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I. INTRODUCTION

The Credit Default Swap (CDS) market has attracted considerable attention since its inception in 

the early 1990s. It has undergone a period of rapid growth and usage in the run-up to the 2008 

Global Financial Crisis (GFC). Since then, the CDS market has experienced a cooling period as 

well as structural changes, but it still represents the third largest over-the-counter (OTC) 

derivatives market, with a gross market value of about $8 trillion US dollars (BIS, 20191). 2 

By providing insurance against default, CDS enables loan lenders to hedge the default risk of 

borrowers, where CDS spread is dependent on the direct information about the creditworthiness 

of the entity named on the derivative security. After the 2008 financial crisis, CDS spreads have 

become the most closely monitored early warning signals for credit risk changes. The risk-neutral 

implied default probability estimated from CDS spreads are used to price credit securities, assess 

credit quality by rating firms, monitor systemic risk, and stress test financial systems by regulators 

(Chan-Lau 2006; Huang et al. 2009). 

Compared with other credit risk measures such as bankruptcies, rating and bond yields, or general 

risk measures as stock volatility, CDS spreads have several advantages. First, CDS spreads are a 

continuous alternative to discrete credit assessments of rating agencies, which also incorporates 

market perceptions of default risk (Das et al., 2009). Unlike the rare credit events, the CDS market 

offers timely cross-sectional and time-series credit information, gauged by the market instead of a 

credit rating agency. Second, CDS spreads outperform ratings in capturing firm-specific default 

probability and also contains information on systematic risk. (Hilscher and Wilson, 2017). Third, 

CDS spreads contain credit information not included in stock prices or bond yields when important 

credit events occur, leading the price discovery on stock and bond market (Lee et al, 2019). Finally, 

CDS spreads are less affected by liquidity and tax effects compared to bond spreads (Elton et al., 

2001), and are less sensitive to momentum than stock prices. 

However, not all firms issue CDSs. Generating “shadow” CDS spreads for the firms without CDS 

can thus provide a useful credit risk measure, adding valuable insights for market participants. Das, 

Hanouna and Sarin (2009) find that both accounting-based and market-based information have 

explanatory power on CDS spreads. If the underlying structure between (economic/firm) 

fundamentals and CDS spreads is homogeneous across similar firms, one can artificially recover 

such a structure to the firms without CDS and generate "shadow" spreads. In this paper, we use 

the fundamentals to cross-sectionally nowcasting CDS spreads, test the validity, and generate the 

“shadow” spreads. 

There has also been little research on forecasting CDS spreads to date. Two exceptions are 

1 https://www.bis.org/statistics/derstats.htm 

2 The regulations enforced through the Dodd-Frank Act, a financial reform legislation passed in response to the GFC, included

registration requirements for market participants to trading, central clearing, and reporting of OTC derivative positions. The 
changes in the regulatory environment have led to quick reactions in the outstanding positions. While there is no mandatory central 
clearing regulation for the US single-name CDS contracts, the market activity is clearly transiting to clearing-eligible products, 
with an overall decrease in gross notional of single-name contracts outstanding (Boyarchenko, Costello, Shachar, 2019). 

https://www.bis.org/statistics/derstats.htm
https://www.bis.org/statistics/derstats.htm
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Guenduez and Uhrig-Homburg (2011), and Son et al (2016), who both predict firms’ CDS spreads 

using historical spreads. No study has used economic and firm fundamentals to forecast CDS, 

while many researchers have used them to predict other credit risk measures, such as bankruptcies 

(e.g. Altman,1968; Ohlson, 1980; Altman, 2000; Hillegeist et al., 2004; Duffie et al., 2005; 

Agarwal and Taffler, 2008, and Duan et al., 2012), rating changes (Nickell et al., 2000; Duffie and 

Singleton, 2003; Jorion et al., 2009; Jones et al., 2015), bond yields (Huang et al., 2005; Collin-

Dufresne et al.,2001; Longstaff and Rajan, 2006) and stock volatility (Christiansen et al., 2012; 

Mittnik et al., 2015). As discussed above, CDS spreads have multiple advantages over other risk 

measures. Hence, in this paper, we forecast future CDS spreads longitudinally using economic and 

firm fundamentals. 

 

Our crosssectional nowcast and longitudinal forecast also incorporate the recent developments and 

applications of data-driven machine learning methods (MLs). In terms of credit risk, most studies 

using machine learning methods focus on bankruptcy and credit rating. Empirical evidence from 

these discrete measures suggests that recent classifiers such as gradient boost and random forest 

clearly excel compared to traditional LDA or probit/logit (Jones et al., 2015, Flavio et al., 2017). 

But there has not been equal scrutiny on the continuous measure of CDS spreads. What enables 

machine learning methods to outperform traditional approaches have not been investigated 

sufficiently. In this study, we “horserace” the predictive performances of traditional methods and 

a series of recent ML techniques in regards to their nowcasting and forecasting capabilities, and 

investigate the source of performance differences. 

 

This paper aims at answering three specific questions: 

 

(1) Can we generalize the relationship between the fundamentals and CDS spreads cross-

sectionally to other companies to construct “shadow” CDS spreads for those without actual 

CDS? 

 

(2) Can we generalize the relationship over time to forecast CDS spreads in the future? 

 

(3) What is the relative explanatory power of fundamental variables in predicting CDS, 

under traditional and Machine Learning approaches? 

 

To answer these questions, we conduct nowcasting cross-sectionally, and the one-month ahead 

longitudinally forecast to predict CDS spreads. Our sample comprises monthly CDS spread data 

of 69 firms, with accounting-based, market-based, and macroeconomics series as input variables. 

We test a wide range of machine learning estimation techniques and use traditional credit risk 

model regressions as benchmark tools.  

 

Our results indicate that machine learning methods can considerably enhance the prediction 

accuracy of CDS spreads both cross-sectionally and overtime when compared to traditional 

econometric models quantifying credit risk relationships. Ensemble methods including Bagging, 

Random Forest, and Gradient Boosting consistently outperform basic interpretable methods, such 

as Ridge, LASSO, and linear regression, in prediction accuracy and stability. The precision of 

linear regression fluctuates widely across randomly chosen estimation and test sets and leads to 

the weakest average out-of-sample prediction power.  
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We further assess the importance of regressors by using the LIME (Local Interpretable Model-

Agnostic Explanations) method, to provide more thorough insights into the underlying reasoning 

for why ensemble MLs are more accurate in predicting CDS spreads, from the view of input 

variables. We find that linear regressions assign exceptionally high weights to interest rates and 

spreads, including treasury yields, term spreads, and long term bond yields. In contrast, ensemble 

ML methods rely mostly on the firm and economic fundamentals. The results pinpoint the most 

critical variables that predict CDS spreads and suggest that ensemble ML methods can identify 

authentic credit information for predicting CDS spreads. 

 

The high cross-sectional and longitudinal precision of ensemble ML techniques suggests that the 

nonlinear relationship between the firm and economic variables and CDS spreads can be applied 

to other firms and also to the future. The corresponding generalizable relationship allows us to 

construct valid "shadow" CDS spreads for those companies without actual CDS, but with the firm 

and economic variables. We show that the constructed "shadow" CDS spreads can capture the 

main changing direction of the spreads, but are much less volatile. We are also able to predict 

future CDS spreads for those firms with CDS.  

 

The remaining sections of the paper are organized as follows: Section 2 discusses the relevant 

literature, section 3 introduces the sample and imput variables, section 4 provides the discussion 

on methodology and empirical contexts, section 5 presents the results and provides the "shadow" 

CDS spreads that we have constructed for those firms who do not have "real" CDS, and section 6 

provides LIME analysis on understanding why the nonlinear ensemble methods outperform the 

linear benchmark. In section 7, we design a specific case study using non-crisis periods as training 

sets and crisis periods as test sets, then we conclude. 

 

II.   LITERATURE REVIEW 

The importance of using both accounting and market based variables in the modeling of credit risk 

has been intensively discussed in the credit risk literature. The pioneering works of Altman (1968) 

and Ohlson (1980) have used firm-specific financial ratios and other accounting variables to 

develop scores for predicting firm's default probability (Altman’s Z-score and Ohlson’s O-score). 

 

The most widely recognized credit risk models in the field are based on market-based variables. 

Specifically, Merton (1974) has developed a distance to default (DTD) measure based on market 

information, assuming that the fundamental value of a firm follow a certain stochastic process and 

computes the default probability from the level and volatility of asset's market value. 

 

As shown in Jarrow & Turnbull (1995) and Duffie & Singleton (1999), reduced-form models or 

intensity-based models assume that the default follows a process with stochastic intensity, and one 

can extract the default intensity from market securities. In such models, the conditional probability 

of failure of a firm depends purely on the distance to default, a variable calculated by market equity 

data and accounting data for liabilities. Empirically, the performance of these models are regarded 

to be superior to Altman’s Z-score and Ohlson’s O-score (Hillegeist et al., 2004). 

 

Although structural models and reduced-form models have received great recognition both in the 

industry and academia - for example, structural models have been adopted by firms such as 
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Moody's KMV and CreditMetrics - the overemphasis of these models on distance to default raises 

concern. Duffie and Lando (2001) show that if markets are not fully efficient, DTD might cause 

filtering problems and other variables could provide additional information. 

 

Hillegeist et al. (2004) find that DTD outperforms accounting information in predicting default. 

Hillegeist et al. (2004) and Duffie et al. (2007) conclude that accounting-based and 

macroeconomic variables are relevant as well in predicting corporate failure. Specifically, Das et 

al. (2009) find that models using accounting-based data and models using market-based 

information have performed similarly well in explaining CDS spreads. Bai and Wu (2016) 

combine DTD with multiple firm fundamentals and find that the fundamentals explain CDS 

spreads by an average 77% of R-square. 

