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e Impact on jobs ambiguous (displacement vs. productivity /new tasks)
(Brynjolfsson et al. 2017, Acemoglu & Restrepo 2018, Agrawal et al. 2018, Cockburn et al. 2018,

Klinger et al. 2018, Goldfarb et al. 2020, Agrawal et al. 2021)

e Limited empirical evidence, focused on high-income countries (adoption)
(E.g. Acemoglu et al. 2021 in USA, Albanesi et al. 2023 in Europe, Stapleton 2021 in UK)

e Important potential consequences for development (call center vs. chatbot)

(Susskind & Susskind 2015, Baldwin 2019, Baldwin & Forslid 2020, Korinek & Stiglitz 2021)

e India a key case: archetype of services-led growth; large 4+ young population
= E.g. IT/Business Process Outsourcing employs 4M, 8% of GDP (SESEI 2019)
= 200M ageing into labor market by 2030 (UN 2019)
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Intro

How did AI affect labor demand in India’s white-collar service sector?

What we do:

= Document demand for Al skills using online job adverts from India’s largest jobs site

= Study the impact of establishment-level AT demand on non-Al job adverts, wage offers
and tasks using ex-ante exposure to future Al inventions

What we find:

= Demand for AT skills is highly concentrated across firms, industries, cities
= Al adoption has a net negative impact on labor demand within establishments, driven

by lower demand for skilled, managerial, non-routine, analytical labor

Clarifications: (i) ML, pre-GenAl, (ii) ‘posts/wage offers’ not ‘hiring/wages’, (iii) direct
within-establishment effects not GE
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Data

Measuring demand for machine learning skills

ML workers In-house ML hiring .
ML usage — =——— (stock) > (flow) =———p ML terms in post
Unobserved : t Observed
|
1 Outsourcing I

e Classify a post as an Al vacancy if it includes words from list of specific Al terms
(Acemoglu et al. 2021)

e Use demand for AT skills in vacancies to proxy for Al usage
(Rock 2019, Benzell et al. 2019, Acemoglu et al. 2021, Stapleton 2021)

e Exploit that primary method for sourcing Al capabilities is external hiring (McKinsey

Global Institute 2019)
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Descriptives

1. AI demand increased rapidly from 2015, particularly in IT, education

and professional services
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Descriptives

2. Al roles require more education,

than other white-collar services jobs

but offer substantially higher wages

(a) Years of experience (b) Education level

High school

Bachelor's

Master's

Doctorate

o
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Share of posts (%) Share of posts (%)
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(c) Salary (Rupees)

<100k
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(200K, 300K]

(300K, 400K]

(400k, 500K]

> 500k
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Share of posts (%)

= Al posts offer
13% salary
premium, even
after controlling
for education,
experience, and
detailed fixed
effects (ir, it, rt,
firm, occupation).

Further descriptives
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Methodology

Bartik LD: AI exposure = AI adoption = #posts + wage offers

Changes from 2010-12 to 2017-19 for 25k establishments (2M vacancies)

First stage: Al exposure predicts Al demand
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Methodology

Bartik LD: AI exposure = AI adoption = #posts + wage offers

Changes from 2010-12 to 2017-19 for 25k establishments (2M vacancies)

First stage:
AdoptsAl .4y, =7 - Exposure iy + o + 04 + ap10 + €1,

e Combine establishments’ ex-ante occupation shares with Webb (2020) measure of
overlap between patents and occupations’ task descriptions

Second stage:
Aygpri—to = B+ Adopts Al gy 4o + 0 + i + Q10 + €fri—ty
e City, industry and firm size decile FEs; SEs clustered at firm level

e Interpretation: 111% in predicted probability of firm adopting AI between 2010-12 and
2017-19 = 1) Bpp rise in the growth rate of posts/wage offers over same period



Metho

Second stage: Al lowers growth in non-Al postings...

Growth in Non-AlI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AT -7.975"* -12.90"* [-8.064"*| -7.737"* -12.47"* -7.840""
(2.350)  (3.092) | (2.282) | (2.245)  (2.959)  (2.181)

Fized Effects:

— Region v v v v v v
— Industry v v v v
— Firm Decile v v v v
First Stage F-Stat 43.7 41.58 45.43 44.06 41.83 45.62
Observations 22,244 22,244 22,244 22,251 22,251 22,251

1% increase in the predicted probability of adopting AI = 8.1pp decrease in the growth
rate of non-Al vacancies between 2010-12 and 2017-19
10



Second stage: Al lowers growth in non-Al postings & total postings

Growth in Non-AlI Vacancies Growth in Total Vacancies

(1) (2) (3) (4) (5) (6)
Adoption of AT -7.975"* -12.90"* [-8.064™*| -7.737"* -12.47" |-7.840"*
(2.350)  (3.092) | (2.282) | (2.245)  (2.959) | (2.181)

Fized Effects:

— Region v v v v v v
— Industry v v v v
— Firm Decile v v v v
First Stage F-Stat 43.7 41.58 45.43 44.06 41.83 45.62
Observations 22,244 22,244 22,244 22,251 22,251 22,251

There is a similarly-sized decrease of 7.8pp in the growth of total vacancies = the negative
impact on non-Al vacancies far outweighs the rise in Al vacancies
11



Results

The wage offer distribution falls...

