
This note describes the empirical model and the data and presents more detailed results on 
the influence of climate mitigation policies on innovation in climate mitigation technologies. It 
starts with a selective presentation of the most closely related papers, followed by a brief 
explanation of the conceptual basis and the estimation strategy, before introducing the key 
variables and the main results.  

The most closely related paper to this analysis is Johnstone and others (2010).1 Similar to 
our paper, it analyses in a cross-country setup the effect of broad policy measures on climate-
change mitigating innovation. Our analysis however benefits from a much more recent sample,2 
a more precise technological classification and more standardized policy indicators, namely the 
environmental policy stringency (EPS) indicator published by the OECD.3 This allows us to 
better capture the dramatic increase in clean innovation of the early 2000s, but also the flattening 
and partial reversal since 2010.4 Our analysis relies on the environment-related technology (ERT) 
classification proposed by Haščič and Migotto (2015). However, rather than relying on all ERT 
technologies, we focus on the climate change mitigation technologies related to energy. These 
are among the technologies with the biggest potential for emissions reductions and most closely 
targeted by climate-related policies. Unlike the technologies investigated by Johnstone and 
others (2010), they include not only renewable energy, but also technologies related to improved 
efficiency in energy generation, transmission and distribution.  In addition, we use a 
technological specification proposed by Dechelepretre and others (2017) to look more closely at 
technologies related to electricity. The classification has the advantage of not only identifying 
clean technologies, but also dirty as well gray one, where the latter are innovation that improve 
the environmental impact of dirty technologies (e.g. biofuel, waste incineration plants). This 
allows us to study the relative benefits from tightening environmental policies for these different 
types of technologies, as well as the impact on electricity innovation overall. 

 
1 Other relevant papers using cross-country analysis of similar questions include Popp (2006) and De Vries and Withagen (2005). 
2 The sample in Johnstone and others (2010) is limited to 25 countries over the time frame of 1978-2003, while our sample covers 33 countries 

from 1990-2015.  
3 OECD (2018), "Environmental Policy Stringency index (Edition 2017)", OECD Environment Statistics (database), 

https://doi.org/10.1787/b4f0fdcc-en (accessed on 28 July 2020). 
4 For a discussion of possible reasons behind the relative decline in clean innovation post-2010, see Popp and others (2020) and Acemoglu and 

others (2019). Among a partial relaxation in environmental standards in some countries, technological progress especially related to hydraulic 
fracturing, energy prices and reduced investor appetite after a possible technology bubble in the previous years may have diminished returns to 
clean research. 



The conceptual basis for the empirical estimation is a multiplicative production function of 
new innovation in country 𝑖 in technology 𝑗 along the lines of the one specified in Acemoglu and 
others (2016).  
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where 𝑢
 stands for the accessible stock of knowledge and 𝐻

 stands for the research 
effort. The equation can be re-written as an equation that can be estimated with empirical count 
models. 
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where 𝛼 = ln( 𝜃) and 𝜖
 is the residual. Acemoglu and others (2016) assume that new 

innovation 𝑋
 follows a Poisson distribution. 

In our empirical estimation, the flow of innovation 𝑋
 is proxied by the number of climate 

change mitigating patent families associated with a particular country, and where the first patent 
application was made in a given year. A patent family is associated with a given country if it is 
the most common country of residence of the first inventors of the different patents.   

The key line of investigation is how environmental policy affects the flow of innovation. 
Consistent with the conceptual framework, the baseline includes the stock of knowledge5 as well 
as overall innovation. The latter controls for policies related to education and research as well as 
changing patenting cultures.6 In addition, the model includes both country- as well as year fixed 
effects, to control for time-invariant country characteristics, as well as global dynamics, including 
the effects of the global business cycle. The year fixed effects also capture the influence of 
changes in the oil prices as well as part of the common trend towards tighter environmental 
standards. In a subsequent analysis of the fixed effects, we try to shed light on the relative 
importance of these two factors in driving the global trends. The equation is estimated using the 
fixed effects Poisson estimator with clustered robust standard errors, in line with today’s best 
practices. All control variables are lagged by one year, as they are in part pre-determined (e.g., the 
knowledge stock) and to account for time lags in knowledge production. 

 
5 The inclusion of the stock of knowledge creates an indirect link between policies and innovation as a higher effort 𝑢

 today creates a bigger 

knowledge stock tomorrow 𝐻
 , which provides a bigger base for innovation in the future. The patent stock in the specific ERT technology is 

constructed using the perpetual inventory method. The 1965-1975 growth rate in patenting, a 10 percent annual depreciation rate and a 
geometric series are used to determine the stock in 1965. If the depreciation rate is 𝜎 = 0.1 and 𝛿 is the annual growth rate in patenting, the 

initial stock 𝑆ଵଽହ =  
ଵ

ଵି
 𝑃ଵଽହ, where 𝑟 = (1 − 𝜎)/(1 +  𝛿) and 𝑃ଵଽହ the initial level of patenting. 

6 The incentives to patent a given technology differ across countries, but also change over time. For example, patent promotion policies in 
China or the historical requirement in Japan to have a separate application for each claim have resulted in a relative inflation in the numbers of 
applications in some countries. The inclusion of overall patenting controls for such differences. 



The table below shows the main results (Annex Table 3.1.1). The effect of the aggregate 
EPS indicator is reasonably stable across specifications and highly statically significant. In the 
various columns, the different specifications control respectively for the evolution of oil and gas 
reserves, the electricity prices at the household level, as well as indicators for labor and electricity 
market regulation. The control variables have the expected sign and are often statistically 
significant. As the inclusion of additional controls rapidly reduces the size of the sample, column 
1 is used to calculate illustrative examples. Its coefficient of the EPS variable is at the lower end 
of the range over the different specifications. The illustrations below would thus produce 
stronger effects, if the we relied on a specification with additional controls. 

 

These effects are not only statistically, but also economically significant. To illustrate this, 
we compare the predicted level of innovation at the country level, ignoring the global 
components captured by the year fixed effects, with the same prediction if the EPS indicator had 
not changed since 1990. This comparison suggests that the change in the EPS directly 
contributed to roughly 30 percent of the increase in innovation between 1990 and 2010. Given 

(1) (2) (3) (4) (5) (6)

EPSt-1 0.174*** 0.237*** 0.179*** 0.223*** 0.154*** 0.201***

(4.05) (5.04) (5.50) (5.62) (4.40) (5.33)

Log tech stockt-1 0.551*** 0.581*** 0.455*** 0.444*** 0.486*** 0.264*

(11.63) (5.39) (10.28) (3.69) (8.06) (1.80)

Log all techt-1 0.468*** 0.473*** 0.656*** 0.704*** 0.286** 0.640***

(9.09) (4.56) (8.85) (6.12) (2.46) (3.45)

Log oil and gas reserves (bb)t-1 -0.111 -0.0596 -0.0837

(1.25) (0.49) (0.70)

Price of electricity for households (USD)t-1 0.278*** 0.252** 0.408***

(3.35) (2.19) (3.86)

ETCR electricityt-1 -0.0782** -0.0669

(2.02) (1.28)

Labor market regulationt-1 0.0143 -0.0276

(0.60) (0.89)

Number of observations 762 724 589 560 417 345
Source: IMF staff calculations.

*** p<0.01, ** p<0.05, * p<0.1.

Annex Table 3.1.1. Aggregate Effect of Environmental Policy on Clean Innovation
Dependent variable: CCM energy 
patent families

Note: All regressions include country and year fixed effect. T-statistics in parentheses. EPS = environmental policy 
stringency; CCM = climate change mitigating; tech stock = patent stock in specific technology, all tech = total patenting in 
all technologies; bb = billions of barrels; ETCR = energy, transport and communication regulation. Data on labor market 
regulation is from the Economic Freedom of the World by the Fraser Institute.



that more innovation leads to a bigger knowledge stock, there would additionally be an indirect, 
second-round effect, whose magnitude would however be of second order. 

By not including the fixed effects in the two predicted values, the above comparison 
remains consistent with the empirical estimation. It ignores however global factors such as oil 
prices and the common upward trend in environmental policy stringency. We thus investigate to 
what extent the year-FE have been driven by these two factors. For this, the retrieved year fixed 
effects from the baseline regression are regressed on the EPS indicator (country-specific) and oil 
prices. Based on this second regression we again compare the predicted year fixed effects with 
the actual EPS indicator and the predictions keeping either the EPS indicator or oil prices at 
1990 levels. This suggests that the change in the EPS indicator is responsible for 37 percent of 
the increase between 1990 and 2010 in global innovation captured by year-FE. This is a 
significant share but only about half of the contribution from the increase in oil prices. The 
comparable, but somewhat bigger contribution from energy prices is confirmed by an analysis of 
the R2. The individual contribution of the environmental tightening to the variation in the year 
fixed effects is about 30 percent, compared to an individual contribution of 46 percent from oil 
prices. The joint contribution of the two amounts to 61 percent.  

Going beyond the aggregate EPS indicator, we investigate whether some specific policies 
are more important than others, using the EPS sub-indicators as the variable of interest. In the 
table below the policies are first included 
individually (Annex Table 3.1.2, columns 1 to 
5). Column 6 assesses the impact of 
individual policies on clean innovation, 
controlling for all others (see also Annex 
Figure 3.1.1). Although, there has been some 
co-movement among individual policies, 
most coefficients barely change when other 
policies are controlled for. The results suggest 
that both non-market policies—such as 
emission limits and R&D subsidies—as well 
as market policies—such as trading schemes 
and feed-in tariffs—made a statistically 
significant contribution to clean innovation. 
The one major exception are carbon taxes, 
where the effect is insignificant. This result 
can be explained by the very limited use of 
this particular policy tool. While the other 
policy tools shown here were used by 60-100 
percent of the countries in the sample, only 
slightly more than 10 percent of them used 
carbon taxes in 2015 (OECD 2018). 
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After focusing on specific policies, the next analysis looks at a particular set of technologies: 
electricity. The electricity sector is responsible for a significant share of global emissions and 
thus targeted by many environmental policies. 
In addition, focusing on electricity is 
interesting as, relying on a classification by 
Dechezlepretre and others (2017), we can 
distinguish clean electricity innovation from 
dirty and gray innovation, where gray 
innovations are technologies that improve the 
environmental impact of dirty technologies. 
The classification illustrates that the share of 
clean innovation in electricity-related 
technologies has increased dramatically up to 
about 2010 (Annex Figure 3.1.2). It also 
allows us to empirically assess the relative 
effect of policies on the different types of 
technologies as well the overall effect on 
electricity innovation. 

Dependent variable: CCM Energy 
patent applications

(1) (2) (3) (4) (5) (6)

Log tech stockt-1 0.551*** 0.531*** 0.596*** 0.543*** 0.508*** 0.519***

(14.20) (13.72) (11.29) (12.32) (13.22) (10.48)

Log all techt-1 0.492*** 0.506*** 0.438*** 0.448*** 0.593*** 0.525***

(9.28) (10.40) (7.16) (10.23) (12.66) (9.71)

CO2 taxes 0.0105 -0.016

(0.47) (0.55)
Trading schemes 0.0333** 0.0320***

(2.03) (2.79)
Feed-in tariffs 0.0278*** 0.0207*

(3.10) (1.67)
Emission limits 0.0511** 0.0388*

(2.29) (1.65)
R&D subsidies 0.0693*** 0.0616***

(5.41) (3.16)
Number of observations 788 785 788 788 788 785
Source: IMF staff calculations.

*** p<0.01, ** p<0.05, * p<0.1.

Annex Table 3.1.2. Effect of Individual Policies

Note: All regressions include country and year fixed effect. T-statistics in parentheses. EPS = environmental policy stringency; 
CCM = climate change mitigating; tech stock = patent stock in specific technology, all tech = total patenting in all 
technologies.
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The results suggest that environmental policies have increased the relative share of clean 
innovation, and even to a larger extent that of gray innovation (Annex Table 3.1.3, column 1 and 
2). A possible reason for this is that gray technologies are often less radically new and may thus 
be closer to the practical application. The effect on overall innovation (column 4) is strong and 
positive suggesting that the relative decline in dirty innovation (column 3) was more than offset 
by the increase in the other categories. 

 

The evidence suggests that the tightening in environmental policies had a statistically and 
economically significant effect on clean energy innovation. A closer look at the electricity sector 
suggests that this resulted in a relative shift away from dirty and towards clean and gray 
innovation, with a net positive effect on electricity innovation overall. 

  

(1) (2) (3) (4)
Clean Gray Dirty Total 

EPSt-1 0.0688*** 0.151*** -0.0405** 0.175***

(0.02) (0.04) (0.02) (0.04)

Log all techt-1 0.0522 -0.338*** 0.0543** 0.450***

(0.10) (0.10) (0.02) (0.07)
Log knowledge stock specific to the type of electricityt-1 -0.0255 0.531*** 0.0391

(0.07) (0.07) (0.30)

Log knowledge stock for all types of electricityt-1 -0.00121 0.132 -0.103 0.581***

(0.17) (0.21) (0.30) (0.10)

Log oil and gas reservest-1 -0.129** -0.0843 0.0398

(0.05) (0.06) (0.02)

Number of observations 738 743 743 781

*** p<0.01, ** p<0.05, * p<0.1.

Annex Table 3.1.3. Relative and Absolute Electricity

Source: IMF staff calculations.

Dependent variables: Patent families related to different 
types of electricity

Note: Besides the overall EPS indicator, the regression controls for total patenting, the existing knowledge stocks in the 
specific and overall electricity technology and proven oil and gas reserves. Columns 1 to 3 control for overall electricity 
innovation with a coefficient constrained at 1. EPS = environmental policy stringency; all tech = total patenting in all 
technologies.



The substitution of fossil-fuel power plants with renewable energies such as solar 
photovoltaic (PV) modules and wind turbines is undoubtedly one of the most important tools 
countries have at their disposal to mitigate carbon emissions in the electricity sector. From 2001 
to 2020 the share of all renewables in nominal global power plant investment increased from 44 
percent to 66 percent, with that increase being larger in advanced economies (from 44 to 75 
percent) than in developing economies (from 44 to 60 percent) (IEA, 2020b). As the costs of 
solar PV and onshore wind declined by 82 percent and 63 percent respectively between 2000-
2019 (IRENA, 2020), the (real) renewable share in terms of total capacity installed increased 
even faster. 

