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Figure 16.1: The Data Feedback Loop
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Convolution Fully connected

r = N
. L
LO (Input) L1 L2 L3 L4
912X%512 256x256  128x128 64x64 32x32

Source: https://www.ais.uni-bonn.de/deep_learning/
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PREDICTION:
Using information that you do have to
generate information that you don’t have
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American Economic Review 2020, 110(9): 2819-2858
hitps://doi.org/10.1257/aer.20191330

Nonrivalry and the Economics of Data’ FlrmS’ IncentIVGS tO Se” tralnlng
By CHARLES 1. JONES AND CHRISTOPHER TONETTI* data are ConStrained by fears Of

Data is nonrival: a person’s location history, medical records, and : :

driving data can be used by many firms simultaneously. Nonrivalry C re atlve d eSt ru Ctl O n
leads to increasing returns. As a result, there may be social gains to

data being used broadly across firms, even in the presence of pri-

vacy considerations. Fearing creative destruction, firms may choose

to hoard their data, leading to the inefficient use of nonrival data.

Giving data property rights to consumers can generate allocations

that are close to optimal. Cq s bal, their concerns for pri-

vacy against the economic gains that come from selling data broadly.

(JEL C80, D11, D21, D83, E22, K11, O34)

In recent years, the importance of data in the economy has become increasingly
apparent. More powerful computers and advances in algorithms such as machine
learning have led to an explosion in the usefulness of data. Examples include
self-driving cars, real-time language translation, medical diagnoses, product recom-
mendations, and social networks.

This paper develops a theoretical framework to study the economics of data. We
are particularly interested in how different property rights for data determine its use
in the economy, and thus affect output, privacy, and consumer welfare. The starting
point for our analysis is the observation that data is nonrival. That is, at a technolog-
ical level, data is infinitely usable. Most goods in economics are rival: if a person
consumes a kilogram of rice or an hour of an accountant’s time, some resource with
a positive opportunity cost is used up. In contrast, existing data can be used by any
number of firms or people simultaneously, without being diminished. Consider a
collection of one million labeled images, the human genome, the US Census, or the
data generated by 10,000 cars driving 10,000 miles. Any number of firms, people,
or machine learning algorithms can use these data simultaneously without reducing
the amount of data available to anvone else

R — T—
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Literature on Sharing Information Under Oligopoly

e Sharing input data does not change market structure but the intensity of
competition within a market
e Vives (1984) and Raith (1996): firms might share voluntarily
e Jansen (2008)
e Precommiting to share input data (on, say, demand)
e Without pre-commitment, sharing is reduced
e Sharing is reduced the greater the degree of market power
e de Corniére-Taylor (2023): general characterisation of impact of data on
reaction curves and implications for structural change
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Advertising: Predictions of Match Quality

e Bergemann and Bonatti (2015, AEJ: Micro) “Selling Cookies”

e C(Cookies are basically predictions or key input data for predicting match
quality

e Predictions are most valuable the higher are the stakes

e Stakes are low for matching when ad space (limited advertising) is
expensive or cheap (want to advertise widely): prediction only alters the
“advertise or not” decision for a small number of consumers.

e |f prediction is provided by fragmented suppliers, then prediction prices
increase — akin to the pricing of complements problem.
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e Prat and Valletti (2022)

Each of k product markets has an incumbent monopolist (earning r,,) and a potential entrant (changes total profits
to 27,). Entrant needs ad to create awareness.

Incumbent may advertise to block entrant from reaching customers. If there are J platforms, incumbent will only
advertise if ,, — m. > Jr.. Platform wants to create incumbent demand for ads and could not care less about
product market competition.