Impact of 1% higher predicted probability of Al adoption on growth in non-Al wage offers (pp)

T T T T T .
0 20 40 60 80 100
Wage Percentile

1% increase in the predicted probability of adopting AI = 4pp decrease in the growth rate
of median wage offers 12



Results

The wage offer distribution falls, driven by occupational composition

Impact of 1% higher predicted probability of Al adoption on growth in non-Al wage offers (pp)

T T T T T

T
0 20 40 60 80 100

Wage Percentile

Control for changes in shares of each occupational group = composition effects main driver

13



Mechanisms

Lower demand hits higher-skilled occupations...

Change in Non-Al Vacancy Shares

Personal, Clerks Associate  Professionals Managers
Sales & Security Professionals
Adoption of Al 2.074* 1.324 10.46™** -3.637* -10.59* [
(0.385) (0.272) (1.718) (0.717) (1.709)
Fized Effects: -
Region v v v v v
Industry v v v v v
Firm Decile v v v v v
First Stage F-Stat 45.43 45.43 45.43 45.43 45.43
Observations 22,244 22,244 22,244 22,244 22,244

14



Mechanisms

...with negative impacts largest for corporate managers

'hange in Non-AI Vacancy Shares
Chang Non-AI V \

Engineering Health Teaching Other Corporate  General
Professionals Professionals Professionals Professionals Managers Managers
Adoption of Al -2.689*** 0.130 0.212** -1.290*** -9.964** | -0.626**
(0.494) (0.120) (0.0748) (0.409) (1.589) (0.299)
Fized Effects:
— Region v v v v v v
— Industry v v v v v v
— Firm Decile v v v v v v
First Stage F-Stat 45.43 45.43 45.43 45.43 45.43 45.43
Observations 22,244 22,244 22,244 22,244 22,244 22,244
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Mechanisms

Al reduces demand for intellectual tasks...

Impact of 1% higher predicted probability of AT adoption on change in verb shares

JR S Abstract Relations
— - —r—— | Space
- Matter
o ——— Intellectual Faculties

Voluntary Powers

Moral Powers

-5 0 5
Classify verbs in job descriptions by meaning based on Roget’s Thesaurus, following

Michaels, Rauch and Redding (2018), then construct establishment-level shares
16



Mechanisms

...especially analytical tasks involving description and prediction

Impact of 1% higher predicted probability

-2 0 2

of AT adoption on change in verb shares

Intellect in General

Discuss, Consider, Reason, Notice, Digest
Precursory Conditions

Investigate, Scrutinize, Research [Explore JExamine
Materials for Reasoning

Ensure, Testify, Attest, Authenticate, Document
Reasoning Processes

Establish, Confirm, Guess, Demonstrate, Disprove
Results of Reasoning

Detect, Adjudicate, Conform, Consider, Persuade
Extension of Thought

Predict |Forecast, Anticipate, Memorize, Recall
Creative Thought

Visualize, Guess, Improvise, Create, Devise
Nature of Ideas Communicated
Interpret, Clarify, Explain, Annotate, Translate
Modes of Communication

Edit, Notify, Inform, Manifest, Encode

Means of Commuynicating Ideas
Narrate, Delineate, Depict |Describe_[Portray

Within ‘Intellectual Faculties’, significant declines for categories including ‘explore’,

‘predict’, ‘describe’

17



Robustness & extensions

Baseline results robust to:

Controls for baseline shares of software engineers and sales & admin. professionals
Later baseline (2013-15) with larger sample

Weighting by baseline establishment size

Number of AT posts instead of binary adoption

Alternative exposure measure (Felten et al. 2018)

Shift-share tests following Goldsmith-Pinkham et al., (2020)

Adjusted standard errors (Adao et al., 2019)

Event-study approach

YR YR NENE NN NEN

Wider effects, beyond establishment level:

v Firm-level

X District-level (by 2020)

18



Conclusion

Conclusion

e Al jobs offer a substantial wage premium, but are highly concentrated in certain

industries, cities and firms

e Al adoption has a net negative impact on labor demand within incumbent Indian

white-collar services firms

= Stark contrast to literatures on computerization and industrial robotics

= Driven by lower demand for skilled, managerial, non-routine, analytical labor

e Key open question: to what extent does Al enable new tasks and firms, and how do

the overall ‘creative’ vs. ‘destructive’ effects compare?

19
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Classifying AI posts «Back

Posts are categorised as Al-related if any of the following terms appear in either the ‘job
description’ or ‘skills required’ fields:

Machine Learning, Computer Vision, Machine Vision, Deep Learning, Virtual Agents,
Image Recognition, Natural Language Processing, Speech Recognition, Pattern Recognition,
Object Recognition, Neural Networks, AI ChatBot, Supervised Learning, Text Mining,
Support Vector Machines, Unsupervised Learning, Image Processing, Mahout,
Recommender Systems, Support Vector Machines (SVM), Random Forests, Latent
Semantic Analysis, Sentiment Analysis / Opinion Mining, Latent Dirichlet Allocation,
Predictive Models, Kernel Methods, Keras, Gradient boosting, OpenCV, Xgboost, Libsvm,
Word2Vec, Chatbot, Machine Translation and Sentiment Classification

(Acemoglu et al. 2021)



3. Al roles are highly concentrated in a few key technology clusters,

ticularly Bangalore @Ess

(a) Shares of posts across cities (b) Share of all AI posts, by city, 2010-2019
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4. Al roles are highly concentrated in the largest firms @Ess

Cumulative share of Al posts

0 2 4 .6 .8 1
Cumulative share of all posts
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