The investment boom in solar, wind and biomass has led to a rapidly increasing share of 
these renewable energy sources in global power generation, with its share increasing from 
virtually nil in 2000 to 6.5 percent in 2017, and with much higher shares attained in some EU 
countries such as Denmark, Germany and the United Kingdom. Furthermore, the pace of this 
ongoing energy transition is in fact accelerating while the global share increased by about 0.5 
percentage point per year in 2010 that number had increased to 1 percentage point in 2017. To 
understand whether this transition (and its acceleration) can be sustained, it is important to 
understand its drivers, especially levers for policy makers. To this end we ask: what has been the 
role of support policies and carbon pricing in driving the energy transition? 

According to Bourcet (2020), who reviews a total of 48 papers studying the drivers of 
renewable energy development, consensus exists in the literature for the following drivers: (i) 
renewable energy support policies (positive effect), (ii) lobby effect from pre-existing energy 
sources (negative effect), (iii) (lagged) CO2 emissions per capita (negative effect for the 
renewable energy share, especially within Europe), (iv) population size (positive effect, as larger 
countries are expected to contribute more to a global public good), (v) income (positive effect 
for developing countries).  

Only a few studies, i.e., Burke (2010), Best (2017), and IMF (2018), analyze the share of 
renewable energy/electricity in conjunction with the share of other (polluting) primary energy 
sources such as coal. Studying the shares of different energy sources simultaneously can provide 
for a more complete picture of how policies to support renewables and/or reduce carbon 
emissions have changed the energy/electricity mix.  

Since a growing renewable energy share is a necessary (but not sufficient) condition to 
mitigate greenhouse gas emissions from energy use, the annual change in the share of non-hydro 



renewable energy in electricity generation is selected as our main dependent variable.7 Other 
dependent variables analyzed are: the annual change in the shares of coal and natural gas in 
electricity generation, and total electricity generation per capita (in MWh/capita).  

This analysis contributes to the literature by analyzing the effects of various environmental 
policies on the shares of various primary energy sources in the electricity mix. It does so by 
regressing the change in the share of renewable electricity on a package of various environmental 
policy instruments, which limits omitted variable bias potentially affecting single-policy 
regressions. As the policies are measured as indexes and the underlying units of measurement 
differ, it should be noted that one cannot directly compare the effect of one policy instrument 
with another (see below). 

To explain the annual change in the share of renewable electricity generation ∆𝑦௧, we adopt 
the empirical specification from Urpelainen and Smith (2014). With i indexing countries and t 
indexing years, the equation to be estimated reads as follows: 

∆𝑦௧ = 𝛽ଵ𝑦,௧ିଵ
ெ + 𝛽ଶ𝑷𝒐𝒍𝒊𝒄𝒚𝒊𝒕 + 𝛽ଷ𝑋௧ିଵ + 𝜇 + 𝜆௧ + 𝜀௧ 

where 𝑦,௧ିଵ
ெ  is the three year-moving average of the share of renewable electricity 

generation lagged by one period, 𝑷𝒐𝒍𝒊𝒄𝒚𝒊𝒕 is a vector of environmental policies and electricity 
market reforms, 𝑋௧ିଵ is a vector of controls including income per capita, the interest rate, the 
electricity share of hydro and nuclear, and proven reserves of natural gas and oil all lagged by 
one period. To control for unobservable determinants that are country-specific (e.g., citizens’ 
environmental values), and time-specific (e.g., variations in prices of solar and wind that are 
common to all countries), we include country fixed effects and year fixed effects, denoted by 𝜇 
and 𝜆௧ respectively. As in Verdolini and others (2018) we use the OLS panel fixed effects 
estimator. 

Urpelainen and Smith (2014) also employ an instrumental variable approach to deal with the 
possible reserve causality between the deployment of renewables and feed-in tariffs. If anything, 
Urpelainen and Smith (2014) find that OLS underestimates the true effect of feed-in tariffs, but 
in contrast to our work they do not control for other support policies such as renewable energy 
certificates or carbon pricing. Rodríguez and others (2015) study the relationship between 
various environmental policies and private sector investment. They find that 2SLS estimates of 
the effect of feed-in tariffs and renewable energy standards on private sector investment do not 
differ much from OLS. In their analysis, a Hausman test confirms the exogeneity of these 
renewable energy policies. While these considerations and others leave little doubt that some 
policy instruments have had positive effects, it remains prudent to interpret the results from our 
analysis as associations rather than causal effects. 

 
7 A growing renewable electricity share is a sufficient condition for reducing emissions if and only if total electricity demand growth is zero (or 

negative). 



Dependent Variables 

The following dependent variables are all taken from the IEA (2019) and span the period 
from 1990 to 2017: (i) the annual change in the share of renewable electricity, (ii) the annual 
change in the share of electricity from natural gas, (iii) the annual change in the share of 
electricity from coal, and (iv) the annual change in electricity generation per capita. Renewable 
electricity includes solar PV, solar thermal, onshore wind, offshore wind, geothermal, 
wave/tidal/current, and biomass.8  

Independent Variables 

To measure the stringency of environmental policies across countries over time, data from 
the OECD Environmental Policy Stringency (EPS) project is used (see Botta and Koźluk 2014). 
The OECD EPS is the only long-run time-series of a comprehensive package of environmental 
policies in existence. The EPS is measured as an index on a scale from 0 to 6. It includes cross-
country comparable data for 32 OECD and emerging market countries between 1990-2015 for 
various policy indicators including: taxes on the pollutants NOx, SO2 and particular matter 
(PM); trading schemes for CO2, SO2, renewable (or green) energy certificates, and white 
certificates (which are tradable assets proving that a certain amount of energy savings has been 
attained relative to some baseline); feed-in tariffs for solar and wind; limits on emissions of PM, 
SO2 and NOx for newly built coal-fired power plants, and government R&D expenditures for 
renewable energy technologies.  

Two policy instruments of particular interest are feed-in tariffs and green certificate 
schemes. Under feed-in tariffs producers of renewable energy are provided with long-term 
contracts that stipulate a fixed price per kWh for every unit of electricity provided to the grid. 
Green certificates or renewable energy certificates are tradable assets which prove that electricity 
has been generated by a renewable energy source. Many states and countries have implemented 
renewable energy standards, under which utilities are obliged to source a certain fraction of their 
electricity from renewable sources. If utilities cannot generate the renewable electricity 
themselves, they must buy green certificates from producers who hold them in excess to prove 
their compliance. 

Other independent variables include: proven reserves for oil and gas from BP (2019) (to 
control for resource endowments); population size and real income from the Maddison Project 
Database (Bolt and others 2018) (to proxy for higher demand for environmental quality among 
others); short-term interest rates from the IMF WEO database (to proxy for the opportunity 
cost of investment); shares of hydropower and nuclear energy in electricity generation from IEA 
(2019) (to control for other low-carbon energy sources); electricity market regulation from 

 
8 Hydropower is not considered because although it is a mature and relatively cheap renewable energy technology, most of the world’s reserves 

are utilized except for a few regions such as the Congo basin. Furthermore, utilization comes with considerable negative environmental effects. 



OECD (Koske and others 2015); and the price of oil expressed in local currency units relative to 
the domestic price level from the IMF primary commodity price tables (IMF, 2020b). 

Renewable Energy 

Our main results are reported in Annex Table 3.2.1. Model 1 tests the role of market-based 
and non-market based environmental policies. While positive and statistically significant 
evidence is found for market-based policies, non-market-based policies do not appear to have 
been effective. Abstracting from variations in environmental policy stringency and prices of solar 
and wind energy common to all countries in our sample by incorporating year fixed effects, the 
average tightening of market-based environmental policies between 1990 and 2010 can explain a 
0.38 percentage point increase in the share of renewable electricity generation per year. To put 
this into perspective, 0.38 percentage points is equivalent to (i) 29 percent of the average model-
implied increase in the share of renewable electricity in the last year of our sample, 2014, and (ii) 
55 percent of the actual increase of 0.69 percentage points in our sample of 32 countries in that 
same year. 

Model 2 unpacks the role of market-based policies by distinguishing between three types of 
market-based policy indices: feed-in tariffs, taxes, and trading schemes. The effects of feed-in 
tariffs and trading schemes are statistically and quantitatively significant. A one standard 
deviation tightening of these policies increases the share of renewable energy by 0.118 and 0.183 
percentage points respectively per annum. For a better appreciation of the potency of feed-in 
tariffs, consider the case of Germany. Between 1997 and 2007 this European frontrunner in 
renewable electricity generation scored a 4 or higher on the OECD feed-in tariff variable. Based 
on Model 2 a country implementing such a policy for a decade would add 2.5 percent to its share 
of renewable electricity. The cumulative indirect effect of such a feed-in tariff—which works 
through the increasingly higher share level—would add another 7.5 percent over the same 
decade. 

Model 3 digs further into the role of trading schemes by separating between three types of 
schemes: CO2 trading schemes, green certificates, and white certificates. Somewhat surprisingly, 
green certificates are the only type of trading scheme for which statistically significant evidence is 
found. A one standard deviation change in the green certificates variable, while controlling for all 
other policies, is found to increase the share of renewable electricity generation by 0.116 
percentage points per year, which suggests that the significant evidence for trading schemes 
from Model 2 is mostly picking up the effect of the green certificates policy indicator. We 
attribute the lack of statistical evidence for an effect of CO2 trading schemes (e.g., the EU ETS) 
on renewable electricity generation to two (related) aspects: limited sample variation and the fact 
that these policies on average have been relatively weak compared to other instruments such as 
green certificates and feed-in tariffs. 

Models 4, 5 and 6 extend Models 1, 2 and 3 respectively with additional controls. By and 
large, the coefficients on the environmental policy variables are not sensitive to the inclusion of 
these variables. This suggests that the regression coefficients on environmental policies in the 



parsimonious models 1-3 are not affected by omitted variables. Statistically significant evidence 
is found for the role of income (negative effect) and the share of nuclear power in electricity 
generation (negative effect). These findings are in line with the literature. Previous studies 
confirmed the negative role of income for OECD countries. Likewise, since nuclear power is a 
low-carbon technology, countries that are heavily dependent on nuclear energy for electricity 
generation will have an incentive to invest less in renewable energy. 

In all models a statistically significant effect is found for the role of electricity market 
deregulation. This effect is also quantitatively relevant. The average de-regulation of electricity 
markets that took place in OECD countries between 1990 and 2010 has supported an annual 
increase of 0.38 percentage point of the share of renewable electricity generation. Stated 
otherwise, a one standard deviation increase in the degree of deregulation corresponds to a 0.223 
percentage point increase in the share of renewable electricity generation per year. 

Electricity Mix and Electricity Generation Per Capita 

In part due to their relatively stringent package of environmental policies, several countries 
including Denmark, Germany and the United Kingdom have become renewable energy 
frontrunners, with their electricity share of wind, solar and biomass exceeding 30 percent in 
recent years. This begs the question of whether their policies have merely shifted the electricity 
mix, or whether they also have affected total electricity generation—for example by raising 
average electricity prices. To this end we turn to explaining the relationship between 
environmental policies and the electricity shares of coal and natural gas as well as total electricity 
generation per capita in Annex Table 3.2.2. As before our dependent variable measures the 
annual change. 

By and large, the results in Annex Table 3.2.2 are in line with our hypotheses: while policy 
indicators such as feed-in tariffs and CO2 schemes have a positive relationship with the share of 
solar, wind and biomass in electricity generation, such policies do not appear to have had a 
discernible impact on total electricity generation. The analysis also shows that the relationship 
between the EPS variable and fossil fuel electricity shares are not statistically significant at 
conventional confidence levels, but the sign of the regression coefficients often points in the 
expected direction. For example, the EPS variables tend to have a negative association with the 
annual change of the coal share, and the effects on the share of natural gas are ambiguous, 
perhaps because natural gas plants and their ability to dispatch electricity quickly can 
complement intermittent renewable energies. 



 

Annex Table 3.2.1. Main Results (1990–2014)
Dependent variable:
Δ(electricity share of renewables)

(1) (2) (3) (4) (5) (6)

Solar wind and biomass share MAt-1 0.0852** 0.0791* 0.0826* 0.0808* 0.0741+ 0.0799+

(0.0304) (0.0361) (0.0365) (0.0361) (0.0410) (0.0419)
Policy variables
Market EPS 0.231* 0.249*

(0.0974) (0.101)
Non-market EPS -0.124 -0.147 -0.146 -0.109 -0.140 -0.138

(0.106) (0.113) (0.113) (0.122) (0.131) (0.130)
Market EPS taxes 0.0842 0.0860 0.132 0.133

(0.151) (0.147) (0.163) (0.155)
Market EPS feed-in tariff 0.0621* 0.0625* 0.0658* 0.0666*

(0.0287) (0.0290) (0.0305) (0.0307)
Market EPS trading 0.166** 0.174**

(0.0543) (0.0622)
Market EPS trading green certificates 0.0918* 0.108**

(0.0373) (0.0322)

Market EPS trading CO2 0.0392 0.0298

(0.0360) (0.0388)
Market EPS trading white certificates 0.0561 0.0491

(0.102) (0.101)

Log electricity PMRt-1 -0.440** -0.441** -0.445** -0.563** -0.557** -0.568**

(0.159) (0.149) (0.141) (0.197) (0.184) (0.174)
Controls

Log GDP per capitat-1 0.0607 0.0320 0.113 -0.951+ -0.996* -0.898+

Short-term interest ratet-1 0.000731 0.00247 0.00176

Log crude oil pricet-1 -0.511 -0.504 -0.542

Proven oil reserves per capitat-1 -72.98+ -41.57 -47.24

Proven natural gas reserves per capitat-1 847.8 719.7 890.8

Hydropower sharet-1 -0.00900 -0.0104 -0.0122

Nuclear sharet-1 -0.00909 -0.0105 -0.00976

Number of observations 652 652 652 558 558 558
Number of countries 32 32 32 28 28 28

R2 0.28 0.28 0.28 0.28 0.28 0.28

Source: IMF staff calculations.

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Note: Robust standard errors clustered at the country level in parentheses, not reported for controls. Variables are in 
logarithmic scale. Constant included, but not reported. EPS = Environmental policy stringency; MA = moving average; PMR 
= product market regulation.