 

In the literature of corporate default prediction, the firm’s failure intensity depends on the 

covariates, including firm-specific financial variables and macroeconomic variables. The 

prediction of forward intensity next period is conditional on the covariates observed on the present 

period. Duffie & Wang (2004) and Duan et al. (2012) incorporate all the accounting-based, market-

based and macroeconomic variables to predict corporate default. This paper is in accordence with 

Duffie & Wang (2004) and Duan et al. (2012). 

 

The application of machine learning methods in credit risk analysis and financial time series 

prediction has been pursued as separate strands of research in prior studies. For the credit market, 

most of the relevant work focuses on credit rating analysis. Huang et al. (2004) suggests that the 

rating analysis using artificial intelligence techniques choose input variables following the 

conclusion of traditional credit risk analysis. Jones et al. (2015) compares a range of classifiers 

from traditional techniques to fully non-linear classifiers including neural networks, support vector 

machines and more recent statistical learning techniques such as generalized boosting, Adaboost 

and random forest, to predict rating changes, using financial, market and macroeconomic variables 

as inputs. They find that new classifiers perform better than all other classifiers on both cross-

sectional and longitudinal test samples. 

 

Relatedly, relevant research predicting financial time series have concentrated in stock market and 

achieved relatively accurate prediction results. Relevant studies have used technical input variables 

and  fundamental variables to predict stock return (Chan te al.,1993, Cavalcante, 2016) or volatility 

(Charlotte et al., 2012, Mittnik et al.,2015). Specifically, studies predicting CDS spreads have only 

used historical spreads. Gündüz and Uhrig-Homburg (2011) analyze the ability of CDS spreads in 

predicting future CDS spreads using both traditional credit risk models and support vector machine 

regression. Son et al. (2016) expand Gündüz and Uhrig-Homburg's work by introducing more 

modeling methods with additional maturities.  

 

In this paper, we conduct the prediction of CDS spreads using fundamental variables and compare 

the results with traditional benchmark models, and we fill the gap between two strands of the 

literature, the credit risk literature and the machine learning literature. 

 

III.   PRICING CDS SPREADS  

In this section, we motivate our nowcast and forecast with a forward default intensity model. We 

model the pricing of the CDS spreads following Das et al. (2009) and Duan et al. (2012). We 
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model the default of a firm as an intensity process,  λt, thus the probability to survive from staring 

time t=0 to default time t=τ  is sτ = exp(− ∫
τ

0
𝜆𝑡dt) . In the model, the forward intensity 𝜆𝑡 

depends on the firm and economic variables observed at time t (𝑋𝑡) or beforehand (𝑋𝑡−𝑖 , 𝑖 > 0), 

and is of exponential affine form,  

 

𝜆𝑡 = exp[𝐵𝑡−𝑖
′ 𝑋𝑡−𝑖], 𝑖 ≥ 0， 

 

where 𝐵𝑡−𝑖 = [𝛽0(𝑡−i), … , 𝛽𝑘(𝑡−i)]
′
 is a vector of coefficients, and 𝑋𝑡−i = [1, 𝑋1(𝑡−i), … , 𝑋𝑘(𝑡−i)] is 

a vector of economic variables including both accounting-based, market-based firm-level, and 

macroeconomic variables. Assuming that conditional on the given economic variables vector 𝑋𝑡−𝑖, 

the forward default intensity is a constant, as 𝐸(𝜆𝑡|𝑋𝑡−𝑖) = 𝜆.  

 

CDS enables market participants to shift the default risk on the firm from an insurance buyer to an 

insurance seller. The buyer pays a premium to guarantee future potential protection. Hence the 

premium and the protection legs both determine CDS spread together. The premium leg represents 

the expected present value of premium payment from the insurance buyer to the seller, while the 

protection leg indicates the expected present value of the default loss payment from the seller to 

the buyer. Fairly priced CDS equals the premium leg and the protection leg.  

 

The premium leg is, 

 

E [∫
T

0
DtstCSdt]     ⑴. , 

and the protection leg is,  

 

E [∫
T

0
Dtstλt(1 − ϕ)dt]     ⑵.  

 

where T is the maturity of CDS and CS is the CDS spread. Dt = exp (− ∫
t

0
rsds) is the discount 

rate at default time t, where rt is the interest rate at time t. st = exp (− ∫
t

0
𝜆𝑠ds) is the probability 

that firm survive until default time t. λt is the default intensity that the firm default at t, and ϕ is 

the constant recovery rate.  

 

Assume that the maturity T can be equally divided into n intervals, where Δ𝑡 is the time interval 

between time t and t-1. The intervals are denoted by j = 1, 2, …, n. Note that conditional on the 

given economic variables vector 𝑋𝑡−𝑖, the forward default intensity is a constant. Hence  

 

𝜆 =  𝜆𝑗 = exp[𝐵𝑡−𝑖
′ 𝑋𝑡−𝑖] , 𝑖 ≥ 0, j =  1, 2, … , n, , 

 

Equating the premium leg and protection leg under conditional constant intensity leads to fairly 

priced CDS spreads3: 

 

                                                        
3 See Das, Hanouna and Sarin (2009) for detailed discussion. 

https://www.bis.org/statistics/derstats.htm
https://www.bis.org/statistics/derstats.htm
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𝐶𝑆 =
(1−𝜙)(1−𝑒−𝜆Δ𝑡)

Δ𝑡
    ⑶.

. 

 

Taking logarithm and employing the fact that 𝜆 = exp(𝐵𝑡−𝑖
′ 𝑋𝑡−𝑖) leads to a linear relationship 

between 𝑙𝑜𝑔CS and firm and economic variables, 

 

𝑙𝑜𝑔𝐶𝑆 = log (
1−𝜙

Δ𝑡
) + log(1 − 𝑒−𝜆Δ𝑡 )

≈ log (
1−𝜙

Δ𝑡
) + log(𝜆Δ𝑡)

= log (
1−𝜙

Δ𝑡
) + 𝐵𝑡−𝑖

′ 𝑋𝑡−𝑖Δ𝑡

. 

Namely, 

𝑙𝑜𝑔𝐶𝑆 ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +  𝐵′𝑋𝑡−i, 𝑖 ≥ 0. 

 

In comparison, for Machine Learning methods, we assume a flexible relationship between 

economic variables and 𝑙𝑜𝑔𝐶𝑆𝑡,  

 

𝑙𝑜𝑔𝐶𝑆 ≈ 𝑓(𝑋𝑡−i), 𝑖 ≥ 0    ⑷.
, 

 

where the function form is determined by Machine Learning methods. We conduct nowcasting 

( 𝑖 = 0 ) when generating shadow CDS spreads cross-secitonally and forecasting ( 𝑖 > 0 ) in 

longitudinal analysis. 

 
IV.   DATA, EMPIRICAL CONTEXT, AND METHODS 

4.1 Sampling 

 
We utilize the CDS contracts data obtained from MARKIT. Our sample is based on the CDS 

constituents in the CDX North American Investment Grade Index, which includes the most liquid 

125 North American entities' CDSs with investment-grade credit ratings. The reason to focus on 

most liquid CDSs is that they have the most fairly-priced and informative spreads in the North 

American CDS market. We collect the 5-year CDS spreads of the constituents at the end of each 

month over the period 2006 to 2016 4. After merging the sample with the WRDS Monthly Finance 

Ratio database, Compustat, CRSP daily stock file database, and IBES analyst database, 69 entities 

remain in our sample with 6811 corresponding monthly CDS spreads. 

 

4.2 Input variables 

 
We collect firm-level accounting-based and market-based variables, analyst forecasts, financial 

markets, and macro-economic variables, details of which are presented in Table 1. 

 

Accounting-based variables 

                                                        
4 5-year maturity CDS is the most liquid among all maturities (Gündüz & Uhrig-Homburg, 2011). 



 9 

 
We use the monthly financial indicators from the WRDS Industry Financial Ratio database 

(WIFR). WIFR is developed by WRDS based on the Compustat, CRSP, and IBES databases, 

covering a wide range of most commonly used financial ratios. The ratios measure various aspects 

of firms’ fundamental performance, including capitalization, efficiency, financial solvency, 

liquidity, profitability, and valuation. The WIFR  carries forward the most recent quarterly or 

annual data and lags all variables by two months to guarantee that the data is available at the 

specific month. After removing variables with more than 10% empty values, 57 financial ratios 

remain in our sample and are described in Table 1. Following the previous credit risk literature 

(Hensher et al., 2007; Jorion et al., 2009; Ashbaugh et al., 2006; Jones, 2015), we expect that these 

variables measure the overall performance of a firm and have predictive power over CDS spreads. 

 

Market-based variables 

 
A. Equity market variables 

We include several equity market variables, including the stock return, realized volatility, the 

change of realized volatility, as well as the trade volume, to measure a firm’s performance on the 

stock market. We also include the variables to measure the general stock market performance, 

including S&P 500 return, VIX (CBOE Volatility Index), Fama-French four factors, and Pastor-

Stambaugh liquidity factors. The equity market reflects the market perception of general firm 

performance besides credit risk. Griffen and Lemmon (2002) find that firms’ credit risk is cross-

sectionally priced on the stock market. Tang and Yan (2010) and Lee et al. (2019) find evidence 

that the change of stock return and volatility is correlated with CDS spreads. Consistent with this 

literature, we expect that the equity market variables have some predictive power over CDS 

spreads. 

