under 41/2 trillion U.S. dollars.

Our results are certainly relevant from a policy perspective. We are able to measure how pub-
lic policies such as vaccination of different groups and non-pharmaceutical interventions can
affect the pandemic. Moreover, the short-term forecasts can be used as a tool to plan the im-
plementation of those policies. We acknowledge that there is large parameter uncertainty and
some facts are still not very well established, for example how reinfections actually happen.
In order to deal with these uncertainties, we show how the model predictions would change in
case some of the model parameters or modelling choices are different. In particular, in section
V.A we show how the virus dynamic would change if a variant is actually twice more infec-
tious than initially estimated, and in section V.C we do a similar analysis with different ways
of modelling reinfections. As the results in these sections show, the model implications can be
dramatically different given the model’s non-linearity. Thus, the model needs to be frequently
updated to be sure some elements are correctly specified.

The paper is divided into 6 sections. Section 2 discusses the literature on COVID-19 and
some other simple models. Section 3 presents our theoretical model. Section 4 describes
the data and model calibration. Section 5 shows country applications and other quantitative
global-macro-model based results while Section 6 concludes the paper.
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II. Literature Review

The literature on COVID-19 has grown fast and at this stage is extensive. We will not cover
all the papers on the topic, but briefly discuss some of the papers most similar to our work.
Most of the models used in the epidemiological economics literature are derivations from
the SIR, SEIRD or SIRD models, which were first introduced by Kermack and McKendrick
(1927). The main feature of these models is to divide the population in states for example, S,
I, E, R and D (Susceptible, Infectious, Exposed, Recovered or Dead), and people transition
between states following laws of motion that are guided by virus specific characteristics. Early
on in the pandemic, Atkeson (2020) used a simple SIR model to compare scenarios regard-
ing social distancing and the progression of COVID-19. He modeled social distancing as an
exponential average of two states. In our paper, we further decompose behavior between mo-
bility and other measures to mitigate the virus, such as social distancing, wearing masks, etc.
The functional form of our infectiousness dynamic was inspired by Fernández-Villaverde and
Jones (2020). They use a SIRD model with a time-varying contact rate to capture behavioral
and policy-related changes in social distancing. We extend the work of Fernández-Villaverde
and Jones (2020) and include a decomposition of infectiousness between the number of sub-
stantive contacts that someone has and how infectious the virus is. We also introduce vaccina-
tions and new variants as factors that can change the pandemics dynamic.

Eichenbaum, Rebelo, and Trabandt (2020a) pioneered in presenting a model exploring the
interaction between economic decisions and pandemics. The model implies a cut back on
consumption and work as people look to minimize the probability of infection. Extending
their initial framework, Eichenbaum, Rebelo, and Trabandt (2020b) incorporate viral testing
to study the impact of testing, quarantining and non-pharmaceutical interventions on health
and economic outcomes. Although our model is simpler in the dimension of modelling en-
dogenous behavior, it links mobility and contacts using Google mobility data and enriches the
dynamics with the introduction of new variants and re-infections. This way, our model does a
better job in explaining the dynamics observed in the current pandemic.

Bakker and Goncalves (2021) also use a variation of a SEIR model to investigate the effect of
public policies on transmission. They use their simple model to show that higher stringency
policies lowered mobility and infections in Latin America, but the results were better in coun-
tries with better government effectiveness. Our model extend the basic SEIR model in several
dimensions, allowing us to respond to questions on vaccinations, re-infections and new vari-
ants that Bakker and Goncalves (2021) did not explore.
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Berger and others (2020) is another example of using a modified SEIR model to study public
policies. Their model includes testing (serological and virological), asymptomatic individu-
als, imperfect information, and a behavioral response. Their paper finds that testing and re-
opening can slacken the output-mortality trade-off that features in many economic models of
pandemics. Meanwhile we use actual mobility data to match our model with the data. Berger
and others (2020) has a reduced form equation to model behavior and uses other parameters
to fit the model to the data. Most of the papers mentioned, like ours, rely on calibration meth-
ods to match the pandemic. One of the few exceptions is Bognanni and others (2020), that
estimate a spatial, micro-founded model of the joint evolution of economic variables and the
spread of an epidemic and find that mitigation measures that reduce viral transmission (e.g.,
mask-wearing) both reduce the virus’s spread and increase economic activity. This channel is
also present in the theoretical model described in the next section.

Our paper provides the theoretical background for the epidemiological model used by Dabla-
Norris and others (2021). They investigate the determinants of vaccine hesitancy and use
an older version of our model to assess the effects of vaccine hesitancy on the number of
COVID-19 cases and deaths. They show that the effects of vaccination on deaths is exponen-
tial over time and defend strategies to speed up vaccination and lower vaccine hesitancy.

On the topic of using epidemiology models to study the impact of vaccination, Moore and
others (2021) use an age-structured mathematical model of SARS-CoV-2 transmission to
test which group of people should be the first to receive the vaccine to reduce mortality and
healthcare demands. They conclude that vaccinating the most elderly and vulnerable first has
the greatest impact on deaths. Our theoretical model could also be used to conduct this ex-
ercise, as we also model the vulnerable group separately. Differently from our paper, they do
not take people’s behavior as a major factor in transmission. We also examine the role of test-
ing and quarantining, seasonal factors and new virus variants.

Similar to what we do in one of our result sections, MacIntyre, Costantino, and Trent (2020)
try to use a model to measure the impact of vaccinations and propose a strategy for vaccine
implementation in Australia. Different from our paper, they do no consider that agents change
their behavior over time, affecting the epidemic dynamics.

On the empirical role of vaccinations, Ganslmeier and others (2021) try to measure the ef-
fect of vaccination on new cases and macroeconomic activity indicators. Differently from our
paper, they empirically link vaccination to economic activity directly, while our main focus is
on the impact on potential mobility. They also conclude that a 10-percentage point increase
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in the share of the vaccinated with at least one dose reduces daily new cases per capita after
21 days by 0.1 percentage point. Our model predicts that this effect is non-linear, and its mar-
ginal effect increases with a higher fraction of the population being vaccinated.