 

Annex Table 3.2.2. Electricity Mix (1990–2014)
(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variables:
Δ(electricity share 
of renewables)

Δ(electricity share 
of renewables)

Δ(electricity 
share of coal)

Δ(electricity 
share of coal)

Δ(electricity share 
of natural gas)

Δ(electricity share 
of natural gas)

Δ(electricity 
generation per capita)

Δ(electricity 
generation per capita)

Solar wind and biomass share MAt-1 0.0826* 0.0799+

(0.0365) (0.0419)

Coal electricity share MAt-1 -0.0930*** -0.0821**

(0.0225) (0.0293)

Natural gas electricity share MAt-1 -0.0878*** -0.0972***

(0.0172) (0.0233)

Electricity generation per capita MAt-1 -0.281+ -0.319+

(0.164) (0.166)
Policy variables

Market EPS taxes 0.0860 0.133 -0.0885 -0.0771 -0.298 -0.237 0.0407 0.0358
(0.147) (0.155) (0.194) (0.260) (0.226) (0.284) (0.107) (0.105)

Market EPS feed-in tariff 0.0625* 0.0666* -0.0574 -0.0532 0.106 0.130 -0.00233 -0.00160
(0.0290) (0.0307) (0.0764) (0.0821) (0.0940) (0.108) (0.0139) (0.0138)

Market EPS trading green certificates 0.0918* 0.108** 0.00752 -0.0500 0.00692 -0.0101 -0.00158 -0.00843
(0.0373) (0.0322) (0.0915) (0.0838) (0.119) (0.135) (0.0233) (0.0228)

Market EPS trading CO2 0.0392 0.0298 -0.153 -0.0391 -0.0560 -0.0214 -0.0297 -0.0411

(0.0360) (0.0388) (0.0989) (0.0911) (0.0684) (0.0698) (0.0237) (0.0264)
Market EPS trading white certificates 0.0561 0.0491 0.238 0.233 -0.376 -0.414 -0.0586 -0.0607

(0.102) (0.101) (0.221) (0.226) (0.274) (0.328) (0.0367) (0.0430)
Non-market EPS -0.146 -0.138 -0.330 -0.350 0.173 0.321 0.0335 0.0671

(0.113) (0.130) (0.195) (0.234) (0.213) (0.221) (0.0672) (0.0854)

Log electricity PMRt-1 -0.445** -0.568** 0.389 0.503 0.617 0.117 0.0188 0.0114

(0.141) (0.174) (0.359) (0.530) (0.633) (0.735) (0.0974) (0.122)
Controls

Log GDP per capitat-1 0.113 -0.898+ 0.518 2.106 2.545* -0.325 0.423* 0.687

Short-term interest ratet-1 0.00176 0.106* -0.0969* -0.0228+

Log crude oil pricet-1 -0.542 1.388* -0.162 0.140

Proven oil reserves per capitat-1 -47.24 -17.14 -92.29 -100.2

Proven natural gas reserves per capitat-1 890.8 -6299.6 5473.0 388.5

Hydropower sharet-1 -0.0122 0.198** 0.143*

Nuclear sharet-1 -0.00976 0.00656 -0.0256

Number of observations 652 558 652 558 652 558 652 558
Number of countries 32 28 32 28 32 28 32 28

R2 0.28 0.28 0.10 0.17 0.20 0.25 0.10 0.11
Source: IMF staff calculations.

*** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Note: Robust standard errors clustered at the country level in parentheses, not reported for controls. Constant included, but not reported. EPS = Environmental policy stringency; MA = moving average; PMR = product market 
regulation.



The impact of environmental policies on employment has become an important issue 
particularly in view of the growing call for a “green” recovery, amid widespread labor market 
stresses due to the pandemic. While there is relatively wide support for the view that renewable 
energy and energy efficiency can be more job-intensive than fossil fuels,9 there is more ambiguity 
about the impact of other environmental policies, for instance regarding the impact of carbon 
taxation.10 For example, using sectoral data, Yamazaki (2017) finds that carbon taxation 
implemented in the British Columbia province of Canada led to a fall in employment in carbon-
intensive and trade-intensive sectors, offset by an increase in employment in low-carbon service 
industries, yielding a small overall positive effect. Examining the same policy change but using 
household data, Yip (2018) comes to the opposite conclusion: carbon taxation resulted in a small 
increase in the unemployment rate, with the effects concentrated on low- and medium- skilled 
workers. Using a sample of EU countries Stock and Metcalf (2020) do not find evidence of 
significant negative employment effects in aggregate data; indeed, their results also suggest a 
modest positive impact. Relatively few papers appear to look at labor demand in micro data; one 
example is Kahn (1997) who examines the effect of particulate matter regulation in the United 
States and finds that employment growth was weaker in plants located in “non-attainment” areas 
(i.e., areas that did not meet the national air quality standard) in certain sectors. Similarly, 
Greenstone (2002) found that in a large sample of U.S. plants, carbon monoxide and ozone 
regulations had strong depressing effects on labor demand in non-attainment counties, especially 
among industries that emitted multiple pollutants (e.g., pulp and paper, and petroleum refining 
industries). Finally, Liu and others (2017) use plant-level data from China to show that firms 
impacted by more stringent waste-water regulations in the Jiangsu region of China reduced their 
labor demand quite significantly. 

The basic approach is to estimate an augmented labor demand equation, controlling for 
standard determinants in the literature (e.g., Van Reenen 1997), and introducing the EPS 
indicator, interacted with an indicator variable to capture the intensity of a firm’s CO2 emissions. 
The estimating equation is  

𝑛,௧ = ∑ 𝑎
்
ୀଵ  𝑛,௧ି+ 𝒃𝑿,,௧ + 𝑐ଵ[𝐸𝑃𝑆,௧ x 𝑑] + 𝑑  +  𝑑 + 𝑑  +  𝑑௧ + 𝜀,௧; where 

 𝑑 = 1 𝑖𝑓 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = "high",   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
9 See Wei, Patadia, and Kammen (2010) for evidence on the U.S., and Stavropoulos and Burger (2020) for an extensive review of the literature. 

IEA (2020a) looks at the global job-creation potential of a green investment push as part of an economic recovery plan in the wake of the 
pandemic. 

10 See Deschenes (2018) for a brief and useful summary of research on environmental regulation and employment. 



All variables are expressed in logs, except the EPS indicator which enters in levels. Firm-
level employment 𝑛,௧ is regressed on its own lags, a vector of controls, and firm 𝑖, country 𝑗, 
and year 𝑡 fixed effects. The vector of controls  𝑿,,௧ includes firm-level average annual 
employee wages; real capital stock (sum of building and machinery capital stock deflated by the 
building and machinery price indices from Penn World Tables); the rental rate of capital 
(proxied by the price of capital services, taken from Penn World Tables); and the output gap.11 
𝐸𝑃𝑆,௧ x 𝑑 is the interaction of interest, where EPS refers to the value of the selected 
environmental policy indicator in country j 
and time t. This specification is referred to 
below as Specification 1. 

In an alternative Specification 2, the 
CO2 emission intensity is proxied by the 
sector of the firm in order to expand 
coverage of the sample, given the relatively 
low count of firms reporting actual CO2 
emissions. In the interaction term, the 
CO2 emission dummy is replaced with a 
sector dummy. Following Van Reenen 
(1997), the estimation methodology is 
panel GMM.  

The firm-level data are from the 
Worldscope database. From the original 
Worldscope sample of more than 30,000 
firms, only firms reporting unbroken spells 
of data on employment, staff costs, and 
capital stock are selected. For the 
specification interacting EPS with the 
CO2 emissions indicator, an additional 
restriction for inclusion in the sample is 
imposed, namely that the firm must report 
at least 3 instances of CO2 emissions. For 
each firm, only the longest spell including 
all the required variables is selected.12 The 

 
11 Assuming a standard CES production function, Van Reenen (1997) derives labor demand as a function of real output and real wage, or, 

substituting for real output with capital, as a function of nominal factor prices and the real capital stock. The specifications implemented here 
follow the latter approach. However, we note that the results are robust to substituting nominal wages with real wages (defined as the nominal 
wage deflated by the aggregate CPI price index). Note also that all firms in a country are assumed to have the same rental rate of capital which is 
a simplifying assumption. This is similar to Van Reenen (1997) who proxies the rental rate with year fixed effects for a panel of UK firms. 

12 Few firms report unbroken spells of CO2 emissions. To make use of the available information in the best possible manner, a firm is coded 
as high-emission if its emissions-to-employees ratio exceeds the median for the country-year in any year that it reports this data. Thus, this is a 
time-invariant property of the firm in this framework. On average, a high-emission intensity firm emits more than 10 times more CO2 than a 
low-emission intensity firm. The relatively sparse reporting on CO2 emissions raises questions about selection issues if reporting emissions is an 

Variable Mean Std. Dev. Min Max

Sample 1: Interaction with high/low CO2

Aggregate EPS 2.5 0.9 0.4 4.1
Market EPS 1.9 1.0 0.0 4.0

EPS: CO2 tax 0.1 0.9 0.0 6.0

Non-market EPS 3.1 1.2 0.6 5.5
Log employees 9.6 1.5 2.8 13.4
Log capital stock 14.5 1.8 8.3 19.6
Log wage 3.9 0.8 -3.4 11.5
Log r 0.0 0.1 -0.8 0.6
Output gap 0.0 2.2 -15.4 8.9

Log CO2 emissions 8.9 10.0 -1.3 12.3

Sample 2: Interaction with sector dummies
Aggregate EPS 2.2 0.9 0.4 4.1
Market EPS 1.7 0.9 0.0 4.0

EPS: CO2 tax 0.1 0.8 0.0 6.0

Non-market EPS 2.7 1.3 0.6 5.5
Log employees 7.8 1.9 0.0 13.4
Log capital stock 12.2 2.2 3.4 19.5
Log wage 3.2 1.2 -3.8 11.5
Log r 0.0 0.1 -0.8 0.6
Output gap -0.2 2.0 -15.4 8.9

Annex Table 3.3.1. Summary Statistics

Note: Estimation sample 1 includes 670 firms, from 30 countries over 
2000–15. Sample 2 consists of 5,305 firms, covering 31 countries over 
2000–15. Capital stock is calculated as sum of machinery and building stock 
(in thousand US dollars), deflated by corresponding capital goods price 
deflators from Penn World Tables. Wages are calculated as total staff costs (in 
thousand US dollars) divided by total employees. Rental rate r  is log of the 

price of capital services at the country level, from Penn World Tables. CO2 

emissions are measured in thousand tons. EPS = environmental policy 
stringency.

Source: IMF staff calculations.



samples consist of 670 firms when the availability of CO2 emissions data is taken into account; 
and 5305 firms when using sectoral dummies instead. The data span 31 countries over 2000-
2015. Additionally, data on rental rate of capital is taken from Penn World Tables (using the 
price of capital services index as a proxy). The EPS variables are from OECD, measured as 
indices on a scale from 0 to 6. These include cross-country data for 32 OECD and emerging 
market countries between 1990-2015 for various policy indicators, including aggregate, market-
based, and non-market-based policies, and sub-indices that further disaggregate these policies for 
instance into tax, trading, regulatory limits, subsidies, etc. Finally, controls for the output gap are 
from the IMF WEO database. Annex Table 3.3.1 presents summary statistics of the variables for 
the two samples used. 

Annex Table 3.3.2 shows the results of Specification 1. Column 1 shows the results of a 
standard labor demand equation, incorporating 2 lags of employment, and controlling for wages, 
rental rate of capital, and capital stock. The coefficient estimates of the standard determinants of 
labor demand are all highly statistically significant and have the expected sign with respect to 
factor prices, capital stock, as well as lags of employment. In column 2, the interaction term of 
aggregate EPS with the CO2 emissions dummy is included. The interaction is significant, 
indicating that high-emission firms experience negative employment effects in response to 
tightening EPS, whereas low-emission firms experience an increase in employment (although the 
effect is not significant for low-emission firms). The estimated semi-elasticities suggest that a 1-
standard deviation tightening in the EPS indicator would lower employment in high-carbon 
firms by 5 percent, but raise employment in low-carbon firms by 2.6 percent. Column 3 shows 
the results for market EPS. The coefficients again suggest that employment would decline in 
high emission-intensity firms and increase in low emission-intensity ones. The results are 
qualitatively similar for carbon taxation (though again not significant; column 4). In the case of 
non-market EPS (column 5), the coefficients on both non-market EPS and its interaction with 
the emission intensity indicator are significant, suggesting that a 1-standard deviation tightening 
in the non-market EPS would lower employment in high-emission firms by 5 percent, and raise 
it in low-emission firms by 4.4 percent. 13   

 
endogenous choice by firms. It is possible that high-emission firms do not report CO2 emissions to avoid market consequences, for instance. 
Looking across sectors, however, a higher proportion of firms in high-emission sectors—fossil fuel industries (26%), transport industries (24%), 
and utilities (34%)—report at least one year of CO2 emissions relative to the average rate of at least one CO2 emission report across all firms in 
all the sectors (21%). The exception is high-emission manufacturing (15%). This pattern is also observed when considering firms that report at 
least 3 instances of CO2 emissions (a condition imposed to be included in the regression sample). Across countries, the share of firms reporting 
at least on year of CO2 emissions in China, India and Indonesia is relatively much lower than in other OECD countries (3%, 4%, and 5% 
respectively of sample firms compared to the sample average of 32%). However, the frequency of “high-emission” firms from these countries 
(among the firms that do report emissions), is very similar to the sample average. These factors would suggest that a selection bias is unlikely to 
be present in this case. 

13 These results are robust to setting the high/low emission intensity threshold at a different level, for example at the 75th percentile of the 
distribution within a country-year, in place of the median. The results are also broadly robust to excluding all firms with fiscal year ending before 
December of the given year in terms of the sign of the coefficients, but they lose statistical significance as the sample size is significantly reduced. 
Results available upon request.  



To examine the sensitivity of the 
employment-EPS relationship to cyclical 
conditions, in columns 6 through 9, we also 
include an interaction of the output gap with the 
EPS indicator. The output gap term has the 
expected sign, though it is only significant in the 
regression considering market EPS. Column 7 
also shows that the market EPS indicator can 
have a positive employment effect when the 
output gap is negative. Indeed, the average 
marginal effects of market EPS on employment 
are modestly positive under severe 
contractionary conditions, and turn negative 
during normal/expansionary periods (see also 
Annex Figure 3.3.1). An explanation for this 
pattern may lie in the inflationary impact of 
tighter EPS, which under severe contractionary 
conditions may help to lower the real rate of 
interest (for instance if policy rates are at the 
zero-lower bound), thus stimulating demand.14  

Turning to Specification 2, Annex Table 3.3.3 provides additional detail on the sectoral 
classification and sample characteristics. This specification helps to increase the sample size 
substantially. There are more firms in the sample from among low-emission industries, services, 
and high-emission industries, and fewer firms from the other sectors, with the utilities sector 
having the fewest. However, it does not appear that there are too few firms in any one sector.  