 

B. Analysts’ recommendations and estimates 

We also follow Jones et al. (2015) to include equity analysts’ recommendations and estimates as 

input variables. The recommendation and estimates are based on analysts’ thorough investigation 

on a firm, hence should have covered firms’ financial performance and credit quality should be 

covered.  

 

C. Interest rates, spreads and risk factors 

This category captures the interest rate dimension following Welch and Goyal (2008), namely, the 

T-Bill rate, relative T-Bill rate, long term bond return, term spread, and default spread. The TED 

spread that measures the illiquidity of the bond market is also included. Duffee (1998), Collin-

Dufresne et al. (2001) and Bharath and Shumway (2008) find that changes in interest rates 

negatively affect the changes in default risk. Moreover, since the underlying reference entities and 

obligations of CDSs are senior unsecured bonds issued by corporate, the spreads on the bond 

market could influence the pricing of CDS spreads. Hence, we expect the interest rate and spreads 

to have predictive power over CDS spreads. 

 

D.  Distance to default (DTD) 

We further use the market-based credit measure distance to default (DTD) to measure the 
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probability of default 5 . DTD is the most frequently used market-based credit risk measure 

developed by Merton (1974). Bharath and Shumway (2008) find that DTD has predictive power 

on financial distress and default. Das et al. (2009) find evidence that DTD and financial ratios 

perform comparably in explaining CDS spreads. Thus, we also expect DTD to have predictive 

power over CDS spreads.  

 
Macroeconomic variables 

 

We use a range of monthly updated macroeconomic indicators, including the inflation rate, 

industrial production, housing starts, M1 growth, orders, return CRB spot, consumer confidence, 

and others to measure the overall economic condition. The macroeconomic variables are 

commonly used in default and rating change prediction (Dun et al. 2012; Jones et al., 2015). 

Bonfim (2009) find evidence that macroeconomic variables explain default probabilities. Thus, 

we expect macroeconomic variables to play a role in CDS spread forecasting. 

 

Other variables 

 

We further include the firm size proxy, industry dummies, credit rating, and CDS recovery as input 

variables. The firm size and industry dummies are commonly used as controls in credit risk 

research (Moody’s, 2004; Bonfim, 2009). The rating is the long-term credit rating assigned to the 

entity by S&P, Moody’s, or Fitch. Recovery rates are pre-populated based on the recovery rate set. 

We use the credit rating and CDS recovery rates reported by MARKIT. 

 

4.3 Machine Learning Methods 

 

In addition to the widely used linear regression methods, there are a series of parametric and 

nonparametric machine learning approaches, which are well established in the literature. In this 

paper, we compare the theory motivated linear regression with two parametric machine learning 

methods (Ridge and LASSO) and six nonparametric learning methods (Support Vector 

Regression, Neural Network, Regression Tree, Bagging, Random Forest and Gradient Boosting). 

In the nonparametric learning methods, Support Vector Regression, Neural Network, and 

Regression Tree are single methods, while Gradient Boosting, Bagging, and Random forest are 

ensemble methods. We briefly introduce the methods in Appendix A. 

 

                                                        
5 Following Bharath and Shumway (2008), we calculate the DTD measure as, 

 

𝐷𝑇𝐷 =
log[

𝐸+𝐹

𝐹
]+(𝑟−

𝜎𝑣
2

2
)𝑇

𝜎𝑣𝑇
1
2

 

 
a. E is the market value of equity calculated as "the number of shares outstanding" times "the end of the monthly closing 

stock price." 
b. F is the face value of the firm's debt and is calculated as the debt level in current liabilities plus one-half of the long-term 

debt level reported in Compustat. 
c. r is the expected return on firm assets (we have set r equal to the risk-free rate). 

d. 𝜎𝑣 is the volatility of the firm's market value (we have calculated the volatility of the firm's equity value in the past 180 
days). 
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4.4 Empirical Context 

 

We focus on the out-of-sample predictive power of the accounting-based and market-based 

variables on CDS spreads using linear regression and machine learning methods, motivated by 

reduced-form forward intensity model. To fairly compare these methods, all of the models are 

estimated using the same set of input variables within the same dataset. To test the out-of-sample 

predictive performance, we divide the original dataset into an in-sample training set and out-of-

sample test set. The methods are estimated on in-sample set to determine respective parameters 

and evaluated in the out-of-sample set. We follow Espinoza et al. (2012) to evaluate the predictive 

performance using root-mean-square error (RMSE), a frequently used measure that captures the 

difference between the predicted and observed values. Smaller RMSE indicates better predictive 

performance. We have split our CDS sample both cross-sectionally and longitudinally.  

 

In the cross-sectional case, we conduct nowcast and evaluate whether our approach can provide 

precise CDS spreads prediction cross-sectionally and hence potentially generate effective shadow 

CDS spreads for the firms without CDS. We follow the 80/20 sample division arrangement to 

randomly allocate 80% of the firms into the in-sample set and the remaining 20% into the out-of-

sample set. The division is replicated ten times to avoid biased allocation. For each replicate, we 

generate 1000 bootstrapped RMSEs and then calculate the average out-of-sample RMSEs across 

the ten replicates to measure the predictive power of the methods. 

 

In the longitudinal case, we generate one-month forward forecasting and test the intertemporal 

predictive ability of model-motivated linear regression, and machine learning methods on CDS 

spreads6. We separate the in-sample training set from the out-of-sample test set with boundary year 

rolling from 2011 to 2016. To mimic the actual data available at the end of each boundary year, 

we include the observations before the year in the training set, within the year in the test set, and 

abandon the rest observations. Such a longitudinal arrangement can provide the intertemporal 

validation that is missing in the cross-sectional case, in which the test set is drawn from the same 

sample period of the training set (see Jones and Hensher, 2004). The rolling windows generated 

by rolling boundaries can also avoid biased allocation and hence provide an adequate test of a 

model’s intertemporal predictive ability. Similar to the cross-sectional case, we produce 1000 

bootstrapped RMSEs for each window and calculate the average out-of-sample RMSEs across all 

rolling windows to measure the methods’ predictive performance. 

 

Finally, the hyperparameters of a model might strongly influence the performance of prediction 

outcomes, as well as the degree to which the model overfits the data. Overfitting indicates that the 

model fits well in the in-sample training set but performs poorly in the out-of-sample test set. We 

use a standard 10-fold cross-validation method with the loss function RMSE to adjust the 

hyperparameters of models and intend to avoid the overfitting problem.7  

                                                        
6 In this paper, we focus specifically on filling a gap for those firms that do not have a CDS market and on the near-

term precision of CDS forecasting. However, we have still tested the sensitivity of the findings for additional 

forecasting windows, as 3, 6 and 12 months ahead, results are available upon request. 

7  Our 10-fold cross-validation method select hyperparameters by dividing the original training set equally into 10 

subsets, estimating a model with certain hyperparameter based on 9 subsets and score the model’s performance using 

(continued…) 
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V.   RESULTS 

This section describes the empirical performance of model-motivated linear regressions and 

alternative machine learning methods. We first provide the descriptive details of the sample. 

Among all the 6811 log CDS spreads in our sample, the average log spread is -5.026, namely 65 

bps in original spreads. Figure 1 demonstrates that our sample has covered a wide range of spreads. 

The log spreads range from -7.67 to -2.43, which is 4.6 bps to 880.3 bps for spreads. Our sample 

is representative since 94.8% of the spreads for all CDX indices constituents fall into our sample 

range, including 99.7% of investment-grade CDX.NA.IG constituent, 93.9% of the CDX.NA.XO8 

constituents, and 87.9 % of the high yield CDX.NA.HY constituents. 

 

Figure 1: The Distribution of The log of Five year CDS spreads 

 
Figure 2 displays the box plots for the bootstrapped RMSE of each model across cross-sectional 

and longitudinal test samples. The box plots provide insights on the predictive stability of each 

method over different data subsamples. For the cross-sectional case, the box plots show 

bootstrapped RMSEs calculated from the ten randomly selected test samples; for longitudinal, the 

bootstrapped RMSEs on all rolling boundary years are displayed. The extreme RMSEs are showed 

as outliers in box plots. We consider the methods with more outlier RMSEs and more substantial 

variance as less stable. 

 

                                                        
the out-of-sample RMSE on the rest subset. The procedure is conducted recursively until all subsets have been used 

to score. The chosen hyperparameters are determined based on all the scores.  The hyperparameters for each method 

are different. Specifically, for LASSO and Ridge regression, the hyperparameter is the regularization penalty degree; 
for SVR, there are the penalty parameter of the error term, kernel coefficient and epsilon in the epsilon-SVR model; 

for neural network, it’s the regularization penalty degree and size of hidden layer. The hyperparameters for regression 

tree, gradient boosting and random forest are the maximum depth of a tree, the maximum number of leaves in a tree, 

the minimum number of samples required to split a tree, and the minimum samples at each leaf node; for bagging, 

there are the number of base estimators in bagging and the maximum input variables used in each base estimator. 

8 CDX.NA.XO index contains CDSs that are at the crossover point between investment and junk grade. 
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Table 2 summarizes 1) the average overall RMSE and ranking of each method across all test 

samples as well as the average RMSE and ranking of each model over cross-sectional and 

longitudinal test samples. Table 3 alternatively demonstrates the variances and ranking of RMSE 

across all test samples and separately for cross-sectional and longitudinal test samples. 