III. Model environment

Extending the standard SEIR model, our basic framework divides the population (N) into
susceptible (S), infectious (I), recovered (R), quarantined (Q), vaccinated (V), infected vacci-
nated (Iv) and dead (D) states. Some of these states follow the same pattern as a SEIR model.
So, in our daily framework, there is a matching of susceptible and infected populations that
result in 𝛽𝑡𝑆𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡 + 𝐼𝑣𝑖,𝑡 + 𝐼𝑣 𝑗 ,𝑡) infections, Where 𝛽𝑡 is an endogenous rate of infection
that depends on behavioral patterns, mobility and a seasonal component. Its functional form
follows:

𝛽𝑡 = 𝑛𝑡𝑖𝑛 𝑓𝑡𝜇𝑡 , (1)

where 𝑛𝑡 is the average number of substantive contacts with other people per day (affected by
lockdowns and voluntary social distancing), 𝑖𝑛 𝑓𝑡 is the probability of infection conditional
on having a substantive contact (which can be reduced by wearing masks, keeping distance,
washing hands, etc.), and 𝜇𝑡 is a parameter that adjusts the scale and controls for seasonal
differences in the rate of infections.

The number of contacts, 𝑛𝑡 per day is defined as:

𝑙𝑛(𝑛𝑡) = 𝑙𝑛(𝑛0) − 𝛼𝑙𝑛(𝑚𝑡) (2)

where 𝑛0 is the initial number of contacts, 𝛼 is a parameter that we calibrate and 𝑚𝑡 is rela-
tive 7-day average mobility in day 𝑡, measured in relation to the pre-pandemic baseline. We
use google transportation mobility data to proxy the changes in the number of contacts that
someone has.

Agents slowly learn about the virus and get better at avoiding infections in a given interaction.
For example, agents promote social distancing while communicating, they wash hands and
they use masks. In order to capture these behavioral patterns, we follow Fernández-Villaverde
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and Jones (2020) and model this learning process as an exponential average. Thus, the proba-
bility of contagion evolves according to:

𝑖𝑛 𝑓𝑡 = 𝛽0𝑒
−𝜆𝑡 + 𝛽𝑠Ψ(1 − 𝑒−𝜆𝑡) (3)

where 𝛽0 is the initial rate of infection, 𝛽𝑠 is the rate of infection when safety precautions are
taken, and 𝜆 measures the time to make that transition. Finally, the Ψ is introduced to cap-
ture new COVID-19 variants. Thus, when a variant is twice more infectious than the origi-
nal COVID-19 variant, we have Ψ = 2. Notice that once the new variant starts spreading, it
just expands the number of states in our model to include infected agents with the new vari-
ant. The different variants co-exist for a small period but eventually almost all new infections
would come from the most infectious variant. The larger the value of Ψ, the shorter this pe-
riod is. Once we introduce more than one variant, what matters is the difference in infectious-
ness between the two most infectious variants. Finally, the seasonal factor, 𝜇𝑡 , is modelled as a
sinusoidal function that reaches its peak at mid-winter and we estimate its amplitude accord-
ing to the country being modelled.

Another extension to the SEIR model is the quarantined category. This category is adopted
to accommodate both asymptomatic and pre-symptomatic transmissions and to allow for ran-
dom testing in the model. The difference between people who are infectious and people who
are quarantined is that those in quarantine no longer transmit COVID-19 because they do not
have contact with others. The sooner these people are taken out of circulation, either because
of a positive COVID test, 𝑞𝑡 , or because of the development of symptoms, 𝛾, the lower the
speed of the spread of the virus.

Once in the quarantine state, agents can either recover from the virus and move to the recov-
ered state, 𝑟𝑡 , or they die with a probability 𝛿𝑡 . If agents recover, they acquire temporary im-
munity from the virus until they receive a new shock, 𝜅, and move back to the susceptible
state. The value of 𝜅 is calibrated so that it takes an average of 6 months for someone to be
susceptible again.

We have also introduced the vaccination state to the basic model. We assume that a fraction
𝜌 of the population subgroup is vaccinated daily. COVID-19 infections are still possible and
depend on the vaccine’s effectiveness, 𝜔. In the model, we allow the vaccines’ effectiveness to
be different for the distinct COVID-19 variants. Once in the infected vaccinated state, agents
eventually recover to be part of the vaccinated state again. This means that we assume that no
one dies from a COVID-19 infection after vaccination.
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Other than these population state variables, we also have two distinct groups that differ in
terms of their probability of dying after a COVID-19 infection. We name those groups as non-
vulnerable and vulnerable, which we define in practice as the population over 65. While we
know that in the real world these two groups do not socialize with the same intensity and in-
teract more within than between groups, we make the simplifying assumption that they only
differ in terms of their probability of dying. We acknowledge that this might miss some of the
developments occurring within the groups, but we think that the assumption produces a good
enough approximation for the purposes of our model.

The differences in mortality between these two groups implies that a country with an older
population will have higher average infection mortality rate in our model. The distinction of
these two groups also allows us to study the public policy of first vaccinating the vulnerable
groups, a strategy widely used at the beginning of the vaccination roll-out, when vaccine sup-
ply was the major issue countries were facing.