Annex Table 3.3.4 shows results from replacing the CO2 emission dummy in Specification 
1 with sector dummies to proxy for emission intensity. The interactions span the entire sample 
of firms included in the regressions. Six sectors are included in the baseline: fossil fuel industries, 
high-emission manufacturing industries (food, metals and minerals, chemicals, paper and 
packaging)15, services, construction, transport, and other (low-emission) manufacturing 
industries.  

Column 2 shows the results for aggregate EPS. Each of the interactions has the expected 
sign (individually significant in the case of construction industries), and the set of interactions are 
jointly significant. The construction sector here includes not only residential but also commercial 
and industrial construction. The sector uses high-emission inputs such as cement, and thus the 
negative effect from tighter EPS may reflect both the impact on the cost of high-emission 
inputs, and a negative effect due to lower activity in high-emission sectors. For market EPS 

 
14 Evidence for expansionary effects of negative supply shocks that are otherwise thought to be output-reducing can be found in Eggertsson 

(2012). For evidence that disputes such negative effects, see Garin and others (2019), and Weiland (2019). 

15 These are among the most emission-intensive industries in Europe for example (see “Sectoral Policies for Climate Change Mitigation in the 
EU”, IMF 2020c. Oil refineries which are also a high-emission industry are included among fossil fuel industries. 
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(column 3), the positive impact on services is also statistically significant at the 10 percent level. 
However, the sign on fossil fuel industries is positive.16 In the case of non-market EPS, the 
pattern is similar to that of market EPS, except that the interaction with the fossil fuel sector is 
negative (column 5).  

In columns 6 and 7, the output gap is included as an additional regressor, to capture 
country-specific macroeconomic conditions. The sign  on the output gap is positive and 
significant, as expected. Upon introducing this control, the coefficient on high-emission 
manufacturing industries also becomes significant (and remains negative).17  

These specifications exclude the fossil fuel utilities sector, although it is likely to be 
significantly impacted by EPS, given the very 
small number of fossil fuel utilities in the 
sample. However, a broader utility category is 
included in a robustness exercise that 
includes not just fossil fuel utilities, but also 
multiline utilities whose activities include 
electricity generation, and also distribution. 
These regressions are shown in the columns 
9 and 10. The sign on the utility’s coefficient 
is negative, as expected, and the interactions 
remain jointly significant at the 10 percent 
level. 18  

Based on the preferred specifications 
that include controls for the output gap, we 
can also calculate the net impact on total 
employment in the sample. Based on the 
estimates in columns 6 and column 9, there is 
a net loss of between 500-600 thousand jobs 
(about 1 percent of the total employment in 
the sample) in the case of aggregate EPS 
tightening by 1 standard deviation. In 
contrast, tightening market EPS by 1 
standard deviation results in a small net job 

 
16 The aggregate market EPS reflects the combined effect of different types of market-based policies. Examining the sub-components of 

market EPS reveals that the interaction with fossil fuels is negative in the case of tax policies, but positive in the case of trading schemes. This 
likely reflects that trading policies allow firms to maintain output (and employment) by being able to buy pollution permits, whereas increased 
stringency of tax policies may cause firms to reduce output including by outsourcing polluting activities, or shifting the location of pollutive 
activities production to jurisdictions with weaker enforcement (see Ben-David and others, 2020, for evidence of multinational firms shifting 
emissions to other locations). Even for the high-emission industries sector, for instance, although the effect of more stringent trading policies is 
negative, the effect is insignificant and much smaller than the effect of more stringent tax policy. 

17 The t-statistic rises from 1.2 in the regression excluding the output gap (Column 1), to 1.9. 

18 The results are also broadly robust to excluding all firms with fiscal year ending before December of the year. Results available upon request. 
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increase between 13-34 thousand jobs, based on 
the estimates in columns 7 and 10 (Annex Figure 
3.3.2).  

Finally, we implement a set of regressions to 
examine the medium-term effects of EPS, 
embedding an estimating equation similar to the 
specifications above, except that they exclude 
interactions with CO2 emissions.19 Thus, we are 
looking at the average effect over time across all 
firms from a given change in EPS. Over the 
medium-term, the short-term effects of 
aggregate EPS, market EPS, and non-market 
EPS tend to reverse and fade away (Annex 
Figure 3.3.3). 

Based on this exercise, we are able to 
conclude that at least in the short term, 
tightening of environmental policies is associated 
with a reallocation of jobs, with employment 
rising in low-CO2 emissions firms, and falling in 
high-CO2 emissions firms. When emissions are 
proxied by the sector of the firm, the effects 
suggest a reallocation of labor from high carbon-
intensive sectors to low carbon-intensive ones in 
general. While the evidence generally supports 
reallocation effects, the overall impact remains 
somewhat uncertain as it depends on the 
particular set of policies. Past policy changes 
suggest that short-term effects are negative with 
respect to overall EPS, likely driven by negative 
effects of non-market policies. However, to the 
extent that future policy changes will rely more 
on market-based policies, the overall effects may 
be positive going by these findings. In the case 
of the carbon taxation, however, it is unclear from the wider literature what the overall effects 
would be. Regardless, the short-term effects whether net positive or net negative appear to be 
quite modest. Moreover, the effects tend to fade away over the medium term. Finally, the 
evidence also suggests that the impact of tightening market-based policies depends on the state 

 
19 Results available upon request. 
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of the business cycle. Under highly contractionary conditions, the impact may be positive (other 
things equal), whereas under more normal or expansionary periods, the effect is negative.  

  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

EPS Indicator: Agg EPS Mkt EPS CO2 Tax Non-Mkt Agg EPS Mkt EPS CO2 Tax Non-Mkt

Dependent variable: Log N Log N Log N Log N Log N Log N Log N Log N Log N

Log Nt-1 0.573*** 0.560*** 0.566*** 0.565*** 0.555*** 0.556*** 0.561*** 0.562*** 0.552***

Log Nt-2 -0.142*** -0.144*** -0.144*** -0.143*** -0.144*** -0.141*** -0.142*** -0.141*** -0.140***

Log capital stock 0.276** 0.266** 0.268** 0.275** 0.263** 0.266** 0.272** 0.273** 0.262**

Log wages -0.260** -0.252** -0.252** -0.254** -0.238* -0.256** -0.255** -0.259** -0.256**

Log r 0.308** 0.292*** 0.301** 0.308** 0.300*** 0.256** 0.275** 0.284** 0.247**

EPS 0.0270 0.0224 0.0408 0.0355* 0.0243 0.0194 0.0364 0.0282

EPS  (High CO2 = 1) -0.0785* -0.0561 -0.0948 -0.0760** -0.0799* -0.0560 -0.0981 -0.0773**

Output gap 0.0151 0.0147** 0.00367 0.0128

Output gap  EPS -0.00489 -0.00697** -0.00995 -0.00286

Observations 6,899 5,991 5,991 5,991 5,991 5,991 5,991 5,991 5,991

Number of firms 773 670 670 670 670 670 670 670 670

*** p<0.01, ** p<0.05, * p<0.1.

Annex Table 3.3.2. Regression Results (Specification 1)

Source: IMF staff calculations.

Note: "EPS" in the list of explanatory variables refers to Aggregate EPS in column 2 and 6; Market EPS in column 3 and 7; Carbon taxes in column 
4 and 8; and Non-market EPS in column 5 and 9.   All regressions include panel and year fixed effects. In columns 2-9, wages, capital, and rental 
rate are GMM-instrumented with lags. The Hansen J-test cannot reject instrument validity at 1% in column 1, at 10% in columns 2-9. EPS = 
environmental policy stringency; N = employment.



 

 

Sector Median LQR UQR Median LQR UQR
Fossil fuel industries 2,740 763 12,032 544 76 3,369 122
High emission industries 2,299 974 5,907 272 102 848 779
Other industries 2,193 976 5,570 131 50 330 1,160
Services 1,972 811 5,368 98 32 306 955
Construction 2,040 808 6,453 75 38 341 124
Transport 4,500 1,541 12,299 292 77 945 147
Utilities 6,111 1,442 10,944 2,444 1,334 6,072 47
Source: IMF staff calculations.

Labor Capital stock
Annex Table 3.3.3. Descriptive Statistics of Firms by Sector

Note: Labor and capital stock figures are for 2015. Labor is measured in total number of employees, and real capital stock in 
million US dollars, calculated as deflated sum of building and machinery stock, using appropriate price deflators from Penn 
World Tables. Sector details: (a) Fossil fuel industries include coal, and oil and gas production, and equipment and services; (b) 
High emission manufacturing includes metals and mining (excluding fossil fuel mining), construction materials, paper and 
forest products, containers and packaging, and food and beverages; (c) Other industries include manufacturing industries not in 
(b); (d) Services include industrial, commercial (professional and business support), consumer services, finance, insurance, real-
estate, healthcare, and technology;  (e) Construction includes residential, commercial, and industrial/engineering construction; 
(f) Transport includes freight and passenger transport by land, sea, and air; and (g) Utilities includes fossil-fuel based and 
multiline utilities. LQR = lower quartile; UQR = upper quartile.

Number 
of firms



 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
EPS Indicator: Agg EPS Mkt EPS CO2 Tax Non-Mkt EPS Agg EPS Mkt EPS Non-Mkt EPS Agg EPS Mkt EPS
Dependent variable: Log N Log N Log N Log N Log N Log N Log N Log N Log N Log N

Log Nt-1 0.543*** 0.555*** 0.550*** 0.541*** 0.551*** 0.554*** 0.545*** 0.549*** 0.554*** 0.546***

Log Nt-2 0.0189 0.0148 0.0157 0.0171 0.0154 0.0157 0.0172 0.0170 0.0172 0.0184

Log capital stock 0.186*** 0.189*** 0.190*** 0.203*** 0.191*** 0.178*** 0.178*** 0.179*** 0.171*** 0.171***
Log wages -0.218*** -0.218*** -0.216*** -0.226*** -0.218*** -0.215*** -0.214*** -0.218*** -0.214*** -0.213***
Log r 0.241*** 0.234*** 0.234*** 0.242*** 0.224*** 0.150*** 0.148*** 0.134*** 0.141*** 0.139***
Output gap 0.00806*** 0.00920*** 0.00838*** 0.00857*** 0.00967***
Fossil fuels  EPS -0.0181 0.00821 -0.723 -0.0345 -0.0234 0.00980 -0.0380 -0.0243 0.0104

High CO2 industries  EPS -0.0228 -0.0257 -0.00432 -0.0212 -0.0346* -0.0295* -0.0293** -0.0361* -0.0292*

Other industries  EPS 0.0155 0.0131 -0.00534 0.00565 0.00189 0.00726 -0.00436 0.000557 0.00673
Services  EPS 0.0174 0.0225* -0.00792 0.00517 0.00697 0.0208 -0.00344 0.00545 0.0201
Construction  EPS -0.0836*** -0.0693** -0.140 -0.0717*** -0.0906*** -0.0695** -0.0766*** -0.0919*** -0.0706**
Transport  EPS -0.00319 -0.00696 -0.0188 -0.00631 -0.0118 -0.00417 -0.0148 -0.0115 -0.000983
Utilities  EPS -0.0226 -0.0266

Joint significant (p-value) 0.05 0.06 0.65 0.05 0.05 0.07 0.03 0.07 0.10
Observations 28,122 25,631 25,631 25,637 25,637 25,631 25,631 25,631 26,072 26,072
Number of firms 5,579 5,305 5,305 5,305 5,305 5,305 5,305 5,305 5,384 5,384

*** p<0.01, ** p<0.05, * p<0.1.

Annex Table 3.3.4. Regression Results (Specification 2)

Source: IMF staff calculations.

Note: “EPS” in the list of explanatory variables refers to Aggregate EPS in column 2; Market EPS in column 3; Carbon taxes in column 4; and Non-market EPS in column 5 and 8; 
Aggregate EPS in column 6 and 9; and Market EPS in column 7 and 10.  All regressions include panel and year fixed effects. Wages, capital, and rental rate are GMM-instrumented with 
lags.  EPS = environmental policy stringency; N = employment.



The model used for this project follows the approach in the G-Cubed model (McKibbin 
and Wilcoxen 1999, 2013). A number of changes were implemented specifically for this project 
compared to the most recent published model in Liu and others (2020). The key changes to the 
model for this project are: 

 The database was significantly updated to include data from GTAP10 and the 
latest data from the IMF, the World Bank, OECD, UN, and US Energy Information 
Administration.  

 The gas extraction and gas utilities sectors were merged into one gas sector. 

 A new sector for construction was added to the model. 

 A capacity for implementing government infrastructure investment following 
Calderon and others (2015) was implemented. Green infrastructure projects were 
incorporated. 

There are 10 regions and 20 sectors in the version of the model (version GGG20v154) used 
in this report.  

 

The coverage of each region in the above table is presented below:  

 Europe: Germany, France, Italy, Spain, Netherlands, Belgium, Bulgaria, Croatia, 
Czech Republic, Estonia, Cyprus, Lithuania, Latvia, Hungary, Malta, Poland, Romania, 
Slovenia, Slovakia, Luxemburg, Ireland, Greece, Austria, Portugal, Finland, United Kingdom, 
Norway, Sweden, Switzerland, Denmark 

 Rest of OECD: Canada, New Zealand, Iceland, and Liechtenstein. For 
presentational purposes, Australia is included in OEC in the chapter’s figures. 

 Selected Oil-Exporting Countries and Other Economies: Ecuador, Nigeria, 
Angola, Congo, Iran, Venezuela, Algeria, Libya, Bahrain, Iraq, Israel, Jordan, Kuwait, 

Annex Table 3.4.1. Regions in the G-Cubed Model
Region code Region description
AUS Australia
CHN China
EUW Europe
IND India
JPN Japan
OPC Selected oil-exporting countries and other economies
OEC Rest of the OECD
ROW Rest of the world
RUS Russian Federation
USA United States



Lebanon, West Bank and Gaza, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, United 
Arab Emirates, Yemen 

 Rest of World: All countries not included in other groups. 

The sectors in the model are set out in table 3.4.2. 