 

The overall results displayed in Table 2 indicate that ensemble machine learning models, including 

Random Forest, Bagging, and Gradient Boosting, have outperformed all other methods, both in 

cross-sectional and longitudinal samples. Gradient Boosting and Bagging have overall average 

RMSE at 0.397 and 0.413, with the former performs slightly better than the latter. The overall 

RMSE of Random Forest is around 0.454, and the Regression tree follows by 0.554. The accuracy 

of support vector regression and Lasso regression decrease relatively large and have RMSE above 

0.7. Ridge regression has further worse accuracy with an RMSE 1.818. Among all the methods, 

theory-motivated linear regression is the weakest over the whole subsample, with a very large 

RMSE of 3.433. The neural network is slightly better with RMSE of 3.167. 

 

An interesting result presented in Figure 2 is that inflexible methods including Linear and Ridge 

regression can forecast comparably well along the lines of ensemble machine learning methods in 

some cases, but can also perform quite poorly in other cases. The three methods have more outlier 

RMSEs and a wider range of RMSEs. 

 

Table 3 confirms that Linear regression is the most unstable method with an overall variance of 

22.51, followed by Ridge regression (16.787) and neural network (3.450). In comparison, 

ensemble methods, including Gradient Boosting, Bagging, and Random Forest, have provided 

forecasts with very low variance (0.006, 0.007 and 0.010), indicating that their predictive 

performances are remarkably stable across different subsamples. Though support vector regression 

does not provide very accurate prediction (RMSE=0.701, rank 5), it has the lowest RMSE variance 

among all the methods. 9 

 

 

 

 

 

 

 

 

 

 

 

                                                        
9 Jones et al. (2015) find that inflexible methods such as LDA, probit and logit can predict discrete rating changes 

respectively good compared to more flexible methods. Our results partly confirm their findings on continuous CDS 

spreads, however, we also find that model performance is not robust over all multiple training and test sets.  

 

(continued…) 
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Figure 2: The Bootstrapped RMSEs in Cross-sectional and Longitudinal Test Samples10 

 
 

Table 2: The Average RMSEs in Cross-sectional and Longitudinal Test Samples 

Overall Performance 
Overall Performance 

(Cross-sectional) 
Overall Performance 

(Longitudinal) 

Methods 
Average 

RMSE 
Rank 

Average 
RMSE 

Rank 
Average 

RMSE 
Rank 

Linear Regression 3.433 9 5.177 9 1.688 8 

Ridge Regression 1.818 7 3.066 7 0.570 5 

Lasso Regression 0.775 6 0.982 6 0.567 4 

Support Vector Regression 0.701 5 0.689 5 0.713 7 

Neural Network 3.167 8 3.284 8 3.05 9 

Regression Tree 0.554 4 0.537 4 0.571 6 

Random Forest 0.454 3 0.458 3 0.450 3 

Bagging 0.413 2 0.434 2 0.391 1 

Gradient Boosting 0.397 1 0.401 1 0.393 2 

 

 

 

 

                                                        
10 The box plots regard the RMSEs larger or smaller than the average RMSE ± 1.5 standard deviation as outliers. 

The solid black line within the box indicates the average RMSE without outliers, while the green dash line suggests 

the average RMSE with outliers. 
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Table 3: The RMSE Variances in Cross-sectional and Longitudinal Test Samples 

Overall Performance 
Overall Performance Overall Performance 

(Cross-sectional) (Longitudinal) 

Methods 
RMSE 

Variance 
Rank 

RMSE 
Variance 

Rank 
RSME 

Variance 
Rank 

Linear Regression 22.551 9 28.622 9 6.998 9 

Ridge Regression 16.787 8 25.377 8 0.014 2 

Lasso Regression 0.624 6 0.949 6 0.035 6 

Support Vector Regression 0.005 1 0.004 5 0.007 1 

Neural Network 3.450 7 4.571 7 2.082 8 

Regression Tree 0.014 5 0.002 1 0.037 7 

Random Forest 0.010 4 0.003 3 0.025 5 

Bagging 0.007 3 0.004 4 0.014 4 

Gradient Boosting 0.006 2 0.002 2 0.014 3 

 

5.1 Cross-sectional sample 

 

In the cross-sectional sample, among the 69 firms, we randomly select 56 firms as part of the 

training set and 13 firms as the test set with ten replications and calculate the average RMSEs. 

Table 2 summarizes the overall average performance of used methods across cross-sectional test 

samples, and the performance ranking is consistent with the ranking for average RMSE across 

both cross-sectional and longitudinal samples. Results from Table 2 indicate that the ensemble 

machine learning methods, including Random Forest, Bagging, and Gradient Boosting, provide 

the most accurate nowcasting predictions, with Gradient Boosting outperforming all other methods 

with the average RMSE at 0.401.  

 

Linear methods, namely OLS, Ridge, and LASSO, perform relatively worse compared to ensemble 

machine learning methods. Both Ridge and LASSO outperform OLS. The predictive accuracy of 

OLS is substantially worse than all other of the methods used. 

 

Ensemble methods combine a range of weak estimators to produce a strong one. The weak 

estimators are assessed on multiple subsamples extracted from the original dataset, and the final 

prediction is a weighted average of the predictions generated by all the weak estimators (see the 

differences of Random Forest, Bagging, and Gradient Boosting in Appendix A). Hence ensemble 

methods are much more stable for various training and test set pairs. 

 

Figure 3 demonstrates the shadow spreads generated by out-of-sample nowcasting using the 

Omnicom Group as an illustrating example. We have compared the nowcasting result with the 

original data series (green ellipsis line): the Gradient Boosting method (orange dash line) has 

generated the best accuracy in terms of the lowest RMSE (0.401) and the Linear Regression Model 

is our comparison benchmark. We can see that the Gradient Boosting method is much better than 

the benchmark model in terms of fitting the actual data points. 
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Figure 3: Nowcasting Shadow Spreads , an Illustrating Example on Omnicom Group 

 
 

While our gradient boost "shadow" CDS spreads can achieve relatively high accuracy, it cannot 

fully describe the movement of actual spreads. Tang and Yan (2017) find that besides the 

fundamental factors, the supply-demand imbalance and liquidity in the CDS market also moves 

CDS spreads. Since our "shadow" CDS spread is generated based on a wide range of 

fundamentals and factors on equity and bond markets, the spreads only capture the fundamental 

and "external" part of actual CDS spreads.  

 

Figure 4: Aggregate Shadow Spreads for firms 

 
The solid lines indicates the average CDS spreads of all firms, and shadow area around the solid line describes the 
interval of individual spreads.  

 

 

Our shadow spreads generated by Gradient Boosting can also play an essential role in the 

existing CDS on missing times. As a derivative, CDS do not necessarily have continuous spreads 



 17 

for every month. Figure 4 summarizes the actual spreads on existing months for all firms, and the 

corresponding shadow spreads on the missing months using the actual spreads and input 

variables as the training set.  Our shadow CDS spreads generated by Gradient Boosting managed 

to capture the main moving direction of actual spreads while being less volatile, consistent with 

its fundamental property. 

 

5.2 Longitudinal sample 

 

Joy and Tollefson (1975) notes that the test set created from the same period as the 

training/estimation set will not provide intertemporal validation, and thus cannot provide an 

adequate test on a model’s predictive ability (see also Jones and Hensher, 2004).  

 

To ease the above concern, in this subsection we use longitudinal samples on rolling windows, 

which are rolling from 2011 to 2016. While the cross-sectional sample separates different firms 

into training and test sets, the longitudinal sample have all firms in both training and test set, and 

the division is on the data time. Taking the year 2011 as an example, we allocate the observations 

for all firms before 2011 into the training set, observations on 2011 into the test set, and drop the 

data points after  2011. Such a procedure is applied in the year 2011 until the year 2016. 

 

Table 4: RMSEs in Longitudinal Test Samples 

 

RSME OLS Ridge Lasso Tree RF Bagging Gradient 

Boosting 

SVR Neural 

Network 

2011 0.916 0.449 0.434 0.464 0.353 0.340 0.341 0.689 1.820 

2012 7.078 0.469 0.436 0.453 0.356 0.349 0.341 0.692 4.446 

2013 0.523 0.564 0.420 0.378 0.311 0.286 0.280 0.588 4.909 

2014 0.496 0.605 0.659 0.734 0.671 0.555 0.607 0.702 3.340 

2015 0.586 0.776 0.900 0.873 0.629 0.528 0.451 0.842 2.497 

2016 0.525 0.558 0.553 0.525 0.379 0.288 0.339 0.767 1.289 

 

 

Table 4 demonstrates the performance score of methods used in the longitudinal test sample. 

Compared with Machine Learning models, especially Random Forest, Bagging, and Gradient 

Boosting, linear models still perform relatively worse but deliver much better results than the 

cross-sectional samples. On average, the Bagging method and the Gradient Boosting method have 

generated the best accuracy in terms of the lowest RMSE (0.391 for Bagging, and 0.393 for 

Gradient Boosting on average, see Table 2). 

 

To summarize, Table 4 shows that unlike the cross-sectional case, Ridge and Lasso regression 

perform comparably well to other Machine Learning methods on average for longitudinal samples. 

However, linear regression still suffers from extreme RMSE outliers. 

 

VI.   CHANNELS 

After testing the cross-sectional and longitudinal samples, we apply the LIME module to different 
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methods. LIME is short for “Local Interpretable Model-Agnostic Explanations,” the LIME module 

has two major advantages: (1) it is able to detect and improve untrustworthy models; and (2) it 

allows insights into different models. In this section, we use LIME to provide a locally faithful 

explanation for linear and non-linear algorithms..11  

 

We first select the top 50 most important observations. To obtain a representative explanation of 

the overall dataset, we select 50 “true” observations using the submodular pick method (Ribeiro, 

Singh, Guestrin, 2016). (Ribeiro, Singh, Guestrin, 2016).12 The advantage of the submodular pick 

is in explaining the model globally by combining local explanations, namely to select observations 

that give the most different input variable importance to capture the heterogeneity from the raw 

data set.  