With these seven states described above, the model evolves according to the following laws of
motion:

𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡 = −𝛽𝑡𝑆𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡 + 𝐼𝑣𝑖,𝑡 + 𝐼𝑣 𝑗 ,𝑡) − 𝜌𝑖,𝑡𝑆𝑖,𝑡 + 𝜅𝑟𝑖,𝑡 (𝐿𝑀 𝑖
1)

𝐼𝑖,𝑡+1 − 𝐼𝑖,𝑡 = 𝛽𝑡𝑆𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡 + 𝐼𝑣𝑖,𝑡 + 𝐼𝑣 𝑗 ,𝑡) − 𝛾 𝐼𝑖,𝑡
(1−𝑞𝑡 ) (𝐿𝑀 𝑖

2)
𝑄𝑖,𝑡+1 −𝑄𝑖,𝑡 = −𝜃𝑄𝑖,𝑡 + 𝛾 𝐼𝑖,𝑡

(1−𝑞𝑡 ) (𝐿𝑀 𝑖
3)

𝑉𝑎𝑖,𝑡+1 −𝑉𝑎𝑖,𝑡 = 𝜌𝑖,𝑡𝑆𝑖,𝑡 − 𝛽𝑡𝜔𝑡𝑉𝑎𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡 + 𝐼𝑣𝑖,𝑡 + 𝐼𝑣 𝑗 ,𝑡) + 𝜃𝐼𝑣𝑖,𝑡 (𝐿𝑀 𝑖
4)

𝐼𝑣𝑖,𝑡+1 − 𝐼𝑣𝑖,𝑡 = 𝛽𝑡𝜔𝑡𝑉𝑎𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡 + 𝐼𝑣𝑖,𝑡 + 𝐼𝑣 𝑗 ,𝑡) − 𝜃𝐼𝑣𝑖,𝑡 (𝐿𝑀 𝑖
5)

𝑟𝑖,𝑡+1 − 𝑟𝑖,𝑡 = 𝜃 (1 − 𝛿𝑡)𝑄𝑖,𝑡 − 𝜅𝑟𝑖,𝑡 (𝐿𝑀 𝑖
7)

𝑑𝑖,𝑡+1 − 𝑑𝑖,𝑡 = 𝜃𝛿𝑡𝑄𝑖,𝑡 (𝐿𝑀 𝑖
8)

where 𝑖, 𝑗 stand for each of the groups (non-vulnerable and vulnerable), and so we have 16
laws of motion in total. The time varying 𝛽𝑡 measures the rate of infection, 𝜌 measures the
daily vaccination rates of that specific group, 𝛾 is the rate at which symptoms develop, 𝜃 is
the time it takes to recover from an infection, 𝜔 is how efficient the vaccine is in cutting trans-
mission, and 𝛿 is the probability of death given an infection. The expression 𝛾𝑡

(1−𝑞𝑡 ) is the rate
at which an infected individual discovers that he/she is infected. The reasoning is as follows:
once a person is infected, symptoms develop at Poisson rate 𝛾, which means that the average
number of days until the first symptoms appear is 1

𝛾𝑡
. When a fraction 𝑞𝑡 of the population is

tested each day, the average number of days until a person either develops symptoms or re-
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ceives a positive result is 𝑞𝑡0 + (1 − 𝑞𝑡) 1
𝛾𝑡

inverting this expression gives the rate at which
infections are discovered.

Finally, notice that we do not include the new variants here for the sake of presentation sim-
plicity. However, for every new variant that arrives, there will be two additional states to the
system. We can define them as 𝐼𝑛𝑣𝑡 , for the individuals infected by the variant 𝑛𝑣, and 𝐼𝑣𝑛𝑣𝑡 , for
the vaccinated individuals infected by the same variant. For example, when a new variant is
included, the susceptible state evolves according to:

𝑆𝑖,𝑡+1 − 𝑆𝑖,𝑡 = −𝛽𝑡𝑆𝑖,𝑡 (𝐼𝑖,𝑡 + 𝐼 𝑗 ,𝑡) − 𝛽𝑡Ψ𝑡𝑆𝑖,𝑡 (𝐼𝑛𝑣𝑖,𝑡 + 𝐼𝑛𝑣𝑗 ,𝑡) − 𝜌𝑖,𝑡𝑆𝑖,𝑡 + 𝜅𝑟𝑖,𝑡 (4)

Following Dizioli and Pinheiro (2020), we allow the death rate to be dependent on ICU hospi-
tal capacity. In particular, we assume that 𝛿𝑡 has the following functional form:

𝛿𝑡 =

{
𝛿 if 𝐻𝑜𝑡

𝐼𝐶𝑈𝑡
< 0.5

𝛿 + ( 𝐻𝑜𝑡𝐼𝐶𝑈𝑡
)2 1
𝐾 if 𝐻𝑜𝑡

𝐼𝐶𝑈𝑡
≥ 0.5

(5)

where 𝛿 is the mortality rate in the case where no physical constraint is considered, 𝐻𝑜𝑡 is
the number of hospitalizations, 𝐼𝐶𝑈𝑡 is the number of ICU beds, and 𝐾 is a constant used for
calibration. For 𝛿, we use our benchmark calibration. For the number of hospitalizations, we
assume that 20 percent of sick people need to be hospitalized and 5 percent of them would
require ICU treatment. For the number of ICU beds, we follow McCarthy (2020).1 Finally, we
calibrate 𝐾 so that the probability of dying increases by 20 percent during periods of strain on
the health system. We assume that periods of strain on the health system are periods in which
the ICU capacity utilization is greater or equal to 50 percent.2

Mobility not only has an effect on the pandemic, but also on economic activity. Once people
restrain mobility voluntarily or following government rules, they tend to consume less, espe-
cially from intensive-contact sectors. Once we model the relationship of mobility to economic
outcomes, we can use our model to make economic projections under the different scenarios.
While our simple model does not try to make this link between mobility and the economy
explicit, Section V.D shows an example of how it can be used in this context.

1Information from the National Center for Biology Information, Intensive Care Medicine.
2See Odone and others (2020) for our calibration’s motivation.

https://www.statista.com/chart/21105/number-of-critical-care-beds-per-100000-inhabitants/
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IV. Data and Model Calibration

A. Google Mobility

We use Google Mobility data 3 to estimate the number of contacts people have per day. Google
LLC (2021) Google Mobility Reports show how visits to places, such as grocery stores and
parks, are changing in each geographic region. The data is available for the following cate-
gories: grocery and pharmacy, parks, transit stations, retail and recreation, residential, and
workplaces. In this paper, we use either workplaces or transit stations data, depending which
one produces a better fit for a specific country.