 

The G-Cubed sectors 1-12 are aggregated from 65 sectors of GTAP 10. We then further 
disaggregate the electricity sector into the electricity delivery sector (sector 1) and 8 electricity 
generation sectors (sectors 13-20).  

The structure in the model is set out in McKibbin and Wilcoxen (2009, 2013). An 
illustration of the production structure is contained in Annex Figure 3.4.1. CO2 emissions are 
measured through the burning of fossil fuels in energy generation. 

Several key features of the standard G-Cubed model are worth highlighting here.  

 The model completely accounts for stocks and flows of physical and financial 
assets. For example, budget deficits accumulate into government debt, and current account 
deficits accumulate into foreign debt. The model imposes an intertemporal budget constraint 
on all households, firms, government, and countries. Thus, a long-run stock equilibrium 
obtains through the adjustment of asset prices, such as the interest rate for government fiscal 

Annex Table 3.4.2. Sectors in the G-Cubed Model
Number Sector name Notes

1 Electricity delivery
2 Gas extraction and utilities
3 Petroleum refining
4 Coal mining
5 Crude oil extraction
6 Construction
7 Other mining
8 Agriculture and forestry
9 Durable goods

10 Nondurable goods
11 Transportation
12 Services
13 Coal generation
14 Natural gas generation
15 Petroleum generation
16 Nuclear generation
17 Wind generation
18 Solar generation
19 Hydroelectric generation
20 Other generation

Energy sectors other than generation

Goods and services

Electricity generation sectors



positions or real exchange rates for the 
balance of payments. However, the 
adjustment towards the long-run 
equilibrium of each economy can be 
slow, occurring over much of a century.  

 Agents in G-Cubed must use 
money issued by central banks for all 
transactions. Thus, central banks in the 
model set short term nominal interest 
rates to target macroeconomic outcomes 
(such as inflation, unemployment, 
exchange rates, etc.) based on 
Henderson-McKibbin-Taylor monetary 
rules. These rules approximate actual 
monetary regimes in each country or 
region in the model.  These monetary rules tie down the long-run inflation rates in each 
country as well as allowing short term adjustment of policy to smooth fluctuations in the real 
economy. 

 Nominal wages are sticky and adjust over time based on country-specific labor 
contracting assumptions. Firms hire labor in each sector up to the point that the marginal 
product of labor equals the real wage defined in terms of the output price level of that sector. 
Any excess labor enters the unemployed pool of workers. Unemployment or the presence of 
excess demand for labor causes the nominal wage to adjust to clear the labor market in the 
long run. In the short-run unemployment can arise due to structural supply shocks or 
changes in aggregate demand in the economy.  

 Rigidities prevent the economy from moving quickly from one equilibrium to 
another. These rigidities include nominal stickiness caused by wage rigidities, lack of complete 
foresight in the formation of expectations, cost of adjustment in investment by firms with 
physical capital being sector-specific in the short run, monetary and fiscal authorities 
following particular monetary and fiscal rules. Short term adjustment to economic shocks can 
be very different from the long-run equilibrium outcomes. The focus on short-run rigidities is 
important for assessing the impact over the initial decades of demographic change.  

 The model incorporates heterogeneous households and firms. Firms are 
modelled separately within each sector. There is a mixture of two types of consumers and 
two types of firms within each sector, within each country: one group bases their decisions 
on forward-looking expectations and the other group follows simpler rules of thumb which 
are optimal in the long run, but not necessarily in the short run. 

 The fiscal rule in the model varies across model versions. In the version of the 
model in this report we assumed an exogeneous budget deficit (it changes according to the 
revenue generated by carbon taxes or lost through various subsidies or changes in 
infrastructure spending) with lump sum taxes on households adjusted to ensure fiscal 



sustainability. In the long run the changes in interest servicing costs from any changes in 
revenue or expenditure that is exogenously imposed is offset through a lump sum tax on 
households. Thus, the level of government debt can permanently change in the long run with 
the change in the debt-to-GDP ratio equal to the ratio of the long run fiscal deficit to the 
long run real growth rate of the economy. 

The key inputs into the baseline are the initial dynamics from 2018 to 2019 and subsequent 
projections from 2019 onwards for sectoral productivity growth rates by sector and by country. 
Sectoral productivity growth is driven by labor force growth and labor productivity growth.  

 Labor force: We use the working-age population projections from the UN 
Population Prospects 2019 to calculate our economy-wide labor growth rates.  

 Labor productivity: We use a catch-up model to generate labor productivity 
growth rates (labor-augmenting technological progress). The sectoral productivity projections 
follow the Barro approach estimating that the average catchup rate of individual countries to 
the worldwide productivity frontier is 2% per year. We use the Groningen Growth and 
Development database to estimate the initial productivity level in each sector of each region 
in the model, and then take the ratio of the initial productivity to the equivalent sector in the 
US (the frontier). Given this initial gap, we use the Barro catchup model to generate long-
term projections of the productivity growth rate of each sector within each country. Where 
we expect that regions will catch up more quickly to the frontier due to economic reforms or 
more slowly to the frontier due to institutional rigidities, we vary the catchup rate over time. 
The calibration of the catchup rate attempts to replicate recent growth experiences of each 
country and region in the model.  

Net Zero Emissions in 2050 

In the G-Cubed model, there are fossil fuels and renewable sectors, but no carbon removal 
technologies. To achieve net zero emissions by 2050 in the real world, carbon removal 
technologies also play an important role. IPCC (2018b) provides a review on carbon removal 
technologies, of which one main reference is Fuss (2018).  

We draw on the estimates of carbon removal potentials from Fuss (2018). The estimates of 
global carbon removal technologies by 2050 by Fuss (2018) are as follows: 



 

We take the average of the range for each technology and sum them up (13.8Gt CO2). We 
make a conservative assumption that about 75% of 13.8 Gt can be achieved by 2050, i.e., about 
10Gt CO2 per year. This is about 20% of global CO2 emissions in the baseline in 2050. We 
assume that all regions in our model reduce their emissions by 80% by 2050 relative to 2018 
except OPC remains at the same level of 2018 by 2050.  

In the main results, we assume a constant growth rate of 7 percent for carbon taxes over 
the period of 2019-2050, and then solve the tax rates to achieve the emissions targets by 2050 in 
the policy package—after accounting for emissions reductions from other layers of the policy 
package (Annex Figure 3.4.2). For comparison, we also use a growth rate of 5 percent for carbon 
taxes and solve the tax rates to achieve the same targets by 2050.  

We base our analysis on the results from Calderon, Moral-Benito and Serven (2015) who 
find that for every 10 percent increase in the aggregate stock of infrastructure capital, 
productivity in private sector output rises by 0.8%. We assume this new infrastructure once in 
place is sustained by spending by the 
government of 0.2% of GDP to offset 
depreciation. This locks in the productivity 
gains of the sectors that benefit from the 
green infrastructure. Rather than applying the 
improvement in productivity uniformly across 
all sectors in the economy, we assume that 
some sectors gain a productivity boost relative 
to others because of the strategic allocation of 
the infrastructure spending. We allocate the 
gains in productivity to these individual 
sectors. Once we assume which sectors 
receive the productivity boost, we scale the 
size of the productivity boost to those sectors 
in such a way that the aggregate productivity 
gains for the economy as a whole correspond 
to the results of Calderon and others (2015). 
For example, suppose the infrastructure is 

Annex Table 3.4.3. Global Carbon Removal Potentials in 2050

(Gigaton CO2)

Carbon removal technologies Potentials
Afforestation and reforestation 0.5–3.6
BECCS 0.5–5
Biochar 0.5–2
Enhanced weathering 2–4
DACCS 0.5–5
Soil carbon sequestration Up to 5
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focused mainly on the renewable energy sectors, then the productivity gains would be scaled up 
in these sectors so that when the shocks are weighted by the share of each sector in the 
economy, the aggregate productivity shocks match Calderon and others (2015). This implies that 
a small sector will have a very large productivity gain if all infrastructure is allocated to that 
sector.  Because of capital adjustment costs, which are sector specific in the model, the 
economy-wide output gains will be lower than if the productivity was allocated across all sectors 
because rapid productivity growth increases the cost of accumulation private capital in the sector 
growing quickly.  

We subsidize solar and wind output at a rate of 80% for all regions since 2019.  

We introduce economy-wide productivity improvements driven by avoided damages from 
climate change due to all other policies in the package, and impose the productivity 
improvements equally on all sectors except electricity generation. The economy-wide 
improvements reflecting avoided damages from climate change are calculated using the 
extension of the Hassler and other (2020) integrated assessment model performed for this 
chapter (see Annex 3.5).  

We transfer 25% of carbon tax revenues to households as compensatory transfers to offset 
their loss of purchasing power from the carbon tax. The fraction of revenues needed for 
compensation was set at 25% based on the analysis in the section How to build inclusion (and 
Annex 3.7). 

This is the policy package including carbon taxes, green investment, green subsidy, avoided 
damages, and the carbon tax revenue transfer.  

This scenario assumes that only the largest 5 countries (economic union) (USA, EUW, 
CHN, IND, JPN) participate in the policy package. For comparison with the aggregate scenario, 
we do not re-solve carbon taxes to achieve 80% reduction in the scenario, but directly use all 
shocks for the five countries/regions from the aggregate scenario. 

This scenario assumes that only advanced economies (USA, EUW, JPN, AUS, OEC) 
participate in the policy package. Similarly, we do not re-solve carbon taxes in the scenario. 

Given that 2018 is the last year of observed data, the policy shocks are applied from 2019 
onward. For presentational purposes, the simulation is presented as starting in 2021. This should 



not affect much the starting level of CO2 emissions, as CO2 emissions grew in 2019 but 
declined in 2020 due to the pandemic.  

  



This annex outlines the model used to analyze the interaction between climate change 
mitigation policies and the direction (that is, the greenness) of technical change. This interaction 
is potentially important for two reasons.  First, because the response of technological change to 
policy alters the effectiveness of mitigation policies, not only in the present but–because the 
direction of technical progress in the present affects the set of available technologies in future–
also in future periods.  Second, this channel expands the set of policies which can be analyzed, 
admitting a role for subsidies to research and development. 

The model used here allows for the scale and direction of technical change to respond 
endogenously to policies, extending the model of Hassler and others (2020) in three important 
dimensions: adding a more general form of research and development (R&D) which allows for 
more flexible returns to scale; including non-unit price elasticity in final energy demand; and 
extending the range of fuel sources available to match IEA data.  The resulting model 
framework is a useful laboratory for policy experiments, as it is rich enough to allow an analysis 
of the role of how the direction of technical change responds endogenously to policy but is 
tractable enough for the resulting outcomes to be comprehensible. 

We use a global integrated assessment model (IAM) in the spirit of Hassler and others 
(2020) (which itself follows in the tradition of earlier IAMS, such as Nordhaus 2010, and 
Golosov and others 2014).  The global economy is modelled as several distinct regions, each 
producing a single energy good used as an input to aggregate domestic production. The energy 
good is made by combining fuels with a constant elasticity of substitution production 
technology. Fuel usage produces CO2 emissions, with different carbon intensities (the quantity 
of CO2 produced per unit of energy) for fuel in each region.  Emissions in each region are 
therefore a function of both the total amount of energy used and its composition (green versus 
dirty).  The sum of emissions across regions drives global temperatures via a climate model, 
which in turn reduces regional productivities, causing a climate externality. 

Governments have two policy tools available to them to mitigate this climate externality: a 
tax on carbon, and a subsidy for research and development. Energy-producing firms conduct 
fuel-specific research and development (R&D), which lowers the input cost or the carbon 
intensity of fuel usage (or both). Firms therefore increase their R&D spending on a given fuel 
when the market for that fuel expands. Thus, policies which increase the market for a given fuel 
technology (say, renewable energy), spur further R&D in that technology, reducing costs and 
further amplifying the effect of the policy. There is also an inter-temporal spillover, as the cost 
of production is a function of research conducted in the past, as well as in the present. By 
stimulating research in the present, policies which lower the current cost of clean energy thus 
make clean energy more affordable in future. 

The Energy Sector 

Energy is produced by a CES technology using N fuels.  Imported conventional oil is 
always indexed first.  Energy production in region j in time t is therefore given by: 
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              (3.5.1) 

where: 𝑔௧  is usage of fuel i in region j; 𝜆, is the production weight of fuel i in country j; 

and 
ଵ

ଵିఘ
 is the intra-fuel elasticity of substitution, common across all regions.   

In each region, there is a fuel-specific technology for producing each fuel. At the start of 
each period t this technology is common knowledge.20  The level of this technology is denoted 
𝑥̅௧ , which represents the number of units of final good that are spent to produce one unit of 
input i.  Firms can improve the technology they use via research, increasing this productivity to 
𝑥௧ at a cost: 
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where 𝜖 is a region-specific cost parameter, and 𝜒௧ is the subsidy to R&D in fuel i.  

Crucially, 𝜂 > 1, implying that this cost function is convex, and 
ଵ

ఎିଵ
 is the returns to scale in 

R&D.  So as 𝜂 declines, the returns to scale in R&D improve. 

Technology similarly governs the carbon intensity of production, i.e. the amount of carbon 
dioxide produced per unit of energy. This is also common knowledge at the start of the period, 
denoted �̅�௧ and also improvable (i.e., reducing carbon intensity) via research, at cost: 

𝑟


൫𝑔௧/�̅�𝑠௧൯ =
𝜃𝑗(1 − 𝜒௧)

𝜂 − 1
ቆ

𝑔௧

�̅�௧
ቇ

ଵିఎ

 

where 𝜃 is also a region-specific parameter.  Endogenous technical change therefore takes 
two forms: input-saving, and emissions-reducing.  For simplicity we assume that the returns to 
scale and government subsidies across the two types are the same.  

Letting 𝑝௧ =
ଵ

௫ೕ
, the cost of production net of research is then: 
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where 𝜏௧ is the carbon tax for country j in period t.   

 
20 Fried (2018) shows that within-sector energy technology spillovers often occur within five years. As we later calibrate the model using a ten-

year time period, assuming that the previous decade’s worth of innovations are freely available to all firms is not unreasonable. 