 

Among these 50 most important observations, for each selected observation y_i,  we first generate 

perturbed input variables values X_i_perturbed(n*k) around y_i. For variables with numerical 

values, we perturb them by sampling from a standard normal distribution and implementing the 

inverse operation of mean-centering and scaling, according to the means and standard deviations 

in the training data. For variables with categorical values, we perturb them by sampling according 

to the training distribution and construct a binary variable that is 1 when the value is the same as 

the instance being explained. Then we calculate the prediction of the trained algorithm using the 

perturbed variables values, y_i_predict(n*1). 

 

With the newly created local dataset (X_i_perturbed(n*k), y_i_predict(n*1)), we use weighted Ridge 

regression to find the top 10 most important variables. The weight for each perturbed observation 

is the kernel distance of the observation to the true observation around which we build the local 

dataset. The top 10 variables are selected using the highest weights, namely, selecting the top 10 

input variables that have the highest product of absolute coefficient and the variable value of the 

original data point.  

 

We conduct the above local interpretations for each observation and aggregate all the 

interpretations. Each estimated local weighted Ridge provides the top 10 most important input 

variables and their coefficients. After aggregating our explanations, we build up two measures:  

 

                                                        
11 LIME is a local method because it is based on specific observations. Using the estimated non-linear algorithm (e.g. 

a trained Random Forest) as the data-generating process, LIME conducts sampling in the neighborhood of one specific 

observation and generates virtual observations. The virtual observations provide a local dataset around the true 

observation, and allow us to estimate an interpretable model, such as linear regression. We  use the default weighted 

ridge regression as the interpretable model. Such estimated interpretable model provides corresponding input 

variables’ coefficients, which can be regarded as the local explanation of the non-linear algorithm(s). Such explanation 

has local fidelity around the specific observation. To generate a global explanation, one needs to select a set of 
representative observations, construct an explanation matrix and combine their local explanations.  

 
12 Following Ribeiro, Singh, Guestrin (2016), we use submodular pick to avoid selecting observations with similar 

local explanations. Such a pick will maximize a weighted coverage function to keep picking the observation with the 

largest marginal coverage gain.  
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1. Importance probability: it measures the frequency of a variable to appear in the top 10 

most important variables among the selected 50 observations; e.g., for linear regression, 

“Long-term Debt Spreads” is among the top 10 most important variables for all the 50 

observations, thus the probability is 50/50 = 100%.  “Distance to default” is not so 

important in the context of linear regression, since among the 50 observations, only 5 

observations pick the variable as the important top 10, hence the importance probability is 

5/50 = 10%. 

 

2. Coefficient: The coefficient for a variable is the average coefficient of the variable in the 

local weighted Ridge of 50 observations. 

 

In the following, we mainly discuss the LIME results of the Linear Regression model (our 

benchmark model) and the Gradient Boosting model (our best-performing model) in the context 

of cross-sectional nowcasting.  

 

For the linear regression model, we find that three variables have the most significant impacts on 

prediction results13: (1) the three-month T-Bill rate; (2) the long term bond return; (3) the term 

spreads. All the above three variables belong to the financial market information subset, which is 

in accordance with the theoretical model that we have used in section 3. The variable importance 

probability matrix is reported in Table 5. We calculate the average importance probability across 

10 randomly selected training/testing set of firms in our cross-sectional sample. 

 

In Table 6 we report the variables importance probability matrix of the Gradient Boosting Model. 

Under the non-linear model of Gradient Boosting,  we find that the most important variables are 

the macro economic variables and firm specific balance sheet variables, as (1) Unemployment 

Rate, (2) Credit Rating Category, (3) Size proxy, (4) Distance to Default, and (5) Inflation Rate.  

The  significantly different pattern compared with the LIME results from the linear model, is that 

the balance sheet information (firm dependent information) becomes more important in the non-

linear model, which is believed to be the key driving factor why the non-linear model’s prediction 

power could outperform the linear models in our setup.  

 

It is interesting to see that the “Unemployment Rate” and “Inflation Rate” appear in the top 5 

ranking variables, indicating the important role of the current state of the business cycle or, more 

broadly, the macroeconomic environment. The “Credit Rating Category” and “Distance to Default” 

are direct measures for evaluating the health of a specific firm, and it is not surprising that these 

two variables play important role in our nowcasting & forecasting exercises.  

 

 

 

 

 

 

                                                        
13 This is consistent through cross-sectional and longitudinal samples. 
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Table 5: Variables Importance Probability – Linear Regression Model  

(Cross-sectional Nowcasting) 

Variables Label 0 1 2 3 4 5 6 7 8 9 
Average 

Importance 
Prob. 

3 Month Treasury Bill Rate 1 1 1 1 1 1 1 1 1 1 100.0% 

Long Term Bond Return 1 1 1 1 1 1 1 1 1 1 100.0% 

Term Spreads 1 1 1 1 1 1 1 1 1 1 100.0% 

Capitalization Ratio 0.9 0.92 0.86 0.92 0.94 0.98 1 0.94 0.96 0.94 93.6% 

Long-term Debt/Invested Capital 0.84 0.84 0.76 0.88 0.92 0.88 1 0.76 0.96 0.88 87.2% 

Common Equity/Invested Capital 0.82 0.78 0.72 0.76 0.94 0.84 0.92 0.64 0.9 0.9 82.2% 

Total Debt/Capital 0.76 0.32 0.76 0.18 0.54 0.28 0.42 0.36 0.82 0.56 50.0% 

Total Debt/Total Assets 0.84 0.36 0.04 0.26 0.52 0.48 0.34 0.08 0.12 0.56 36.0% 

Unemployment Rate 0.14 0.24 0.28 0.1 0.16 0.06 0.14 0.36 0.32 0.2 20.0% 

Long-term bond yield minus its 12 month 
moving average 0.12 0.24 0.2 0.18 0.1 0.22 0.1 0.16 0.24 0.28 18.4% 

Distance to Default 0.16 0.36 0.26 0.12 0.16 0.14 0.1 0.24 0.18 0.08 18.0% 

T-Bill rate minus its 12 month moving average 0.14 0.18 0.14 0.2 0.08 0.16 0.16 0.16 0.18 0.08 14.8% 

Industrial Production Growth, YoY 0.08 0.22 0.16 0.1 0.06 0.1 0.08 0.12 0.12 0.06 11.0% 

Pre-tax Profit Margin 0.3 0.7 0.34 0 0.52 0.32 0.1 0.02 0.48 0.16 29.4% 

Price/Operating Earnings (Basic, Excl. EI) 0.08 0.12 0.26 0.76 0.18 0 0.62 0.6 0.14 0.06 28.2% 

Price/Operating Earnings (Diluted, Excl. EI) 0.06 0.08 0.22 0.76 0.12 0 0.64 0.6 0.08 0.06 26.2% 

Gross Profit Margin 0 0.1 0.4 0.26 0.42 0.22 0.26 0.08 0.22 0.62 25.8% 

M1 Growth, YoY 0.02 0.02 0.1 0.02 0.02 0.02 0 0.12 0.14 0.12 5.8% 

Default spreads 0.04 0.06 0.1 0.04 0 0.02 0.02 0.06 0.06 0.04 4.4% 

Risk-Free Return Rate (One Month Treasury 
Bill Rate) 0.02 0.08 0 0.06 0.04 0.06 0.02 0.04 0.02 0.06 4.0% 
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Table 6: Variables Importance Probability – Gradient Boosting Model 

(Cross-sectional Nowcasting) 

Variables Label 

0 1 2 3 4 5 6 7 8 9 Average 
Importance 

Prob. 

Unemployment rate 1 0.96 0.98 0.94 0.96 0.9 0.96 0.92 0.9 0.9 94.2% 

Credit Rating 0.66 0.96 0.9 0.94 1 1 0.96 0.96 0.82 1 92.0% 

Size proxy: total asset/ average total asset of sample time 0.92 0.78 0.94 0.94 0.8 0.64 0.82 0.6 0.82 0.78 80.4% 

Distance to Default 0.8 0.84 0.74 0.72 0.78 0.66 0.78 0.8 0.8 0.7 76.2% 

Inflation Rate, YoY 0.72 0.82 0.56 0.56 0.6 0.58 0.38 0.44 0.64 0.42 57.2% 

Dividend Yield 0.58 0.3 0.84 0.48 0.38 0.64 0.48 0.58 0.48 0.34 51.0% 

After-tax Interest Coverage 0.3 0.56 0.44 0.46 0.24 0.7 0.76 0.68 0.28 0.54 49.6% 

Enterprise Value Multiple 0.36 0.28 0.44 0.66 0.26 0.36 0.68 0.48 0.34 0.28 41.4% 

Interest Coverage Ratio 0.4 0.62 0.16 0.48 0.14 0.44 0.38 0.12 0.36 0.58 36.8% 

Price/Sales 0.12 0.42 0.16 0.18 0.6 0.12 0.18 0.62 0.5 0.22 31.2% 

RelT-Bill Rate 0.52 0.28 0.3 0.3 0.32 0.3 0.12 0.38 0.32 0.22 30.6% 

Monthly log returns of the S&P 500 0.28 0.36 0.38 0.12 0.02 0.26 0.08 0.38 0.26 0.06 22.0% 

Interest/Average Total Debt 0.12 0.04 0.06 0.34 0.2 0.04 0.06 0.12 0.12 0.12 12.2% 