The data is shown as deviation from a pre-COVID baseline (the median value for that day
of the week during the period Jan 2, 2020-Feb 6, 2020). The changes are calculated using
aggregated and anonymized data collected from mobile devices, the same data that is used to
show popular times for places in Google Maps. The data is available at the daily frequency,
with only a 2-3 days lag. We smooth the data to remove excess volatility in the daily data by
using a 7-day moving average, as mobility during weekends and holidays tends to be lower.

We acknowledge the limitations of this data, as it captures data from only a sample of Google
users, those who have opted-in to Location History for their Google Account, and does not
necessarily represent the whole population of that country. This problem might be particularly
worse in developing economies, where the cell phone coverage might not be representative of
society.

B. Our World in Data

We use Our World in Data COVID-19 dataset 4 to access most epidemiology data. We fol-
lowed the strategy in Fernández-Villaverde and Jones (2020) and use new daily deaths to cali-
brate our models. Daily deaths tends to be more reliable than infections data when calibrating
models across countries. That is because different countries have different testing capabili-
ties, and several might miss a considerable number of infections, especially the asymptomatic
ones. Similarly to the mobility data, we use a 7-day moving average. We also use Our World
in data for vaccine distribution.

3https://www.google.com/covid19/mobility/
4https://github.com/owid/covid-19-data/tree/master/public/data

https://www.google.com/covid19/mobility/
https://github.com/owid/covid-19-data/tree/master/public/data
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The data on deaths is updated daily and comes from COVID-19 Data Repository by the Cen-
ter for Systems Science and Engineering (CSSE) at Johns Hopkins University. Due to the
long reporting process between the death occurrence and its inclusion in statistics, the data
may come with a lag, while the vaccination data is collected by the Our World in Data team
from official reports.

C. Vaccination Data

For our vaccination assumptions, we use the vaccination data from Hannah Ritchie and Roser
(2020) for the daily first and second vaccine doses. However, the dataset has only historical
values and doesn’t provide a breakdown by age. We use our judgment and data from authori-
ties for the projections and to divide the doses into the vulnerable and non-vulnerable popula-
tions. For the UK model, we use National Health Service (2021) which provides vaccination
by doses and by age for England and apply a similar vaccine distribution for the rest of the
countries. For the projections, we assume that vaccinations will continue at the same pace for
the younger population, but will reach a peak for people of age 65 and older. For Brazil and
the United States models, we also rely on estimates from Hannah Ritchie and Roser (2020)
for historical values. For projections, we use the Brazilian government’s contracted vaccines
schedule and assumed that the coverage would reach levels consistent with surveys on vaccine
hesitancy, such as Datafolha in Brazil 5. For the USA, supply is no longer a concern and the
pace of vaccination is mostly determined by demand, so we also cap vaccinations based on
willingness-to-take-vaccines surveys. 6.

D. Calibration

We developed models for several countries and some parameters are country specific to cap-
ture the evolution of the pandemic in those countries. In this section, we discuss the common
parameters in all models, and in the results section we discuss particular country calibrations.

The model is calibrated so that a time period is a day. We assume that it takes an average of
two weeks to either recover or die from the infection –that is 𝜃 + 𝛿 = 1/14. The parameter

5https://www1.folha.uol.com.br/equilibrioesaude/2021/07/adesao-a-vacina-chega-a-94-e-atinge-recorde-no-
brasil.html
6https://www.ipsos.com/en/global-attitudes-covid-19-vaccine-january-2021

https://www.ipsos.com/en/global-attitudes-covid-19-vaccine-january-2021
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𝛾 is calculated so that the incubation period is around 10 days. The re-infection rate shock, 𝜅
is calculated so that a re-infection occurs on average after 6 months (a number also used by
the CDC). We use Ward and others (2020) to base our calculation of the relative probability
of death (once infected) of the vulnerable, 𝛿𝑣𝑢,𝑡 and the non-vulnerable, 𝛿𝑛𝑣,𝑡 7. We mostly use
Census data to calculate population shares 𝑠𝑣𝑢 and 𝑠𝑛𝑣 , where we define the population aged
65 and over as the vulnerable population.

The pre-pandemic number of daily contacts is calibrated using results from the American
Community Survey (ACS), and relative mobility is available through Googles Community
Mobility Reports. The parameters 𝛼, 𝛽0, 𝛽𝑠, 𝜆, Ψ are country specific and are calibrated or
estimated to track each country’s 7-day moving average of new deaths. Finally, the vaccine
efficacy parameter is calculated by country depending on which vaccine the country has been
using. Table 1 summarizes the parameter choices for the models discussed in this paper.

Table 1. Calibrated Parameters

Parameter UK US Brazil Description
𝛽0 0.1700 0.1445 0.1500 The initial rate of infection
𝛽𝑠 0.07650 0.07624 0.06700 The rate of infection when safety precau-

tions are taken
𝜆 0.028 0.035 0.028 Parameter guiding the speed of transition

from 𝛽0 to 𝛽𝑠
𝛾 0.17 0.17 0.17 Parameter guiding how long it takes to de-

velop symptoms
𝜃 0.12 0.12 0.12 The time it takes to recover from an infec-

tion
𝜇𝑡 1.490 1.330 1.327 Adjusts the scale and controls for seasonal

differences in the rate of infections
𝑣𝑖 3.0 3.0 2.5 Reduction in infectiousness after vaccine. A

number 3 means 67 percent less infectious
𝛿𝑣𝑢,𝑡 0.024730 0.021277 0.024730 The relative probability of death of the vul-

nerable
𝛿𝑛𝑣,𝑡 0.000690 0.000709 0.000690 The relative probability of death of the non-

vulnerable
𝑠𝑣𝑢 0.180 0.165 0.150 The share of the vulnerable population
𝑠𝑛𝑣 0.820 0.835 0.850 The share of the non-vulnerable population

7We scaled it down a bit to improve the models’ fit.