The cost of production defined above produces a downward-sloping average cost curve, 
meaning that energy production is a natural monopoly. This arises because research is a fixed 
cost; with increased sales, this cost is defrayed over more units, creating a cost advantage for 
larger firms and eventually resulting in a monopoly. For simplicity, we assume that energy supply 
is regulated so that the monopoly energy supplier makes zero profits. This can be implemented 
by a price cap such that the energy price equals the average cost. This is a not unreasonable 
assumption given frequent regulation of real-world energy markets. It is also a standard method 
for determining equilibrium a monopoly, and one which delivers the (static) socially optimal 
outcome without subsidies to energy production.21 

This setting differs from the Hassler and others (2020) approach in two important ways. 
First, the cost of research is more general, allowing for returns to scale governed by the 
parameter 𝜂. Second, this approach allows for an aggregate market size effect. In the Hassler and 
others (2020) setting, the relative composition of research responds to relative market shares. In 
contrast, here total research also increases with total energy demand increases. This is potentially 
an important amplification channel for policy, as the impact on aggregate energy prices (and 
hence demand for energy) is a crucial mechanism by which mitigation policies work. 

The advantage of this framework over a richer approach, such as Acemoglu and others 
(2016), is its simplicity. Changes in the composition of the energy bundle are determined by the 
relationship between the elasticity of substitution and the returns to scale in R&D (via an R&D 
composition effect); changes in aggregate energy usage are determined by a similar relationship 
between the elasticity of energy demand and the returns to scale in R&D (via an aggregate R&D 
effect). 

Domestic Economy 

The energy sector is an input into aggregate production.  As the focus of the analysis is on 
the role of R&D in energy, the aggregate economy is kept deliberately very simple. Aggregate 
production is given by a CES aggregate of energy with a Cobb-Douglas energy bundle: 
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where 𝜈 is the energy share parameter for region j, 𝛼 is the capital share for region j, 𝐴௧ is 

labor productivity, 𝐿௧ the labor force, 𝐾௧ the capital stock, and 
ଵ

ଵିఙ
 is the elasticity of 

substitution of energy in final production. This last feature is an important further extension 
over Hassler and others (2020), as the elasticity of energy demand determines the aggregate 
response of energy usage to changes in the price of energy, such as those caused by climate 
mitigation policies. 

The function 𝜙(𝑇௧ିଵ) is the region-specific damages from global temperature, assumed to 

be a function of temperature at the end of the preceding period, 𝑇௧ିଵ.  This determines the size 

 
21 The efficient outcome here requires a subsidy, the size of which is dependent on the slope of the demand curve. 



of the climate externality and is allowed to vary by region given evidence that warmer countries 
typically have higher costs of climate change (see Nordhaus 2010, Dell, Jones and Olken 2014, 
Burke, Hsiang, and Miguel 2015). 

Labor and capital are supplied in competitive markets. Labor is assumed to in fixed supply 
and grow exogenously over time. For simplicity, the capital stock is assumed to depreciate fully 
each period and to be owned by domestic households who have an inter-temporal elasticity of 
substitution equal to one. This means that saving is a fixed fraction of output, greatly simplifying 
the analysis. 

International Economy 

Following Hassler and others (2020), conventional oil is assumed to be produced at zero 
cost by an oil-producing region, which manages a fixed stock of oil reserves to maximize their 
monopoly rents. Unconventional (fracked) oil can be produced domestically. In equilibrium, the 
international price of oil moves to equate global oil demand with supply from the oil-producing 
region. The oil price is therefore the main international price linkage; there is no trade in other 
goods. 

We allow for an international diffusion of ideas, modelled as a constant rate of catch-up by 
each region to the frontier level of technology. 

�̅�,௧ାଵ = 𝜔�̅�௧ + ൫1 − 𝜔൯max�̅�௧ 
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Pollution and Climate Externality 

Emissions in region j are  
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and global emissions are 
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Past emissions contribute to the stock of global CO2 as in Golosov and others (2014), with: 
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where the decay of absorption of emissions is parameterized by: 

1 − 𝑑௦ = 𝜓 + (1 − 𝜓)𝜓(1 − 𝜓)௦ 



The interpretation of this formulation is that for each unit of emissions, a fraction 𝜓 
remains in the atmosphere permanently, with the rest decaying at rate 𝜓.  The evolution of 
emissions can therefore be expressed recursively using a separate variable for the permanent 
share of emissions. 

Atmospheric and ocean temperatures, 𝑇௧ and 𝑇௧ respectively follow an energy budget 
model, derived from RICE/DICE (Nordhaus 2010). This is a linear coupled system with the 
stock of atmospheric CO2 acting as a forcing variable. 
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where 𝑆 is the pre-industrial emissions stock, 𝜆መ is the long-run climate sensitivity (the 

temperature increase due to a doubling of the atmospheric carbon stock), �̂� determines the rate 
of convergence of temperature to the long-run level, 𝜎ଵ governs the auto-regressivity of 
atmospheric temperatures, and 𝜎ଶ and 𝜎ଷ capture the directed temperature exchange between 
the atmosphere and the oceans. 

Productivity is a region-specific quadratic function of global temperature: 

𝜙(𝑇௧) = 1 − 𝜙
 + 𝜙

ଵ𝑇௧ +  𝜙
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ଶ 

This cost function nests the specifications of Nordhaus (2010) and Burke, Hsiang and Miguel 
(2015), just with different specific parameter choices. 

Model Solution 

The state of the model is defined by the value of the region-specific labor productivity, 
capital, and fuel-specific technologies �̅�௧ and �̅�௧, as well as global stock of emissions and their 
permanent share. With nine productive regions and six improvable fuels this gives 128 state 
variables, justifying the strong simplifying assumptions on the structure of the macroeconomy. 

In order to match the G-cubed model (see Annex 3.4), there are ten regions, all of which 
have the production structure discussed above except for OPEC, which produces only oil for 

Annex Table 3.5.1. Calibrated Production Parameters  
Parameter Description Type Value Target 

𝜆𝑖,𝑗  CES fuel weight Regional  IEA fuel shares 
𝜖𝑖𝑗  Efficiency R&D cost shift Regional  Regional fuel prices 
𝜃𝑖𝑗  Carbon intensity R&D cost shift Regional  IEA carbon intensities 
𝜌 Intra-fuel CES parameter Common 0.67 Papageorgiou et al. (2013) 

𝜂 R&D returns Common 10 Fried (2018) dynamics 
𝜈𝑗  Energy output share parameter Regional  IEA energy shares 
𝛼𝑗  Capital share Regional  WEO capital shares 

𝜎 Aggregate CES parameter Common -3 Consistent with Annex 3.6 

 



international trade. There are seven fuel types: 
international oil; domestic oil, natural gas, 
coal, hydroelectric, nuclear, and renewables. 
International and domestic oil are respectively 
identified with production via conventional 
and unconventional (e.g., fracking) methods 
of production. 

The parameters of the aggregate and energy 
production functions are chosen to match 
data from the IEA on the usage, price, and 
carbon intensities of the different fuels (see 
Annex Table 3.5.1). The intra-fuel elasticity of 
substitution is set to three, consistent with 
Papageorgiou and others (2013), and the 
elasticity of substitution of energy and the 
capital-labor bundle is 0.25, in line with the 
assumptions of Annex 3.6. Returns to R&D 
are chosen to match aggregate responses of 
other models in the literature. Fried (2018) 
estimates that the innovation response in a 
model of endogenous technical change in the 
energy sector reduces by 20 percent the 
carbon tax required to meet a given reduction 
in emissions in 20 years. After accounting for 
key model differences, this implies returns to 
scale in R&D of around 0.11, or 𝜂 of 10.   

Aggregate production parameters are 
chosen to match the expenditure shares of 
energy, labor and capital. Initial values for 
capital and labor productivity are set to match 
average regional weights in global GDP and 
emissions during 2010-2019. Labor force 
growth is taken from ILO forecasts until 
2030, and to converge smoothly to an annual 
growth rate of 0.2% by 2070, consistent with 
UN population projections. The long-run 
growth rate of labor productivity is assumed to be 1.3% per year, with catch-up growth in 
productivity in three regions (India, China, and RoW) during the short term. To capture trends 
in energy efficiency, the energy share parameter 𝜈 is assumed to decrease at around 0.7 percent 
annually, in line with recent trends. 
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Annex Figure 3.5.1 compares the results of the calibrated model to the data, averaged across 
2010-2019. Overall, the model matches the level and distribution of output, emissions, energy 
usage, and prices across the various regions. 

The calibration of the climate module takes standard parameter values from Nordhaus 
(2010), Golosov and others (2014), and Hassler and others (2020). Baseline climate damages of 
higher temperatures are taken from Nordhaus (2010) with an alternative specification using 
Burke, Hsiang, and Miguel (2015).



Emissions from electricity generation and heating amounted to roughly 40 percent of total 
global carbon dioxide (CO2) emissions in 2018 and are expected to grow further. Energy 
efficiency improvements will not be enough to offset the world’s rising electricity needs due to 
projected economic growth and rising incomes in developing economies. Given current 
emissions trajectories and the electricity sector’s role as key emitter, an immediate low-carbon 
transition is indispensable to avoid irreversible global warming. However, not only are currently 
adopted policies greatly insufficient to meet emissions reductions’ targets from the Paris 
agreement, but policymakers’ commitments for further electricity sector reforms in the future 
are generally estimated to fall short of what is needed to avoid irreversible climate damage. 
According to the International Energy Agency, the growth of low-carbon electricity sources up 
to 2040 under stated policies is estimated to be half as large as what is needed to meet the UN’s 
Sustainable Development Goals and to cut emissions in line with the objectives of the Paris 
Agreement.  

Electricity generation from coal dates to the 1880s and emits about one kg of CO2 per 
kWh, making it the heaviest-polluting electricity source that, by itself, causes roughly 30 percent 
of global CO2 emissions. The share of natural gas in the electricity mix has been rising in many 
countries, facilitated by an increase in supply from the fracking boom in the United States. With 
about 400 grams of CO2 per kWh, it is less polluting than coal–and so-called gas-for-coal 
switching lowered emissions in many countries–but emissions are still too high for gas to play a 
significant role in a low-carbon economy, aside from providing flexibility for backing up 
intermittent renewables. 

Annex Figure 3.6.1 shows the electricity 
mix in the European Union, the United States 
and China. In all regions, the share of coal 
and natural gas is unsustainably high in the 
sense that absent a dramatic rebalancing, 
electricity generation will be a key driver of 
irreversible climate damage. The mix in the 
European Union is the least emitting, which 
is reflected in comparably low annual per-
capita CO2 emissions from electricity and 
heating of 2,176 kg (as of 2017). However, 
coal still has a share of over 20 percent and is 
in many places backed by subsidies that delay 
the required transition. Per-capita emissions 
in the United States are about 2.5 times 
higher than in the EU (5,592 kg in 2017), 
which results from a per-capita electricity 
consumption about twice as large, combined 
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with a more polluting electricity mix in which coal and gas together make up over 60 percent of 
the generation. Electricity consumption in China is about 2/3 as large as in the EU, but the 
extremely high share of coal–almost 70 percent–elevates annual per-capita emissions to 3,312 kg. 

The need for an immediate transition towards low-carbon electricity raises questions about 
its technical feasibility, its costs, and the role governments can play in its facilitation. Feasibility 
has improved dramatically over the last decade, with prices for key renewable technologies 
having undergone a rapid decline that is expected to continue. This made them economically 
viable and gave them the potential to replace coal-fired electricity on a large scale. The improved 
competitiveness of renewables means that the balance between low and high-carbon 
technologies can be more easily tipped in favor of the sustainable kind, and thereby creates the 
conditions for mitigation policies to be especially effective. This is crucially different from a 
decade ago when limited technology readiness constrained the effectiveness of the green 
stimulus provided after the Global Financial Crisis in decarbonizing electricity generation (IEA, 
2020c), suggesting that that episode may offer little guidance on the likely impact of mitigation 
policies at the current juncture. The following analysis shows that in the current technological 
environment mitigation policies can lead to substantial reductions in emissions. The associated 
macroeconomic costs are modest and, under any reasonable probability distribution, dwarfed by 
the costs of global warming. Governments thus must seize the opportunity and play a key role in 
accelerating the transition that, left to market forces alone, will come too late. This holds 
especially at the current juncture characterized by low interest rates and the need for economic 
stimulus to stabilize demand during the Covid-19 crisis.  

There are various low-carbon technologies to produce electricity. Each has its specific 
advantages and drawbacks, and it is difficult to predict how technology will evolve in the future. 
Hydraulic power generation has geographic requirements that limit the availability of sites and 
causes broader environmental damages. Biomass can be used to generate electricity, but its 
production could compete with other uses of land. Nuclear power is a carbon-neutral 
technology with a scalability that would allow to replace coal and gas but has a generally low 
popularity. The latter results from a combination of recent nuclear disasters, the prominent 
discussion of nuclear waste management, and an underappreciation of its potential to curb 
global warming when it replaces high-carbon technologies. In actuarial terms however the costs 
of nuclear power–a low probability of devastating but geographically limited damage–will likely 
be dwarfed by the certain, global and irreversible damages from climate change. The most 
promising and politically acceptable carbon-neutral technology is renewable electricity generation 
from wind and solar photovoltaic (PV). The key drawback of this technology, discussed in detail 
below, is that electricity from renewables is intermittent, i.e. that it is only generated when there 
is wind or sun. Carbon capture and storage (CSS) technologies have the potential to reduce 
emissions from coal power plants, but a significant deployment of this technology is prevented 
by high costs that are not predicted to fall substantially in the near term. In this analysis we focus 
on renewables as the technology to bring about an electricity transition, as it is in principle 
scalable and, relative to nuclear power, politically less controversial. 



Our focus on renewables merits a closer 
inspection of its intermittency problem. 
Annex Figure 3.6.2 shows so-called 
generation duration curves for different 
illustrative regions, i.e. the electricity output 
from wind as a function of wind regimes 
ordered by their strength. The data is 
normalized by average electricity output over 
time so that, for example, the curve for the 
US Northwest tells us that output during the 
top 20 percent of the time exceeds twice the 
average output. We observe that there are 
substantial periods in which wind generates 
close to no output. The load factor (i.e. the 
ratio between average generation and peak 
generation) of the shown data is between 35 
percent for onshore wind and 45 percent for 
offshore wind. For solar PV, it amounts to 
about 25 percent. 