Median Estimate 0.24 0.22 0.22 0.36 0.5 0 0.58 0.06 0.3 0.26 27.4% 

Log realized variance 0.26 0.14 0.14 0 0.46 0.36 0.1 0.14 0.2 0.38 21.8% 

Research and Development/Sales 0.44 0.3 0.14 0.12 0.42 0.02 0.24 0.02 0 0.12 18.2% 

Industrial Production Growth, YoY 0.14 0.14 0.32 0.12 0.12 0.14 0.2 0.04 0 0.12 13.4% 

Price/Cash flow 0.02 0.08 0.02 0 0.1 0.02 0.02 0.18 0.44 0.12 10.0% 

Forward P/E to Long-term Growth (PEG) ratio 0 0.08 0.1 0.14 0.08 0.12 0.2 0.06 0.08 0.02 8.8% 

M1 Growth, YoY 0.1 0 0.14 0.1 0.08 0.14 0.14 0.14 0.14 0 9.8% 

Shillers Cyclically Adjusted P/E Ratio 0 0.12 0.08 0.14 0.14 0 0.02 0.02 0.02 0.1 6.4% 

Long Term Bond Return 0.14 0.56 0.38 0.1 0 0.04 0 0.58 0 0.02 18.2% 

Common Equity/Invested Capital 0.16 0 0.04 0 0.3 0.04 0.12 0 0.1 0.62 13.8% 

Price/Book 0.06 0.08 0.02 0 0 0.04 0.14 0 0.28 0.3 9.2% 

Labor Expenses/Sales 0.04 0.02 0.02 0.06 0.06 0 0.12 0 0 0.14 4.6% 

Pre-tax Profit Margin 0 0.16 0.02 0 0.04 0 0.02 0.02 0.16 0.02 4.4% 

Long-term Debt/Total Liabilities 0.04 0.04 0.14 0.02 0 0 0.04 0.12 0 0.02 4.2% 

 

 

It is equally surprising that the Linear Regression Model do not seem to properly capture the 

important explanatory power of “Credit Rating Category” and “Distance to Default” separately or 

simultaneously; they have not even entered the top 10 ranking list. These results seem to suggest 

that the nonlinear relationship between “Credit Rating Category” & “Distance to Default” and the 

CDS spreads could be the major reason why non-linear models (Gradient Boosting or Bagging) 

can generate high prediction accuracy compared to the linear benchmark (including Ridge and 
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Lasso model).14 

 

VII.   CRISIS VS. NON-CRISIS PERIOD 

 

Scrutinizing Table 4, we see that if one uses the most recent data as test set (2015 or 2016) one 

will not see much of a difference between OLS and ML algorithms, the relatively large RMSE 

difference appears with using year 2011 or 2012 as the rolling window boundaries. Since 

particularly 2011 is still very close to the global financial crisis period and a time of considerable 

adjustments of both economic processes and financial systems, it seems useful to dig deeper and 

really assess whether there is a considerable difference in the forecasting/nowcasting abilities of 

traditional linear models versus Machine Learning models when using crisis versus non-crisis 

times as training and test sets separately.  

 
Fine tuning based on our previous longitudinal sample with rolling windows, we further conduct 

a specific case study by separating the observations of all firms into two groups: crisis and non-

crisis. We include the observations within non-crisis periods as training sets (2006, 2013, 2014, 

2015, 2016) and crisis periods (2008, 2009, 2010, 2011) as test sets. Since 2007 and 2012 are the 

transitory years between crisis and non-crisis periods, to fully separate the two periods, we don’t 

include the two years in training or test sets. Although we have perturbed the time periods due to 

the division of non-crisis vs crisis periods, our main goal of designing such a test is to evaluate the 

linear vs ML algorithms when a structural break is present. Given the very nature of the non-

linearity brought by crisis as a structural break, we expect that the ML algorithms especially the 

ensemble methods are able to behave relatively well in terms of forecasting performance.  

 

Figure 5 displays the box plots on the bootstrapped RMSEs of our test sample, which provides a 

clear presentation on the RMSEs across different methods. Table 7 also summarizes the overall 

RMSEs and the corresponding ranking. Not surprisingly, the ensemble machine learning models 

including Random Forest, Bagging and Gradient Boosting have outperformed all other methods. 

 

 

 

 

                                                        
14 We find strong consistency for results using cross-sectional nowcasting, cross-sectional forecasting and longitudinal 

forecasting under the Gradient Boosting model, here we report the top 5 importance ranking variables across different 

samples. 

 

Importance 

Ranking
CS-Nowcasting CS-Forecasting Longitudinal

1 U.Rate U.Rate Credit Rating

2 Credit Rating Credit Rating Dis. To Default

3 Size Size R&D/Sales

4 Dis. To Default Dis. To Default U.Rate

5 inflation inflation Size

Gradient Boosting Model
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Figure 5: The RMSEs in Non-Crisis Training vs Crisis Test Sample 

 
Table 7: The Average RMSEs in Non-Crisis Training vs Crisis Test Sample 

Performance 

Methods 
Average 

RMSE 
Rank 

Linear Regression 1.313 8 

Ridge Regression 0.827 6 

Lasso Regression 0.957 7 

Support Vector Regression 0.738 5 

Neural Network 3.790 9 

Regression Tree 0.641 4 

Random Forest 0.625 3 

Bagging 0.563 1 

Gradient Boosting 0.576 2 

 

Table 8 summarizes the RMSEs of the top two ranked methods (Bagging and Gradient Boosting) 

across all the test samples. As what we have expected, the RMSE of the non-crisis training vs crisis 

test sample is much higher than the longitudinal test samples and the longitudinal/cross-sectional 

test samples all together. It is not surprising that the non-linearity brought by crisis as a structural 

break is the driver behind the spike in RMSEs. 

 

We also apply LIME module to the bagging method (first ranked method for the non-crisis vs 

crisis test sample). According to the variables importance probability generated by LIME, the top 

ten most important variables are: (1) unemployment rate, (2) credit rating, (3) M1 growth rate 

(YOY), (4) size proxy measured by total asset over average total asset of the sampling period, (5) 

after-tax interest coverage, (6) distance to default measure, (7) term spread, (8) multiple of 

enterprise value to EBITDA, (9) interest coverage ratio, and (10) dividend yield. The results of 

applying LIME module to the gradient boosting model are similar in terms of the selection of the 

top ten most important vaiables. 
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Table 8: The Average RMSEs across All Test Samples (Bagging/Gradient Boosting) 

Longitudinal/Cross-sectional Test Samples 
 
Non-crisis vs. Crisis 

Test Sample 

  
Longitudinal Test 

Samples 

Methods 
Average 

RMSE 
Rank 

Average 
RMSE 

Rank 
Average 

RSME 
Rank 

Bagging 0.413 2 0.563 1 0.391 1 

Gradient Boosting 0.397 1 0.576 2 0.393 2 

 

Interestingly, and consistent with our previous findings in section 5, the LIME results of linear 

model are quite different. Leaving the large RMSE and variance aside, the top ten important 

variables are: (1) capitalization ratio, (2) three-month T-Bill rate, (3) long term bond return, (4) 

term spread, (5) common equity/invested capital, (6) monthly capacity utilization, (7) long-term 

debt/invested capital, (8) monthly industrial production growth, (9) unemployment rate, and (10) 

total debt to capital ratio. The inability of the linear model to properly capture the importance of 

“Credit Rating Category” and “Distance to Default” is again evident in this specific case. Hence, 

it is evident that linear models are less reliable in properly capturing  

 

Figure 6: CDS Spreads Forecasting during Crisis Period 

 
 

In conclusion, Figure 6 describes the CDS Spreads forecasting during crisis period. The forecasting 

of Linear regression shows an extraordinary excess increase during crisis time compared with the 

true spreads. In comparison, Gradient Boost provides smooth prediction which is less volatile but 

captures the direction of true spreads. 

 

VIII.   CONCLUSIONS 

 

In this paper, we analyze the predictability of CDS spreads cross-sectionally and longitudinally 

using accounting based, market based, and macroeconomics variables. We first compare the 
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nowcasting and one-step ahed predictive power of traditional credit risk model and various 

machine learning models, and find that machine learning models can strengthen the prediction 

accuracy of CDS spreads both cross-sectionally and over time horizons. Among all the machine 

learning models, ensemble methods including Bagging, Random Forest and Gradient Boosting 

consistently outperform other interpretable methods. The high cross-sectional and longitudinal 

precision of ensemble MLs suggests that the nonlinear relationship between economic variables 

and CDS spreads can be used for constructing “shadow” CDS spreads for those companies without 

actual CDS. 

 

Using LIME, the “Local Interpretable Model-Agnostic Explanations”, we calculate the importance 

of right hand side variables, which allows insights into the underlying reasoning for why ensemble 

methods are more accurate in predicting the variable of interest. The application of LIME is 

particularly interesting in order to shed potential light into the reasoning why non-linear Machine 

Learning techniques outperform traditional estimation procedures in nowcasting and forecasting 

CDS spreads during crisis periods. In times of higher volatility and potential structural breaks, 

prediction accuracy seems particularly driven by non-linear firm specific credit risk and broader 

economic conditions, which are not properly captured by traditional estimation procedures such 

as OLS. 