15

V. Model simulation results

A. UK’s model: The importance of early vaccination

This section uses our model to show how the UK’s fast vaccine rollout averted an even larger
infection wave following the emergence of the alpha variant late last year. According to our
model simulations, which start in July 19th, 2021, deaths could have been more than twice
as high at the peak of deaths in the first quarter of 2021 if mobility had been the same but no
vaccines had been deployed. Moreover, the delta variant would have produced another wave
of deaths around July 2021.

Before we discuss the model results in greater detail, let’s discuss some of the UK model cal-
ibration choices. We calibrated the initial probability of getting infected (𝛽0) at 17 percent,
and that is lowered to around 7.7 percent after the population starts taking precautions (such
as, wearing masks, social distancing, etc (𝛽𝑠)). The parameter guiding the speed of transition
to lower infection probability (𝜆) is estimated to be 0.028. Symptoms develop on average af-
ter 5 days (𝛾), while the time it takes to recover from an infection (𝜃) is 9 days. Using Ward
and others (2020) and our judgment, we have estimated that the probability of dying once in-
fected with COVID-19 (𝛿𝑛𝑣,𝑡) is 0.07 percent for people who are below 65 and 2.47 percent
for people 65 and older (𝛿𝑣𝑢,𝑡). The parameter guiding re-infections was set so that on average
someone can get reinfected 200 days after the previous infection.

A core part of our scenario is to estimate how mobility affects contacts and to make mobility
projections going forward. We use the Google Mobility to workplace to estimate the histor-
ical values of the daily contacts until July 12, 2021. For the future contacts, we assume that
contacts will gradually increase over time, as more people get vaccinated, and lockdowns and
other restrictions are gradually lifted. In particular, contacts reach pre-pandemic level at the
end of April 2022, when mobility is back to normal (Fig 1 shows our mobility assumptions).

The vaccination campaign in the UK was successful and reached a large part of the popula-
tion. However, a large fraction of the population remains vulnerable and we do not predict
them to be completely covered. Between December 8, 2020 and July 18, 2021, nearly 70 per-
cent of the population received the first dose and 54 percent were fully vaccinated, but in the
United Kingdom, like in many other countries, the first vaccination phase was mainly focused
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Figure 1. UK: Mobility

on the vulnerable groups. In our model, the UK concludes its vaccination campaign on Au-
gust 23, 2021, when about 65 percent of the population below 65 has received the first dose
and 55 percent are fully vaccinated, and 95 percent of the vulnerable population has received
the first dose and 90 percent both doses. The willingness to vaccinate might increase in the
near future, but given current trends, we believe that it is likely that the coverage will be lower
than initially anticipated and that some people will not get fully vaccinated.

The model uses vaccination rates of fully vaccinated individuals. However, because of the
UKs policy to delay the distribution of the second dose for up to 12 weeks, we have assigned
75 percent protection against the virus after receiving the first dose and remaining 25 per-
cent after the second dose. As the delta variant seems considerably more infectious than the
alpha variant, we introduced this third variant at the beginning of June 2021 for the simula-
tions. There is also uncertainty of when the delta variant started to circulate in the UK, with
some evidence that started to circulate as early as March 8. If the variant emerged earlier in
the UK, the dynamic can also be different than the one stated here. As our central scenario,
we assume it to be 50 percent more infectious than the alpha variant. However, since we are
still uncertain about this parameter 9, we simulate the model with different infectiousness val-
ues to check how robust the forecast would be when we increase infectiousness considerably.
Fig 2 shows the simulation results when we assume a 50 percent or an 100 percent increase in
infectiousness when compared to the alpha variant.

8https://nextstrain.org/ncov/open/europe
9See https://www.yalemedicine.org/news/5-things-to-know-delta-variant-covid for a discussion of the infec-

tiousness of the delta variant.

https://nextstrain.org/ncov/open/europe
https://www.yalemedicine.org/news/5-things-to-know-delta-variant-covid
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If the third variant was in fact 100 percent more infectious, instead of our 50 percent baseline,
it would result in a 12.5 percent increase in the number of deaths recorded through the end
of 2022, as shown in fig 2. The structure in our model will allow us to independently assess
which of these values is more likely given ongoing and future developments in infections and
deaths. For example, if the delta variant is indeed 100 percent more infectious than the alpha
variant, we should have seen a large spike in infections starting mid-July 2021 and peaking at
the beginning of September 2021, which should result in an increase in the number of deaths.
While, we have recently seen a small uptick in the number of deaths (fig 3) it may be tempo-
rary. It is therefore too early to assess what is the actual infectiousness of the delta variant.

Figure 2. UK: Deaths Under Different Infectiousness Assumptions

We have also looked at how many new infections are coming from the vaccinated people and
how many from non-vaccinated (fig 4). In our projections about 35 percent of total infec-
tions come from vaccinated people during the second half of 2021, a share that increases to
almost 50 percent during the remainder of the forecast horizon. Our findings show a slightly
smaller number than the ZOE COVID Study run by King’s College, which states that almost
47 percent of the newly infected people where those who received at least one dose of the
vaccine.10 The difference is likely coming from our model’s structure which only uses the
vaccination rates of fully vaccinated individuals. Moreover, we are implicitly assuming that
vaccinated and non-vaccinated people behave the same way. If vaccinated people were less

10https://www.businessinsider.com/uk-half-covid-19-cases-had-vaccine-study-zoe-delta-2021-7

https://www.businessinsider.com/uk-half-covid-19-cases-had-vaccine-study-zoe-delta-2021-7
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Figure 3. UK: Infections Under Different Infectiousness Assumptions

careful around other people, and did things such as not wearing masks or engaging in other
riskier behavior, that could raise the share of vaccinated people that get infected. However,
our model has done a decent job in tracking those relative infections so far.