Thus, to ensure that electricity supply can always meet demand, either demand must be 
managed to decline in line with supply when renewable output is low, or total electricity supply 
must be stabilized in the face of output fluctuations from renewables. Demand management on 
the part of private households and industrial production has potential but is still insufficient to 
solve the problem of intermittency. Electricity storage could smooth out output fluctuations and 
is developing rapidly but is not yet ready to be deployed at a sufficiency large scale. The most 
prominent example for utility-scale electricity storage are hydro-pumps, whose global power 
capacity the International Hydropower Association estimates at 158 GW. In the United States, 
the European Union and China (IHA, 2020), this would represent about 30 minutes of power 
consumption, while managing solar (wind) intermittency would require about 18 hours (72 
hours) of electricity storage. Chemical storage (batteries or hydrogen) are still too expensive for 
large deployment and other technologies based on heat or gravity are not mature yet. With 
electricity storage still not being economically viable at a large scale, the intermittency of 
renewables must be compensated by other flexible electricity sources in the grid. Natural gas and  
hydro are the most commonly used for this purpose. The International Energy Agency points to 
flexibility retrofits that can potentially allow coal power plants to serve as a backup for 
renewables (IEA, 2019).  While this can give existing power plants a role in an electricity 
transition, it would entail a slower decline in emissions relative to the use of other backups.  

The constraints that intermittency poses for the expansion of renewables are captured by a 
dedicated module of our macroeconomic model introduced below. Under the assumption that 
demand flexibility and electricity storage are not yet sufficiently mature to manage intermittency, 
the model requires that any intermittent generation capacity is paired with a dispatchable back-
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up capacity that is idle for most of time but can cover power shortfalls of intermittent 
technologies (see Morris and others, 2010). More precisely, the backup covers, at any point in 
time, the difference between intermittent power generation and the desired output. Pairing 
renewables with a backup increases costs relative to stand-alone renewables, but fully 
compensates for their drawback of being intermittent. The framework allows for so-called 
overcapacity, i.e. the installation of renewable capacity that, at peak output, produces electricity 
above demand that must be curtailed. 

Generation duration curves as show in Annex Figure 3.6.2 can be well approximated by the 
power function 

𝐸 = 𝑝ఊ 

where 𝛾 is a parameter measuring the degree of intermittency (the corresponding load 
factor is given by 1/(1 + 𝛾)). Offshore wind is generally more stable than onshore wind, 
reflecting in an intermittency parameter of between 1 and 1.5, compared to values between 2 
and 3 for onshore wind. Solar intermittency has a different intermittency profile—it does not 
produce at night—but has a similar pattern as wind during the day. 

Variable costs of the backup, fixed costs of renewables, and fixed costs of the backup are 
denoted by 𝐶௩ , 𝐶, and 𝐶 respectively. We assume that a utility using renewables paired with 
a backup aims to produce a constant output L. The size of the backup capacity relative to 
renewable capacity is endogenously determined by cost-minimization based on 𝛾 (as the degree 
of intermittency influences the need for a backup) and the costs structures of both technologies. 
To build intuition for the choice a utility faces, we first consider the illustrative case in which 
there is a given backup capacity but no renewables. Deploying renewables—operating at zero 
variable costs—lowers the utility’s overall variable costs, as costly generation from the backup 
can be substituted for. Under our assumptions on the cost structure after taxes and subsidies, 
variable cost savings from expanding renewables exceed their installation costs, so the utility 
chooses to increase renewable capacities at least up to the point where peak renewable output 
equals L. Expanding renewables above this point still lowers variable costs by reducing the share 
of output from the backup, but the variable cost savings are declining in size because of 
curtailment: since peak renewable output now exceeds L, a positive share of renewable output 
has to be curtailed. Because of the shape of the generation duration curve, this share rises at an 
increasing pace when additional renewable capacity is installed. At the cost-minimizing ratio 
between renewable and back-up capacities, curtailment reduces the variable cost savings from 
additional renewables such that they equal the fixed costs. Optimality implies that the following 
output B is produced from the backup (and the remainder 𝐿 − 𝐵  from renewables): 

𝐵 =  
𝛾

1 + 𝛾
൬

𝐶௩

𝐶
൰

ିଵ
ଵାఊ

 



The analysis uses the Carbon Mitigation Macro Model (CarMMa), a Dynamic Structural 
General Equilibrium (DSGE) model tailored for analyzing how governments can trigger an 
electricity transition and its macroeconomic implications. Such analysis implies two key 
modelling requirements. First, a detailed description of the government and the macroeconomy 
is necessary to capture the fiscal dimension of policies and their general-equilibrium effects. 
CarMMa meets this requirement as it largely builds on the IMF’s workhorse model GIMF and 
inherits a detailed description of the interaction between households, firms, a detailed fiscal 
sector and monetary policy, as well as a menu of real and nominal rigidities. CarMMa is currently 
a closed-economy model. The second modelling requirement is that the electricity sector should 
be sufficiently granular to capture technology-specific practical constraints to an electricity 
transition. CarMMa’s electricity sector encompasses four technologies: coal, natural gas, 
renewables, and nuclear power plus hydro. The fuel required for coal and natural gas generation 
is mined in two specific mining sectors. Nuclear and hydropower have negligible carbon 
emissions and close to zero marginal cost. Hydro and nuclear capacities are exogenous, 
reflecting limited availability of hydropower sites and the crucial role of political considerations, 
rather than market-based ones, in the development of nuclear power. When nuclear power 
expands, building additional capacities is subject to a time-to-build constraint. Due to 
intermittency, renewables are paired with a backup capacity in a cost-efficient manner as 
outlined above. The most common backups are hydropower and natural gas, while coal 
(assuming appropriate flexibly retrofits) comes third according to a merit-order model. Different 
electricity generations compete on a commodity market for electricity where output from the 
different sources are treated as very close substitutes (they are equally dispatchable, as 
intermittency from renewables is compensated by the backup). For the US model, natural gas is 
assumed to be the only backup, whereas both natural gas and coal are used as backup in China 
and the European Union (to capture the shortage of natural gas in both regions). Electricity is 
used as an intermediate input in the production of manufacturing goods and services, and also 
directly enters the final consumption good. 

The structure of GDP by sector (electricity, manufactured goods and services), by 
expenditure (private consumption and investment as well as public consumption and 
investment), and by income (total compensation, gross operating surplus and taxes and 
subsidies) reproduces national accounts in 2018 and the most recent input-output tables. The 
share of the different electricity-generation technologies and their emissions (abstracting from 
those associated with the installation and dismantlement of capacity) reproduce data from the 
IEA. Flexible generation from hydropower and the development of offshore wind can to some 

(Percent of GDP)
United States European Union China

Electricity 1.9 3.0 2.3
    Manufacturing 0.4 0.9 1.2
    Services 0.5 0.7 0.6
    Consumption 1.0 1.4 0.5

Annex Table 3.6.1. Electricity Generation and Use



extent alleviate the intermittency problem, which we do not explicitly model but proxy for by 
using an intermittency parameter 𝛾 lower than observed. Annex Table 3.6.1 shows for the three 
regions the share of electricity generation in output, and the breakdown of electricity use 
between final consumption and as input in manufacturing and services. 

Before turning to the simulation results, we highlight key aspects of the transmission of a 
carbon price into the electricity price, and of the electricity price into macroeconomic variables.  

Transmission of a Carbon Price into the Electricity Price 

When a carbon price is introduced, the mining sector absorbs some of the carbon price 
burden, which cushions the rise in fuel costs experienced by coal-based (and to a lesser extent 
gas-based) electricity producers. A carbon price reduces fuel demand and thereby the price of 
coal and gas, at least in the short run, so that electricity producers do not face a one-for-one 
increase in fuel cost. The impact of a given rise in fuel costs on the electricity price is further 
dampened by the competition in the market. The carbon price increases fuel costs of electricity 
generation from coal (and gas) but has no impact on marginal costs of other technologies. Given 
the high degree of competition, coal and gas producers are not able to significantly increase 
prices despite rising fuel costs. Some of the required room for absorbing higher costs results 
from a decline in investment, which, in turn, follows from expected permanently reduced 
profitability. A further factor mitigating the adjustment of the electricity price is the rebalancing 
of the electricity mix. A carbon price tilts relative prices to the disadvantage of carbon-intensive 
technologies and thereby triggers a gradual transition towards low-carbon technologies. The 
associated decline in the average carbon intensity of the electricity mix means that a given 
carbon price leads to a smaller increase in the electricity price. The strength of this effect 
depends on the availability of natural gas as a backup: If gas is scarce and a more carbon-
intensive technology has to be used as backup, a given surge in renewables implies a weaker 
decline in emissions and thereby in the carbon price burden.  

Transmission of a Higher Electricity Price into the Macroeconomy 

Electricity is used to operate machines (or buildings) that increase labor productivity. A 
higher electricity price does not significantly alter technical coefficients, so firms have limited 
means to substitute capital and labor for electricity when the latter becomes more costly, but 
instead reduce demand for capital and labor. Due to the high price elasticity of capital supply 
and the low price elasticity for labor in general equilibrium, the decline in demand translates into 
a reduction of investment and capital accumulation (implying that a higher investment share 
increases the impact of a carbon price on output), as well as into lower real wages. This causes 
the impact of a carbon price to affect sectors beyond electricity production. The strength of 
these spillovers is determined by the elasticity of substitution between electricity and other 
factors, which we set to 0.3, and by the share of electricity in the respective sector.  

In a nutshell, the macroeconomic impact of a carbon price in the electricity sector depends 
on four factors: the initial share of coal in the electricity mix, the portion of the carbon burden 



that is absorbed by the mining sector, the availability of low-carbon backup technologies, and 
the investment share in the economy. 

Carbon Price of 50USD in the United States, the European Union and China 

We first study the gradual introduction of 
a carbon price, phased-in over 10 years, in the 
United States, China and the Euro Area, 
under the assumption that carbon tax 
revenues are given back to households as 
transfers. Lines in darker colors in Annex 
Figure 3.6.3 show the adjustment of the 
electricity mixes in this scenario. Annex 
Figure 3.6.4 shows in the same fashion the 
adjustment of output, investment, 
consumption and electricity-related CO2 
emissions. In the interpretation of output 
costs, we need to consider that the model 
does not account for climate damages and 
therefore does not capture benefits from 
cutting emissions. 

The carbon price discriminates by the 
carbon-intensity of the different technologies 
and thereby tilts relative prices to the 
disadvantage of coal and, to a lesser extent, 
natural gas. This results in a decline in the 
share of coal generation in all regions. In the 
United States, the share falls below 10 percent as natural gas is abundant enough to provide the 
grid sufficient flexibility to accommodate the rising share of renewables. Our assumption of an 
average 40-year lifetime of a coal power plant slows down the transition, as the immediate 
collapse of investment in that sector only translates into a gradual depreciation of the capital 
stock. In the European Union and China, the use of coal alongside gas as a backup for 
renewables mitigates to some extent the decline of the share of coal. As a result of introducing 
the carbon price, the electricity price rises gradually to reach a cumulative increase after ten years 
of 10 percent in the European Union, 20 percent in the United-states and 30 percent in China 
where the share of coal is the highest. 

The carbon price reduces investment, as a result of shrinking coal sectors, as well as lower 
economy-wide investment due to the limited extent to which manufacturing goods and services 
producers can substitute away from more costly electricity. After an initial uptick caused by 
higher dividend pay-outs associated with less spending on investment, consumption declines. 
GDP declines gradually over ten years (relative to baseline), implying an average annual growth 
reduction of about 0.1 percentage point in the United-States and European Union, and 0.3 
percentage point in China. The larger decline in China has two main explanations. First, the 
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larger share of coal in the electricity mix amplifies the rise in the electricity price; and second, the 
high share of investment in the economy means that a given decline in investment translates into 
a greater drop in aggregate demand and output. Given its dampening impact on investment, the 
carbon price works towards rebalancing the economy towards a larger consumption share.  

After ten years, carbon emissions in the electricity sector have declined relative to baseline 
by about 30 percent in the European Union, 35 percent in the United States, and 38 percent in 
China. Electricity-related emissions in China and in the United States decline by roughly the 
same proportion after ten years, but different initial emission levels cause the declines to differ in 
absolute size (745 megatons in the United States, 390 megatons in the EU, and 1919 megatons 
in China). 

Carbon Tax with a Macro Package in the United States and the European Union 

The additional government revenues generated by the carbon price offer the chance to 
foster the further development of renewables. For the United States and Europe, we consider a 
macro package that complements the carbon price with (i) frontloaded subsidies for investment 
in renewables, financed by public debt in the first five years, and (ii) accommodative monetary 
policy in the short run. In the United States, initial subsidies amount to 60 percent of the 
investment costs in renewables, and then decline to 30 percent after five years. In the European 
Union, the rate starts at 40 percent and declines to 20 percent after five years, reflecting lower 
carbon price revenues compared to the United States. The subsidies boost investment in the 
short term and thereby accelerate the electricity transition, which, by lowering the average 
carbon intensity, dampens the impact of the carbon price on the electricity price and GDP. Note 
that renewables investment subsidies come in addition to existing renewables production 
subsidies, which are incorporated in the initial calibration.  

Lighter lines in Annex Figure 3.6.4 denote the adjustment when the macro package 
complements the introduction of the carbon price. The macro package compensates the output 
decline the short run and mitigates the decline of output in the long run, while it also amplifies 
the reduction in emissions. The effectiveness of the macro package is greater when it is paired 
with a carbon price. The reason is that the prospect of a higher long-run market share of 
renewables (brought about by the carbon price) amplifies the impact of a given subsidy.  



Carbon Tax with a Macro Package and Additional Nuclear Power in China 

China’s strong reliance on coal amplifies 
the macroeconomic costs of introducing a 
carbon price. To investigate to what extent 
these costs can be mitigated by additional 
policies, we study a broader policy mix which, 
next to the gradual introduction of a 50 USD 
carbon tax, also features an expansion of 
nuclear power and an improved availability of 
natural gas (which can be used as backup for 
renewables). Annex Figure 3.6.4 compares the 
impact of this policy mix to the impact of the 
isolated 50 USD carbon price (from the 
previous exercise). The additional measures 
cut output costs by roughly a half and amplify 
the decline in emissions by about 50 percent. 
The deployment of additional nuclear power 
capacity immediately contributes to the 
decline in emissions, as additional supply leads 
to a crowding-out of other producers in the 
grid, which are mostly coal-based. The subsidy 
for natural gas generation leads to deployment 
of new capacities that can serve as backup for 
renewable generation. As a result, the surging 
need for a flexible backup capacity–brought 
about by the rising share of renewables 
triggered by the carbon price–is split between 
coal and gas. This further amplifies the decline 
in the coal share. A key reason for the 
mitigation of the output decline is that the 
additional measures partially offset the 
increase in electricity costs caused by the 
carbon price. There is a direct channel by 
which nuclear power immediately increases 
supply of electricity and lowers the price, as 
well as an indirect channel based to the rebalancing of the electricity mix: the reduction in the 
share of coal caused by the additional nuclear and natural gas capacity lowers the average carbon 
intensity of electricity generation, which in turn dampens the price increase caused by the carbon 
price.  