 

To summarize, our results present three valuable contributions to the literature: (1) Machine 

learning techniques are able to add considerable value in the prediction of CDS spreads. (2) We 

are able to map the relationship between available market and firm-specific information and CDS 

spreads to other companies, thus constructing “shadow” CDS spreads for those companies without 

actual CDS. (3) By using LIME, we are able to unpack some of the “black box” around Machine 

Learning techniques, and obtain insights into the explanatory power of different variables in 

predicting the CDS spreads.  
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Appendix A - Machine Learning Models 

 

Ridge Regression and LASSO Regression 

 

In variable selection and regularization, Ridge and LASSO regressions are two common used 

methods. They are developed specifically to solve the problem of collinearity in datasets with 

many variables. They are based on standard linear regression plus a regular term to reduce the 

model variance. Both Ridge and LASSO regression use all of the variables in the dataset, and 

adjust the coefficient estimates of non-significant variables to "shrink" towards the zero. The main 

difference between the two methods is that Ridge keeps all variables, but LASSO allows the 

penalty to force some parameters to equal zero (thus, LASSO has variable selection features and 

produces a reduced model). The hyperparameter of the regularization penalty degree is 𝜆. 

 

Cost function of OLS:  𝑓(𝜔) = ∑𝑚
𝑖=1 (𝑦𝑖 − 𝑥𝑖

𝑇𝜔)2 

 

Cost function of Ridge: 𝑓(𝜔) = ∑𝑚
𝑖=1 (𝑦𝑖 − 𝑥𝑖

𝑇𝜔)2 + 𝜆 ∑𝑛
𝑖=1 𝜔𝑖

2 

 

Cost function of LASSO:  𝑓(𝜔) = ∑𝑚
𝑖=1 (𝑦𝑖 − 𝑥𝑖

𝑇𝜔)2 + 𝜆 ∑𝑛
𝑖=1 |𝜔𝑖| 

 

Support Vector Regression (SVR) 

 

Support Vector Regression (SVR) is the regression version of Support Vector Machines classifier 

(SVM). The original SVM algorithm was invented in 1963 by Vladimir Vopnick and Alexei Zefan 

Rangers. In SVM, a hyper-plane is used to divide p-dimensional feature space into two halves. A 

good separation is achieved when the hyper-plane has the largest distance to the nearest training 

data point of any class. In contrast, SVR is trying to find a hyperplane that minimizes the distance 

of all data to this hyperplane. The task of the SVR is to cover as many sample points as possible 

with a fixed-width stripe (the width is controlled by the parameter 𝜖 and is called margin) so that 

the total error is as small as possible. The data points in the margin are considered as no error; 𝜉𝑖 

and 𝜉𝑖
∗ capture the error of data points falling out of the stripe from above and below respectively. 

 

The problem of SVR is to solve:  

 

min   
1

2
∥ 𝜔 ∥2+ 𝐶 ∑𝑛

𝑖=1 (𝜉𝑖 + 𝜉𝑖
∗)

𝑠. 𝑡.    𝑦𝑖 − 𝜔𝑥𝑖 − 𝑏 <= 𝜖 + 𝜉𝑖

𝜔𝑥𝑖 + 𝑏 − 𝑦𝑖 <= 𝜖 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ >= 0

  

 

Where C indicates the tolerance level for misclassification degree, which are represented by the 

slack variables 𝜉𝑖 and 𝜉𝑖
∗. For multiple variables case, SVR use kernel functions to enlarge the 

feature space. In this study we adopt a widely used kernel function called radial kernel. 

 

Neural Network 

 

Neural network is an operation model consisting of a large number of nodes (or neurons) connected 

to each other. A classic neural network model has at least two layers: input layer and output layer, 
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and the intermediate hidden layers capture the complexity of the system. Nodes are located on 

layers, whereby each node represents a specific output function called an activation function. The 

connection between each two nodes represents a weighted value for the signal passing through the 

connection, called the weight, which is equivalent to the memory of the artificial neural network. 

Neural network has many hyper-parameters: the number of layers, number of nodes on each layer, 

drop rate of layers and so on. Just like other methods, we are using cross-validation method to tune 

and set the hyper-parameters to obtain a good enough predictive accuracy. 

 

Regression Tree 

 

Regression tree is the regression version of decision tree. The tree method seeks to split the data 

recursively into subsets so as to find linear solutions within the subset that can improve the overall 

fit. By dividing data into homogeneous subsets to minimize the overall standard deviation, this 

method uses a top-down approach to choose the best attribute to divide the space. The basic idea 

is to construct a tree with the fastest decline in entropy value based on information entropy, 

whereby the entropy value at the leaf node being zero. 

 

Bagging 

 

Bagging is an abbreviation of bootstrap aggregating. It is a method of sampling with replacement, 

possibly with duplicate samples. Bagging starts by extracting the training set from the original 

sample set. Each round draws n training observations from the original sample set using 

Bootstraping. A total of k rounds of extraction were performed, resulting in k independent training 

sets. Each time a training set is used to obtain a model, a total of k models are obtained for k 

training sets. For the regression problem, the mean value of the above model is calculated as the 

final result, with all models having the same importance. 

 

Random Forest 

 

Random forest was first proposed by Leo Breiman (2001) . It is a classifier/regression model 

containing multiple decision trees, and is built to deal with the overfitting problem of 

decision/regression trees. The tree method has good in-sample performance but relatively bad out-

of-sample performance. Random forests assist to solve the problem by combining the concept of 

bagging with random feature selection (Pal, 2017). Random Forest further conducts random 

feature selection on the subsamples generated from original dataset, and estimate a regression tree 

on each subsamples.. When forecasting, each tree predicts a result, and all the results are weighted 

to avoid overfitting. 

 
Gradient Boosting 

 

The Boosting algorithm optimizes the regression results through a series of iterations. The idea 

behind boosting is to combine the outputs of many models to produce a powerful overall voting 

committee. AdaBoost is an abbreviation of "Adaptive Boosting", which was put forward by Yoav 

Freund and Robert Schapire in 1995. In the Adaboost process the first model is trained on the data 

where all observations receive equal weights. Those observations misclassified by the first weak 

model will receive a higher weight, while correct observations have a lower weight. The newly 
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added second model will thus focus more on the error of first model. Such iteration keeps adding 

weak models until the desired low error rate is achieved. 

 

Gradient Boosting is the generalized version of AdaBoost. Gradient Boosting selects the direction 

of the gradient drop during iteration to ensure that the final result is best.The loss function is used 

to describe the degree of "flight" of the model. It is assumed that the model is not overfitted. The 

greater the loss function, the higher the error rate of the model. If our model can make the loss 

function continue to decline, then our model is constantly improving, and the best way is to let the 

loss function in the direction of its gradient. 
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Appendix B - Variables Description 

 
Variable Abbrev. Description Source 

I. Accounting-based variables 
   

A. Capitalization: measures the debt component of a firm’s total capital structure. 
 

Capitalization Ratio capital_ratio Total Long-term Debt as a fraction of the sum of Total Long-
term Debt, Common/Ordinary Equity and Preferred Stock 

WRDS 

Long-term Debt/Invested Capital debt_invcap Long-term Debt as a fraction of Invested Capital WRDS 

Common Equity/Invested Capital equity_invcap Common Equity as a fraction of Invested Capital WRDS 

Total Debt/Invested Capital totdebt_invcap Total Debt (Long-term and Current) as a fraction of Invested 
Capital 

WRDS 

B. Efficiency:  captures the effectiveness of firm’s usage of assets and liability 
 

Asset Turnover at_turn Sales as a fraction of the average Total Assets based on the 
most recent two periods 

WRDS 

Payables Turnover pay_turn COGS and change in Inventories as a fraction of the average 
of Accounts Payable based on the most recent two periods 

WRDS 

Receivables Turnover rect_turn Sales as a fraction of the average of Accounts Receivables 
based on the most recent two periods 

WRDS 

Sales/Stockholders Equity sale_equity Sales per dollar of total Stockholders’ Equity WRDS 

Sales/Invested Capital sale_invcap Sales per dollar of Invested Capital WRDS 

C. Financial Soundness & Solvency: captures the firm’s ability to meet long-term obligations 
 

Cash Flow/Total Debt cash_debt Operating Cash Flow as a fraction of Total Debt WRDS 

Cash Balance/Total Liabilities cash_lt Cash Balance as a fraction of Total Liabilities WRDS 

Cash Flow Margin cfm Income before Extraordinary Items and Depreciation as a 
fraction of Sales 

WRDS 

Total Debt/EBITDA debt_ebitda Gross Debt as a fraction of EBITDA WRDS 

Long-term Debt/Book Equity dltt_be Long-term Debt to Book Equity WRDS 

Free Cash Flow/Operating Cash Flow fcf_ocf Free Cash Flow as a fraction of Operating Cash Flow, where 
Free Cash Flow is defined as the difference between 
Operating Cash Flow and Capital Expenditures 

WRDS 

Interest/Average Long-term Debt int_debt Interest as a fraction of average Long-term debt based on 
most recent two periods 

WRDS 
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Interest/Average Total Debt int_totdebt Interest as a fraction of average Total Debt based on most 
recent two periods 

WRDS 

Long-term Debt/Total Liabilities lt_debt Long-term Debt as a fraction of Total Liabilities WRDS 

Total Liabilities/Total Tangible Assets lt_ppent Total Liabilities to Total Tangible Assets WRDS 

Short-Term Debt/Total Debt short_debt Short-term Debt as a fraction of Total Debt WRDS 

Total Debt/Equity de_ratio Total Liabilities to Shareholders’ Equity (common and 
preferred) 

WRDS 

Total Debt/Total Assets debt_assets Total Debt as a fraction of Total Assets WRDS 

Total Debt/Capital debt_capital Total Debt as a fraction of Total Capital WRDS 

After-tax Interest Coverage intcov Multiple of After-tax Income to Interest and Related 
Expenses 