Figure 4. UK: Infections by Groups

Finally, to illustrate the importance of the vaccination campaign in the UK so far, we present
two scenarios: one scenario with our baseline vaccination assumptions, and a second sce-
nario where no one ever got vaccinated. The results are shown in fig 5. We find that the sce-
nario with no vaccines would have resulted in an increase in the number of deaths by about
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78 percent by the end of 2022, illustrating the number of lives potentially saved by the intro-
duction of the vaccines. One can also see that the number of deaths in 2022 would be similar
in the two scenarios. The reason is that in the scenario without the vaccine many more people
would get immunity through previous COVID-19 infection. However, the cost of this immu-
nity would have been many more deaths in 2021.

Figure 5. UK: Deaths Under Different Vaccination Assumptions

B. USA’s model: Model explanation of deaths dynamic

The model calibrated for the United States can help illustrate three three main factors driv-
ing death dynamics: mobility, vaccination pace, and the arrival of new variants with a higher
transmissibility. In terms of mobility, we assume people remain cautious until infections drop
considerably, either through immunization or immunity through infection. The model fore-
casts always start on July 19th, 2021. The mobility assumptions are also based on COVID-
19 Google Mobility Reports (workplace mobility) and we assume a gradual recovery to pre-
COVID levels. Recent releases highlight that while workplace mobility has not increased as
expected - likely due to flexible work arrangements and a reluctance to return to office set-
tings - mobility for retail and recreation has recovered faster than expected, which offsets
some of this effect.
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Figure 6. USA: Mobility Assumptions

Vaccinations in the United States started fast but have slowed recently, with a relatively high
hesitancy. The model assumes that around 60 percent of the population will be vaccinated by
the end of 2022. The vaccination campaign focused on individuals at risk first, so vulnerable
groups received the vaccine doses early in the campaign, with vaccinations for the general
population following afterwards.

Figure 7. USA: Vaccination Assumptions

A second variant is introduced in October 2020, estimated to to be 33 percent more conta-
gious than the original variant to match the observed data, while a third variant introduced
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in June 2021 is two times more contagious. We also assume that reinfection is possible after
200 days from vaccination (2nd dose of 2 dose vaccine, or single dose shot) or after original
infection date if recovered.

Actual data and projections for the United States show 3 distinct waves of the pandemic. The
first, in early-to-mid-2020 was driven by the initial variant and lack of knowledge about the
virus, and it was offset by subsequent lower mobility, from lockdowns and voluntary social
distancing. As more people used masks and practiced social distancing, the probability of in-
fection given an interaction was reduced and this is confirmed that in our model estimation.
The second wave, starting in late 2020 and continuing through the first quarter of 2021 was
initially driven by the recovery in mobility and prolonged by the emergence of the alpha var-
iant. The wave declined rapidly as progress in vaccinations increased immunity. The third
wave is expected to peak in November 2021; as the vaccination pace in our baseline simula-
tion is not enough to offset the increased contagiousness of the third variant.

Figure 8. USA: Projected Daily Deaths

We also provide additional scenarios to show what it would take for the USA to completely
avert another wave of deaths. According to our simulations, if the vaccination rate increases
twofold relative to the baseline (starting August 1st, 2021), which means an increase in daily
average full vaccinations from around 260,000 to 520,000 people, then deaths by the end of
2022 would be reduced by approximately 8 percent. Quadrupling vaccine administration dur-
ing the same time frame would reduce deaths by 24.2 percent. While large, both scenarios
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are possible, given available vaccine stocks and distribution. The USA was vaccinating over 3
million people daily back in April.

C. Brazil’s model and the importance of re-infections

We use the model calibrated for Brazil to illustrate the importance of modeling re-infections
for the pandemics forecast in the context of a more infectious variant. In particular, we show
that if re-infections are not possible, the pandemics would be mostly controlled going for-
ward. Conversely, if re-infections are a possibility and depending on how it is modelled, we
can expect another wave of infections by year end.

(a) Building a scenario

Figure 9. Brazil: Mobility Assumptions

One critical element in building the pandemics forecast is the assumption on how people will
behave going forward. Our mobility assumptions are grounded on the COVID-19 Google Mo-
bility Reports (specifically the workplace measure). According to this measure, mobility in
Brazil has surprised on the upside and it was above pre-pandemic levels when we start the
model forecasts by July 19th, 2021. We believe that the current mobility path is a reaction to
optimism to the on-going vaccination campaign and that the mobility path will gradually re-
turn to pre-pandemic levels going forward. Moreover, we assume that people would remain
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careful in their daily interactions until infections drop considerably. That is, people will con-
tinue to use masks and take other precautions when interacting. As in other countries, Brazil
initially vaccinated vulnerable groups.

As this group was fully vaccinated, the general population followed. The vaccination path
in the model incorporates actual vaccination rates for fully vaccinated individuals (15.4 per-
cent of the population on July 14th, 2021). As for projections, the model assumes that Brazil
will continue to vaccinate its population until 94 percent of the population is fully vaccinated.
This target was based on a COVID-19 vaccination willingness poll by Datafolha in Brazil
(July 2021)11, which along with another Ipsos/World Economic Forum (February 2021)12
pool highlight the population’s high willingness to get vaccinated.

Figure 10. Brazil: Vaccination Path

In our scenarios, 75 percent of the population will be fully vaccinated by the end of February
2022, with 75 percent of vulnerable individuals fully vaccinated by July 7th, 2021. We also
include a second COVID variant (P1), more contagious than the original variant, which is
introduced in late winter. To illustrate the role of re-infections, we introduce a third variant in
late May 2021, even more infectious than the P1 variant. This third variant is 2.8 times more
contagious than the original COVID-19 strain.