Policy Implications Beyond the Model Analysis 

The large number of existing coal power plants and their young average age (60 percent are 
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20 years or younger) are a key concern for the practical implementation of an electricity 
transition. Continued operation of the existing fleet would generate enough emissions to 
potentially put sustainable development targets out of reach (International Energy Agency 2019), 
but a rapid retirement of that capacity could impose financial losses to their owners, who often 
include governments. The IEA estimates that existing coal power plants represent globally more 
than $1 trillion unrecovered capital investment. In the model simulations, this aspect surfaces in 
a dramatic decline in the value of coal power plants–summarized by Tobin’s Q of the respective 
capital stock.  This raises the question of how an electricity transition can be designed to 
minimize financial damages. The International Energy Agency points to the possibility of 
retrofitting and repurposing a significant share of existing plants, especially younger and more 
efficient ones, to make their continued operation compatible with climate targets. Possible 
retrofitting options include installing equipment for CCUS (Carbon Capture, Utilization, and 
Storage) or biomass co-firing, while repurposed plants can continue their operation at lower 
utilization levels to provide flexibility and thereby facilitate an expansion of intermittent 
renewable sources. 

  



Understanding the impact of carbon taxes on income inequality is critical to galvanizing 
support to fight climate change. Achieving inclusive climate change mitigation policies requires a 
thorough understanding of the channels through which carbon taxes affect the income 
distribution and the magnitudes in question.  

Carbon taxes can worsen income 
inequality because low-income households 
spend a proportionately larger fraction of 
their income on high-energy intensive goods, 
a fact that has been explored extensively in 
the literature (see Grainger and Kolstad 
2010, Fremstad and Paul 2019, and IMF 
2019 for examples).22 However, another 
important fact that is less known is that 
carbon taxes can also worsen income 
inequality by affecting proportionately more 
the wages and job opportunities of unskilled 
low-income workers. Unskilled workers are 
more likely to work in the high-energy 
intensive sector that is impacted more by a 
carbon tax (Annex Figure 3.7.1).23,24 

 In this section, a model that captures 
both the consumption and employment 
impacts of a carbon tax is developed. The 
model is used to quantitatively analyze the 
effect of a 50 USD per ton of CO2 tax on 
income inequality, considering different uses 
of the carbon tax revenue. Four different 
revenue recycling cases are examined in the 
analysis: (i) the carbon tax revenue is used to 
finance spending on the low-energy intensive 

 
22  There are examples where carbon taxes can improve income inequality, in these cases high-income households spend a relative larger share of 
income on energy-intensive goods. This is sometimes the case in EMs and LIDCs, where poor households do not have access to electricity. In 
these cases, carbon taxes can be progressive instead of regressive, but they may also reduce future access to electricity for poor households.  IMF 
(2019) finds that this is the case for India.  

23   Chateau and others (2019) analyzes the impact of a carbon tax across occupations in a Computational General Equilibrium model (CGE) and 
find that low-skilled occupations are more likely to be negatively affected by carbon taxes. Marin and Vona (2019) use a shift-share instrumental 
variable approach applied to 14 European countries and shows that climate policies have been skill-biased against manual workers and have 
favored technicians. 
 

24 An important limitation of this data is the inability to account for the share of employment in clean energy production. This is an issue that 
has been documented extensively in the literature (see for instance US Department of Energy 2017). 
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good; (ii) the carbon tax revenue is used finance a universal cash-transfers program; (iii) the 
carbon tax revenue is used to finance a targeted cash-transfers program for the bottom two 
quintiles of the income distribution; and (iv) the carbon tax revenue is used to fund a subsidy to 
clean energy consumption "feebates". 

This analysis uses a multi-sector heterogeneous agent model to simulate the impact of the 
various policies on income inequality. More details about the model and calibration can be found 
in Tavares (2020). The model is a small open economy with four goods (high-energy intensive 
good, low-energy intensive good, dirty energy, and clean energy) and two household types 
(skilled and unskilled). The high-energy intensive good and the low-energy intensive good are 
produced using capital, high-skilled labor, low-skilled labor, dirty and clean energy. The use of 
inputs differs across sectors: the high-energy intensive sector is more energy and low-skilled 
labor intensive than the low-energy intensive sector. Dirty and clean energy are produced using 
low-skilled labor and capital, and clean energy is more labor-intensive than dirty energy.25  

There are two types of households: skilled and unskilled. Skilled and unskilled households 
differ in their average productivity and the sectors in which they can find employment. Skilled 
and unskilled households have the same preferences over the consumption of the high-energy 
intensive good, the low-energy intensive good, dirty energy, clean energy, and leisure. They face 
idiosyncratic productivity shocks that they can partially insure against by investing in a risk-free 
asset. 

The two key features of the model are that: (i) household preferences are non-homothetic; 
and (ii) the skilled and unskilled labor-intensity varies across sectors. 

Preferences  

Non-homothetic preferences imply that low-skilled and low-income households consume a 
larger share of energy and energy-intensive goods in their consumption basket because their 
income is lower. Households in the model maximize expected lifetime utility over the 
consumption of the low-energy intensive good 𝑐, the consumption of the high-energy intensive 
good 𝑐, energy 𝑒, and hours worked l, subject to the borrowing constraints.  

Households’ utility function is given by 

𝑢(𝑐, 𝑐, 𝑒, 𝑙) =  𝜓 log(𝑐 + 𝑐̅) +  𝜓 log(𝑐) + (1 − 𝜓 − 𝜓) log(𝑒 − �̅�) − 𝜒 
𝑙

ଵା
ଵ
ఊ

1 +
1
𝛾

       

where e is the consumption of energy. The latter is a composite of clean 𝑒 and dirty 𝑒ௗ 
energy given by 

 
25 Despite its richness, this model abstracts from some channels that have been explored in literature. These include for example, the impact of 

carbon taxes on capital income (Metcalf 2019), informality (Bento and others (2018), and differences across ages and cohorts (Fried and others 
2018). 
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where 𝜌 determines the elasticity of substitution between clean and dirty energy. The term 
�̅� captures that the energy is a “subsistence” good that is consumed disproportionally more by 
low-income households while 𝑐̅ is a “luxury” good that is consumed disproportionally more by 
high-income households.  

The household budget constraint is given by 

 

𝑝𝑐 + 𝑝𝑐 + 𝑝𝑒 + (1 + 𝜏)𝑝ௗ𝑒ௗ +  𝑏ᇱ ≤ 𝑤 𝑙 𝑧 + (1 + 𝑟)𝑏 + 𝑇(𝑤𝑙𝑠), 

 

where 𝑝 is the price of the high-energy intensive good, 𝑝 is the price of the low-energy 
intensive good, 𝑝 is the price of clean energy, and  𝑝ௗ is the price of dirty energy.  𝑏 is the risk-
free asset, 𝑟 is the risk-free interest rates 𝑤 is the workers’ wage that depends on skill level, 𝑧 
denotes the current idiosyncratic productivity shock, and 𝑇(⋅) is the government transfers.  

Production 

 Differences in the labor intensity across sectors imply that unskilled households are more 
likely to find employment in the high-energy intensive sector. High and low-energy intensive 
goods are produced using constant elasticity of substitution (CES) production functions given 
by 

𝑓൫𝐾 , 𝐿௦,, 𝐿௨,, 𝐸, , 𝐸ௗ, ൯ = 𝐴  ቆ𝜇
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where 𝐾 is the capital; 𝐿 is the aggregate effective labor input, which is a combination of 
effective skilled 𝐿௦, and unskilled labor 𝐿௨, ; and 𝐸 is a combination of clean energy  𝐸, and 
dirty energy  𝐸ௗ,. These are given by 

𝐿 = ቆ𝜇
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 where 𝑗 ∈  {ℎ, 𝑙}. The key assumptions in the model based on data analysis is that the high-
energy intensive sector is more energy-intensive than the low-energy intensive sector (e.g. 𝜇

 <

𝜇
 ) and the high-energy intensive sector is more intensive in unskilled labor than the low-energy 

intensive sector (e.g. 𝜇
 < 𝜇

). 

Equilibrium  

The household state variables, x, are asset holdings, b, and idiosyncratic labor productivity, 
z. Given the distribution of skilled and unskilled workers 𝜇, carbon tax 𝜏, interest rates r, a utility 



function 𝑈 ∶ 𝑅ା × 𝑅ା × 𝑅ା × 𝑅ା → 𝑅, factor prices {𝑤௦, 𝑤௨, 𝑟, 𝑝, 𝑝, 𝑝 , 𝑝ௗ} and capital 
depreciation rate 𝛿, a stationary competitive equilibrium consists of workers' decision rules 
{𝑐,, 𝑐,, 𝑒, , 𝑒,ௗ, 𝑙 , 𝑏ᇱ,}{∈ {௨,௦}}, goods firms' production plans 

{𝐾 , 𝐿,௦, 𝐿,௨, 𝐸,ௗ, 𝐸,}{∈ {,}} , energy firms' production plans {𝐾 , 𝐿௨, }{∈{,ௗ}}, and the 

distribution of agents, Γ(𝑥), such that the following holds: 

 Given prices and policies, a household with skill level j maximizes lifetime 
expected utility subject to the borrowing constraints. 

 Goods producer j demands for K୨, L୨,ୱ, L୨,୳, E,ௗ, and E, satisfy the firm 
optimization problem. 

 Energy producer j demands for K୨ and L୨,୳ satisfy the firm optimization 
problem. 

 The government budget constraint is satisfied. 

 Skilled and unskilled labor markets clear. 

 The low-energy intensive good market clears. 

 The distribution Γ(𝑥) is stationary. 

The model is calibrated to the data by matching the households' consumption composition 
by income level to sectoral energy-intensity. The calibration uses the Consumption Expenditure 
Survey (CEX) to match consumption in the United States and the China Family Panel Survey 
(CFPS) for China. Using these two data sets, consumption goods are divided into three main 
categories: Energy (primarily utilities and gas), high-energy intensive goods (industrial goods and 
transportation), and low-energy intensive goods (services less transportation). To match the 
three sectors to workers, the calibration uses data from the American Community Survey (ACS) 
for the United States and data from the National Bureau of Statistics of China (NBS) for China 
in order to measure the skill intensity of the different sectors of the economy. Finally, each 
sector's energy intensity is calibrated using data from the International Energy Agency (IEA). All 
the elasticities of substitution are taken from the literature and are assumed to be the same in the 
United States and China.26  

To examine the distributional impact of a carbon tax, this section simulates the baseline 
economy with no carbon tax and then conducts a series of counterfactual experiments in which 
a constant carbon tax set at 50 USD per ton of CO2 is imposed. In particular, three different 
policies that differ in how the government recycles the carbon tax revenue are considered. In the 

 
26 There are three critical elasticities of substitution in the model. The elasticity of substitution between clean and dirty energy is selected to be 

equal to 3 in the range estimated by Papageorgiou and others (2013). The elasticity of substitution between energy and the capital-labor 
composite is selected to be equal to 0.25 in the range estimated by Van Der Werf (2008). The elasticity of substitution between skilled and 
unskilled labor is selected to be equal to 2, in the range estimated in the literature and discussed in Acemoglu and Autor (2011).    



first case, the government uses the revenue to finance government spending on low-energy 
intensive goods. In the next two cases, the government uses the revenue to finance, respectively, 
a universal cash-transfer program, and a cash-transfer program targeted to the bottom two 
quintiles of the income distribution.  

This section's main result is that without compensatory measures, carbon taxes lead to an 
increase in income inequality measured by the Gini coefficient (Annex Table 3.7.1). Income 
inequality increases because households at the bottom of the income distribution are impacted 
more by the carbon tax (Annex Figure 3.7.2). These households are affected by both the 
increase in energy prices and a reduction in wages. Unskilled workers' wages fall more than the 
wages of skilled workers. The skill premium increases because the carbon tax reduces the high-
energy intensive goods’ demand and unskilled workers work disproportionately more in this 
sector. 

When the revenue is used to finance a 
cash-transfer program instead of government 
spending, consumption of unskilled 
households goes up (Annex Figure 3.7.2), 
reducing income inequality to levels below 
the baseline, and this reduction is more 
considerable when the transfers are targeted 
to the bottom two quintiles of the income 
distribution.  

Feebates are another tool that 
governments use to fight climate change. 
Feebates can be targeted to specific markets, 
and their impact on emissions depends on the 
size of the market and its energy intensity. 
This section considers a feebate scheme 
under which the revenue from the carbon tax 
is used to subsidize clean energy 
consumption. The feebate impacts the price 
of energy and high-energy intensive goods 
relative to low-energy intensive-good less 
than in the case of a pure carbon tax scheme 
because of the subsidy to clean energy. This 
mitigates the effects on the consumption of 
households at the bottom of the income 
distribution. In addition, because the revenue 
is used to subsidize clean energy 
consumption, and the production of clean 
energy is more intensive in unskilled labor than the production of dirty energy, feebates boost 
labor demand for unskilled workers. This boost in demand mitigates the carbon tax impact on 
the skill premium, reducing income inequality (Annex Table 3.7.1). 
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Annex Table 3.7.1. The Distributional Impact of Carbon Tax and Mitigation Measures 
(Percent change)

Low-energy 
government 

spending

Universal cash-
transfers

Targeted cash-
transfers

Feebates

United States

Gini coefficient 0.35 -1.35 -2.24 -0.28

Skill premium 1.72 1.1 0.14 -0.41

China

Gini coefficient 0.12 -3.81 -4.52 -0.27

Skill premium 2.52 1.53 0.24 -1.51

Source: IMF staff calculations.

Note: The Table shows the result of the multi-sector heterogeneous agent model simulation of a 50 US dollar per 

tCO2 tax on carbon where the revenue is used to finance government spending on (1) low-energy intensive goods, 

(2) universal cash-transfers, (3) targeted cash-transfers to the bottom two quintiles of the income distribution, and 
(4) a subsidy to the consumption of clean energy. The table shows the percentage change with respect to the baseline 
of the Gini coefficient and the skill premium, measured as the ratio of wages of workers with more than high school 
education (skilled) over the wages of workers with at most high school education (unskilled).  