WRDS 

Interest Coverage Ratio intcov_ratio Multiple of Earnings Before Interest and Taxes to Interest 
and Related Expenses 

WRDS 

D. Profitability:  measures the ability of a firm to generate profit 
 

After-tax Return on Average Common Equity aftret_eq Net Income as a fraction of average of Common Equity 
based on most recent two periods 

WRDS 

After-tax Return on Total Stockholders 
Equity 

aftret_equity Net Income as a fraction of average of Total Shareholders’ 
Equity based on most recent two periods 

WRDS 

After-tax Return on Invested Capital aftret_invcapx Net Income plus Interest Expenses as a fraction of Invested 
Capital 

WRDS 

Effective Tax Rate efftax Income Tax as a fraction of Pretax Income WRDS 

Gross Profit Margin gpm Gross Profit as a fraction of Sales WRDS 

Net Profit Margin npm Net Income as a fraction of Sales WRDS 

Operating Profit Margin After Depreciation opmad Operating Income After Depreciation as a fraction of Sales WRDS 

Operating Profit Margin Before Depreciation opmbd Operating Income Before Depreciation as a fraction of Sales WRDS 

Pre-tax Profit Margin ptpm Pretax Income as a fraction of Sales WRDS 

Return on Assets roa Operating Income Before Depreciation as a fraction of 
average Total Assets based on most recent two periods 

WRDS 

Return on Capital Employed roce Earnings Before Interest and Taxes as a fraction of average 
Capital Employed based on most recent two periods, where 
Capital Employed is the sum of Debt in Long-term and 
Current Liabilities and Common/Ordinary Equity 

WRDS 
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Return on Equity roe Net Income as a fraction of average Book Equity based on 
most recent two periods, where Book Equity is defined as 
the sum of Total Parent Stockholders' Equity and Deferred 
Taxes and Investment Tax Credit 

WRDS 

Gross Profit/Total Assets gprof Gross Profitability as a fraction of Total Assets WRDS 

E. Valuation: estimates the attractiveness of a firm’s stock (overpriced or underpriced) 
 

Book/Market bm Book Value of Equity as a fraction of Market Value of Equity WRDS 

Shillers Cyclically Adjusted P/E Ratio capei Multiple of Market Value of Equity to 5-year moving average 
of Net Income 

WRDS 

Dividend Yield divyield Indicated Dividend Rate as a fraction of Price WRDS 

Dividend Payout Ratio dpr Dividends as a fraction of Income Before Extra. Items WRDS 

Enterprise Value Multiple evm Multiple of Enterprise Value to EBITDA WRDS 

Price/Cash flow pcf Multiple of Market Value of Equity to Net Cash Flow from 
Operating Activities 

WRDS 

P/E (Diluted, Excl. EI) pe_exi Price-to-Earnings, excl. Extraordinary Items (diluted) WRDS 

P/E (Diluted, Incl. EI) pe_inc Price-to-Earnings, incl. Extraordinary Items (diluted) WRDS 

Price/Operating Earnings (Basic, Excl. EI) pe_op_basic Price to Operating EPS, excl. Extraordinary Items (Basic) WRDS 

Price/Operating Earnings (Diluted, Excl. EI) pe_op_dil Price to Operating EPS, excl. Extraordinary Items (Diluted) WRDS 

Price/Sales ps Multiple of Market Value of Equity to Sales WRDS 

Price/Book ptb Multiple of Market Value of Equity to Book Value of Equity WRDS 

Forward P/E to 1-year Growth (PEG) ratio peg_1yrforward Price-to-Earnings, excl. Extraordinary Items (diluted) to 1-
Year EPS Growth rate 

WRDS 

Forward P/E to Long-term Growth (PEG) 
ratio 

peg_ltgforward Price-to-Earnings, excl. Extraordinary Items (diluted) to 
Long-term EPS Growth rate 

WRDS 

F. Others: 
  

WRDS 

Avertising Expenses/Sales adv_sale Advertising Expenses as a fraction of Sales WRDS 

Labor Expenses/Sales staff_sale Labor Expenses as a fraction of Sales WRDS 

Accruals/Average Assets accrual Accruals as a fraction of average Total Assets based on most 
recent two periods 

WRDS 

Research and Development/Sales rd_sale R&D expenses as a fraction of Sales WRDS 

G. Controls: 
   



 35 

Firm size avsize Proxied by the total asset as a fraction of average total asset COMPUSTAT 

Industry dummy 
 

A series of 7 dummy variables coded for each major 
industry defined by SIC (Insurance, Mining, Manufacturing, 
Retail Trade, Wholesale Trade, Services, Transportation & 
communication). 

CRSP 

Firm rating rating Long-term credit rating assigned to the entity by S&P, 
Moody’s or Fitch: including A, AA, AAA, B, BB, BBB 

MARKIT 

CDS Recovery rate recovery Pre-populated based on the recovery rate set for the Ticker 
+ Tier combination 

MARKIT 

    

II. Market-based variables 
   

A. Equity Market Variables 
   

Stock return ret Monthly Log stock return  CRSP 

Stock realized variance lrvar Monthly Log realized variance CRSP 

Change of stock realized variance  lrvar_c Change of the log realized variance CRSP 

Trading volumn avtrd Monthly trading volumn of firm's stock as a fraction of 
average trading volumn of sample time 

CRSP 

S&P 500 return mreturns Monthly log returns of the S&P 500 CRSP 

CBOE Market Volatility Index mvix Monthly log returns of the implied volatility of S&P 500 
index options 

CBOE 

Excess Return on the Market mktrf Fama–French’s market factor: U.S. stock market return 
minus one-month T-Bill rate 

Fama French 

Small-Minus-Big Return smb Fama–French’s SMB factor: Return on small stocks minus 
return on big stocks 

Fama French 

High-Minus-Low Return hml Fama–French’s HML factor: Return on value stocks minus 
return on growth stock 

Fama French 

Momentum umd Fama–French’s momentum factor: Average return on the 
two high prior return portfolios minus the average return 
on the two low prior return portfolios 

Fama French 

Levels of aggregate liquidity ps_innov Pastor-Stambaugh's level Liquidity measure: cross-sectional 
average of individual-stock liquidity measures 

Pastor Stambaugh 
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Innovations in aggregate liquidity ps_level Pastor-Stambaugh's innovation Liquidity measure: the 
residual of a second-order autoregression of level liquidity 
measure 

Pastor Stambaugh 

Traded liquidity factor ps_vwf Pastor-Stambaugh's Liquidity Factors: Return on stocks 
with low liquidity minus return on high liquidity stocks 

Pastor Stambaugh 

Distance to default did The market-based risk measure developed by 
Merton(1975) and simplified by Bharath & Shumway.  

Bharath & 
Shumway 

B. Analyst Forecasting variables 
   

Median Recommendation medrec The median of analysts' Recommendation scale. The scale is: 
1. Strong Buy 2. Buy 3. Hold 4. Underperform 5. Sell 

IBES 

Number of Recommendations numrec Number of Analysts Recommendations IBES 

One year forward Median Estimate EPS eps_medest The median estimate of one year forward EPS IBES 

C. Interest Rates and Spreads 
   

One-month T-Bill rate rf One-month T-Bill rate Goyal Welch 

Three-month T-Bill rate t_b Three-month T-Bill rate Goyal Welch 

Rel.T-Bill Rate rtb T-Bill rate minus its 12 month moving average Goyal Welch 

Long Term Bond Return ltr Rate of return on 10 year government bonds Goyal Welch 

RelBond Rate rbr Long-term bond yield minus its 12 month moving average Goyal Welch 

Term Spread t_s Difference of long-term bond yield and three-month T-Bill 
rate 

Goyal Welch 

Default spread def Measure of default risk: BAA minus AAA corporate bond 
yields 

Goyal Welch 

TED spread ted Measure of illiquidity: LIBOR minus T-Bill rate Datastream 
    

III. Macroeconomic Variables 
   

Unemployment rate unrate Country’s official annual unemployment rate.  Datastream 

Industrial Production Growth, YoY ipga Year-over year (log) growth rate of U.S. industrial 
production 

Datastream 

Industrial Production Growth, Monthly ipm Monthly (log) growth rate of U.S. industrial production Datastream 

Inflation Rate, YoY infa Year-over year (log) growth rate of the U.S. consumer price 
index 

Datastream 

Inflation Rate, Monthly infm Monthly (log) growth rate of the U.S. consumer price index Datastream 

Return CRB Spot crb Commodity price spot index; annual log difference Datastream 
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Federal budget avdgt Federal budget as a franction of average federal budget of 
sample time 

Datastream 

Capacity Utilization, Monthly cap Level to which the productive capacity is used Datastream 

Diffusion Index diff Philadelphia Fed Business Outlook Survey Diffusion Index Datastream 

Housing Starts h_s Monthly change in housing started Datastream 

M1 Growth, YoY m1a Year-over-year (log) growth rate of U.S. M1 Datastream 

M1 Growth, Monthly m1m Monthly (log) growth rate of U.S. M1 Datastream 

Orders, YoY orda New orders, consumer goods and materials; year-to-year 
growth rate 

Datastream 

Orders, Monthly ordm New orders, consumer goods and materials; monthly 
growth rate 

Datastream 

Chicago PM Business Barometer pmbb Leading indicator of economic health; survey of purchasing 
managers 

Datastream 

ISM PMI pmi Monthly change in purchasing manager index Datastream 

Consumer Confidence conf Monthly change in consumer confidence index Datastream 

Consumer Sentiment sent Monthly change in University of Michigan consumer 
sentiment 

Datastream 

 

 

 