11https://www1.folha.uol.com.br/equilibrioesaude/2021/07/
adesao-a-vacina-chega-a-94-e-atinge-recorde-no-brasil.html
12Which finds 88 percent of the population willing to obtain a vaccine. https://www.ipsos.com/en/
global-attitudes-covid-19-vaccine-january-2021

https://www1.folha.uol.com.br/equilibrioesaude/2021/07/adesao-a-vacina-chega-a-94-e-atinge-recorde-no-brasil.html
https://www1.folha.uol.com.br/equilibrioesaude/2021/07/adesao-a-vacina-chega-a-94-e-atinge-recorde-no-brasil.html
https://www.ipsos.com/en/global-attitudes-covid-19-vaccine-january-2021
https://www.ipsos.com/en/global-attitudes-covid-19-vaccine-january-2021
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(b) Model results with and without re-infections when a third wave is modelled
When re-infections are not allowed, the P1 variant has to be around 57 percent more conta-
gious than the original variant so as to replicate the observed pandemic path 13. In this model,
when the third wave hits the country in June 2021, the combined population immunity gained
through either the recovery from previous infections or from the projected vaccination path
is enough to avert another wave of infections in the second half of 2021 and early 2022. (Fig
11).

Figure 11. Brazil: Deaths, Projected and Actual

Alternatively, we can allow re-infections in the same calibrated model. In particular, we as-
sume that people can get reinfected after 200 days from their original infection date. When re-
infections are introduced this way, the P1 variant only needs to be 33 percent more infectious
than the original COVID-19 strain to match the data. If an equally infectious third variant hits
the country also in June 2021, we project a third wave, similar in size to the first wave in mid-
2020, but smaller than the second wave in March-April 2021. The projected vaccination path
in this case is not enough to completely offset the reduced immunity in the population stem-
ming from the possibility of reinfection. This third variant would result in 43.3 percent more
deaths by the end of 2022 when re-infections happen as modelled in this section. Given the
uncertainty about how re-infections happen in the real world, this scenario highlights the im-
portance of accelerating the vaccination campaign to increase the level of immunity in the
population to prevent the spread of new variants and deaths.

13There is large uncertainty about the exact number of how much more infectious the p1 is, see https://science.
sciencemag.org/content/371/6526/288 for a discussion.

https://science.sciencemag.org/content/371/6526/288
https://science.sciencemag.org/content/371/6526/288
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D. Super spreading variant

Although most advanced and some emerging economies are making considerable progress in
vaccinating their populations, the emergence of a new more infectious variant posses a signifi-
cant risk. This risk is not just to those countries with low vaccination rates, it is a material risk
to many advanced economies were vaccine hesitancy has already, or could moving forward,
slow the pace of vaccinations. In this section, we use the model described in section III and
the IMF’s G-20 Model, Hunt and others (2015) to explore the implications of the emergence
of a super infectious virus variant and its potential impact on G-20 countries epidemiological
and economic outcomes.

In this scenario, we assume that new variant emerged globally all at the same time in the first
days of June 2021. We also assume that this new variant is 50 percent more infectious than
the UK variant (alpha), but that the mortality rate of this new variant is the same as previous
virus strains. Moreover, we assume that vaccine efficacy remains the same against this new
virus strain.

With respect to mobility, our model does not predict how agents would react to an increase
in infection rates. Thus, in this section we just assume that people would react by lowering
mobility to a point where deaths are around 20 percent lower in 2022 than they would have
been if mobility remained unchanged.

In our model, we also do not model directly the relationship between mobility and domes-
tic demand. So, for this section we assume that this relationship would be the same as the
one observed during the last quarter of 2020 and the first quarter of 2021 once government
spending is removed. This assumption reflects the fact that the elasticity of output to mobility
declined between the first and second halves of 2020, as agents learn how to better conduct
economic activity with the virus (Fig 12).

When calculating this elasticity, we also try to correct for seasonal variation. Seasonal pat-
terns in mobility are critical, especially for the holiday season in Q4 (Fig 13). The strategy
used here was to remove holiday effects from the underlying mobility series. While this does
not completely correct for seasonality, it diminishes its effects. Finally, we measure the impact
of mobility on domestic demand excluding government purchases and governments indirect
transfers to households. The reason is that modelling fiscal policy is beyond the scope of this
paper.
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Figure 12. Elasticity of Domestic Demand to Google Mobility

Figure 13. The Seasonality in Mobility Could Bias the Relationship With Output

The most important factor for the output effects in this section have to do with the vaccina-
tion campaign across countries. On the supply side, even though vaccine availability has in-
creased in the last month, vaccine supply remains a major issue in most of the developing
world. While Canada has already given a first shot to close to 65 percent of its population,
South Africa has vaccinated less than 10 percent of its population. The good news is that
some emerging market economies have been catching up recently, with Turkey, Argentina,
and Brazil already inoculating more than 30 percent of their populations (Fig 14). However,
in the context of a more rapidly spreading new variant, these levels of vaccination are not
enough, and most countries remain vulnerable in the near term.
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Figure 14. The Unequal Vaccine Rollout Remains a Major Issue in Most of the Developing
World

On the demand side, vaccine hesitancy might be a problem for developed countries going
forward. To highlight that, we show the survey below conducted by "global data intelligence
company Morning Consult"14 in 15 countries between June 8-14, 2021 (Fig 15). Each survey
respondent is asked several questions on COVID-19 vaccines. These include whether respon-
dents would take a COVID-19 vaccine if available (or if they have already been vaccinated).
Russia, Australia, South Korea, and the USA have the highest rates of people unwilling or
uncertain about getting the vaccine. Meanwhile, nearly everyone in India and China is plan-
ning to get inoculated. In the context of a highly infectious COVID-19 variant, this level of
hesitancy will play a central role, especially in 2022 when vaccine supply will be less of a
constraint.