New Result: without prediction, both incumbent and entrant have a 1/k chance of a correct match. With prediction,
an incumbent benefits from the ads placed by other incumbents. This free riding means that they will purchase
fewer ads with prediction. Thus, platforms have a reduced incentive to adopt better prediction of match quality.
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1. Introduction
Advances in machine leaming techniques and data digiti-
zation have catalyzed firms! interestin predictive analyfics,

information, browses various offerings, and evaluates
‘product fit. If the consumer purchases, the firm ships the
product, and the shoppu\g pmcess te:mm.aaes In con-

Firms are fervently jumping on
to optimize operations and marketing strategies’ For
example, financial service providers invest heavily in artifi-
cial intelligence (AT)}-powered chatbot services to improve
customer relationship management,’ and tech firms de-
ploy data-driven predictive analytics to recommend books
fo read (Amazon), jobs to apply for (Linkedln, and fiends
to contact (Meta).: Enhancements in prediction capabilities
not only improve the outcomes of firms’ preexisting mar-
keting strategies, such as customer retention and product
recommendation, but also motivate firms to qualitatively
reinvent their business models. For instance, Agrawal
et al. (2018) discuss the vast potential for predictive
analytics to transform firms’ business models; they
predict the emergence of an innovative retail strategy
called a ship-then-shop subscription service. In this
paper, we investigate this innovative business model
that is increasingly gaining traction in practice.
Traditionally, the online shopping process starts with
consumer search. The consumer searches for product

trast,
cess begins with product shlpmmt Thc firm 1cvm;,cs
the prediction machine to predetermine products that
match the consumer's taste and ships the product to the
consumer. The consumer then evaluates product fit and
decides whether to purchase or return the product (see
i

e unique feature of the ship-then-shop model is the
separation of payments before and after the consumer
learns the product match. The consumer first pays the
up-front service fee® prior to observing product fit and
then, conditional on subscription, decides purchase pro-
duct after observing product fit. Shopping assistants
have played (and still do in many sectors) a similar role
inimproving product matches (Wernerfelt 1994). Never-
theless, the recent risc of the new retail format, ship-then-
shop, is largely propelled by advances in automated
pmimm ux}mulogv ‘The technology allows firms toserve
th predictive delivery boxes at low costs.

Without dratic improvements in’prediction capability,

—
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cally dependent on environmental characteristics.
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1 | INTRODUCTION

‘While certain themes have been explored in economics regarding the
adoption of Al including its role in labour replacement (Acemoglu &
Restrepo, 2018) and in potentialy faciitating collusion (Calvano et al
2020), there has been very litle attention paid to how recent devel-
opments in Al will impact on the “meat and potatoes” operations of
firms. That is, how willthe adoption of Al change the price and quan-
tity decisions of firms?

Here, we explore one canonical class of predictions that (2) are
Valuable to most firms and (b) have clear implications for price and
quantity decisions made by those firms. We look at predictions of firm
‘demand. Through the gathering of larger datasets on consumers and
more sophisticated multicharacteristic demand forecasting models

using Al methods such as machine learning, in the future, firms may

be able to predict demand precisely and further in advance of having

to make key price and quantity decisions. This motivates us to work

through the theory of how that improvement in information will
beh:

Usually, technological ch through
either process innovation (lowering the marginal costs of production
and hence, reducing price and expanding quantity) or product innova-
tion (improving demand and hence leading to price increases with
ambiguous quantity implications). Overwhelmingly, the adoption of
such innovations is seen as beneficial for both firms and consumers
although it s possible to find exceptions (Bryan & Wiliams, 2021).
Some aspects of Al adoption do impact on firms like standard
innovations. But, at its heart, recent Al developments are an advance

In this paper, the implications of moving from uncertain to certain
demand are explored for a single monopoly firm.? The technical chal-
lenge in exploring this is not modelling price and quantity outcomes
following Al adoption—those proceed along usual textbook lines—but
modeling those choices prior to Al adoption. Specifically, as was
noted many decades ago (Mills, 1959), when facing demand uncer-
tainty, the price and quantity choices of a firm become challenging

intoa i they do textbook treat-

that was previously unavailable (see Agrawal et al, 2019; Schneider &
Leyer, 2019)." For such innovations, the returns to adoption and

ments. Moreover, different firms face different informational environ-
ments depending on the timing of decisions relative to the revelation
of demand and also in terms of the time horizon of demand predic-
tions. This gives rise to numerous cases and scenarios that must be

—
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e Work on the competition effects of Al and Al’s effect on competition is still in
its infancy

e Current results and those inferred from the past literature indicate that the
competition arguments are if anything, more nuanced when it comes to Al

e Even without this, beyond the standard antitrust tools, new instruments or
policy approaches have not been developed