Among G-20 countries, India would be one of the most vulnerable countries to the emergence
of a super infectious variant. In the figure below, it is assumed that India would only fully
vaccinate 70 percent of its population by June 2022. The emergence of the new variant now
would lead to a surge in deaths by the last quarter of 2021 and first quarter of 2022. The dot-
ted line in fig 16 shows a path in which mobility is lowered by enough to reduce deaths by
around 35 percent from the third quarter of 2021 to the end of 2022. Such a reduction in mo-
bility would have large economic effects. If the relationship of mobility to output is similar to
what it was in the last quarter of 2020 and the first quarter of 2021, Indias GDP growth could

14https://morningconsult.com/global-vaccine-tracking/

https://morningconsult.com/global-vaccine-tracking/
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Figure 15. Vaccine Hesitancy Will Play Critical Role in the Next Few Months

fall by around 2.4 percent percentage points in 2022 compared to the situation in which this
new variant did not emerge (Fig 16).

Figure 16. India Could be Severely Affected by a More Infectious Virus Strain
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Vaccination in the USA has slowed down significantly, and vaccine hesitancy remains high.
With the current vaccination levels, the US would not be immune to the fast spreading virus
variant considered in this scenario. If only 60 percent of the population is vaccinated, the
number of deaths would increase again late-2021 and early-2022. Even though the number
of deaths would not reach the levels observed in late-2020 and early-2021, they would remain
elevated for a long period (Fig 8).

If mobility were to respond so that the number of deaths were reduced by around 20 percent,
the direct negative impact on the level of GDP could be as large as 0.7 percent in 2022. If
global spillovers are also accounted, the negative effect could reach 0.9 percent in 2022. 15
Even with this lower mobility, around 100,000 deaths would still be recorded in 2022. This
dire scenario highlights the importance of addressing vaccine hesitancy and expanding vacci-
nation to at least 70 percent of the population.

The current and projected levels of vaccination will not shield the global economy from a fast
spreading virus. The rising in infections in the second part of 2021 and beginning of 2022
leads to a deterioration in activity in contact-intensive sectors, with the associated income
effects spilling over to other sectors. Since emerging market economies are lagging on vacci-
nation rollouts, the impacts of the virus variant are already felt in 2021 and remains in 2022.
As for advanced economies, it would take a little longer for the increase in cases to lead to a
higher impact on deaths and those would be felt in output more pronounced in 2022.

In countries with high vaccination, such as the UK and Canada, the impact would be mild,
meanwhile countries lagging in vaccination, such as India and Indonesia would suffer the
most among the G20 economies (Figure 17). Given the global nature of the shock, these do-
mestic demand effects are then amplified via trade. The more protracted weakness in activity
is assumed to create additional, persistent damage to economies supply capacity, with a loss
in productive capital, a persistent rise in the natural rate of unemployment, and temporarily
weaker productivity growth. These scarring effects are assumed to be largely felt in 2022 and
beyond.

Fig 18 contains a decomposition of the impact on global GDP of the key layers of this sce-
nario. Relative to a baseline without this virus variant, global growth in 2021 and 2022 is
around 0.8 percentage points weaker. Emerging market economies excluding China are more

15Of course, in this scenario the US government would most likely enact additional fiscal policy measures that
would dampen the impact on the economy.
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Figure 17. Vaccination and Output Losses

negatively affected with GDP growth below baseline by around 1.3 percentage points in 2021
and 2022. Meanwhile, vaccine hesitancy and global spillovers cost advanced economies around
0.8 percentage points in GDP growth.

In the scenario considered, the emergence of a more infectious variant results in a cumula-
tive loss in global real GDP of 4.5 trillion US dollars over the 2021 to 2025 period. Although
emerging economies excluding China see the largest percent decline in output owing to much
lower vaccination rates, their real output losses are just under 2 trillion US dollars. Advanced
economy losses are larger, at roughly 2.5 trillion US dollars.

VI. Conclusions

With the emergence of new variants, the horizon to completely control the spread of COVID-
19 seems to have been delayed. Moreover, the vaccination campaign in several countries, es-
pecially developing countries, have yet to reach a critical mass of people to effectively end the
pandemic. In this context, we presented a tool that can be used to make sense of all these new
developments.

This paper introduced a simple, easily updated and close to the data model that has been
used for near-term forecast and policy analysis. Even though the literature on COVID-19 has
quickly grown and covers several aspects of the pandemic, with several behavioral and struc-
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Figure 18. Emerging Market Economies Could Suffer Large Output Losses

tural models, it lacked a model that could be used daily to assess the state of the pandemic
in simple terms and related to an important aspect of how the pandemic affects the economy,
which is people’s mobility.

We have shown how the model has been used to produce scenarios and form near-term virus
developments forecasts. In particular, we have shown that the vaccination campaign in the UK
has muted dramatically the possible effects that the highly transmissible variant alpha could
have had. We have also shown how we expect a highly transmissible variant to spread in the
UK depending on how transmissible it is. We showed that a high proportion of the vaccinated
can be infected by the virus but deaths would not be nearly as high as previous waves because
of the immunity gained from vaccines.

We have used the model calibrated to Brazil to show the importance of re-infections and dis-
cuss how it has been modeled in the literature. We still do not have enough information at a
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large scale to properly model re-infections, and that will be critical going forward in forming
our forecast on how the most transmissible variants will spread in the near-term.

In our model projections, the current vaccination levels in the USA would not be enough to
avert another wave of deaths later in the year. However, we showed that a minor vaccination
expansion in the next few days could nearly abort the threat brought by the more infectious
delta variant.

Finally, we showed how our model can be linked to other simple models to produce economic
forecast and to measure the benefits and returns of vaccination campaigns. We showed that
the delta variant could cost the world economy some trillions of dollars because of insufficient
immunity across countries. The longer the virus is left to replicate, the more likely it is that
more variants could emerge and threaten the world’s economic recovery. The potential returns
to further expanding vaccination production and distribution are enormous.
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