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A Disclaimer

The opinions expressed in this presentation are those of the authors alone and might
not represent the views of GEM or ESSEC.



Context

= The literature consistently reports that simple reinforcement learning algorithms
systematically reach seemingly collusive outcomes.

= The drivers of cooperation are being investigated: sophisticated punishment
strategies to sustain the cartel (Calvano et al. [2002b]), numerical biases
(cooperation bias Banchio and Mantegazza [2023]), correlated learning (Lambin
[2024]), etc.

= Often simple Q-learning algorithms are tested with an implicit asusmption: “The
enhanced sophistication of learning algorithms makes it more likely that Al systems
will discover profit-enhancing collusive pricing rules” in Calvano et al. [2020a].



The research questions

= |s algorithmic collusion always the aftermath of sophisticated punishment schemes
deployed by the algorithms?

» We develop a simple theoretical illustration of competing Q-learning algorithms
In a basic social dilemma and show that (seeming) collusion can be an
aftermath of imperfect exploration.

» We validate our results via simulations in a market environment.

= Does algorithmic sophistication make seeming collusion easier?

» We simulate the competition between more sophisticated algos (Deep Learning Actor-
Critic networks, Reinforce, and Exp3) and demonstrate that seeming collusion
disappears.

» When agents are endowed with the possibility to choose the level of sophistication of
the algorithms they use to operate, seeming collusion is not the unique equilibrium.

» This result shows that the very choice of overly simple algorithms by market agents
might be a sign of tacit collusion.



Literature overview

General issues related to algorithms:
= Algorithmic trading: Chaboud et al. [2014], Hendershott et al. [2011]

= Biased recommendations: Bourreau and Gaudin [2018], Fleder and Hosanagar [2009],
Calvano et al. [2022]

Algorithmic cooperation:

= Simulations in synthetic environments: Waltman and Kaymak [2008], Klein [2020],
Calvano et al. [2020a & b], Hettich [2021], Abada and Lambin [2023], etc.

= Empirical work: Brown and Mackay [2020], Assad et al. [2020]

= Drivers of cooperation are debated: Banchio and Mantegazza [2023], den Boer et al.
[2022], Lambin and Epivent [2022], Asker et al. [2022], etc.

Grey literature actively looks for regulatory solutions:
= OECD [2017], ACB [2019], EC [2017]...



The theoretical illustration and collusion by
mistake



The setting

Objective: develop a (basic) theoretical illustration to highlight
that imperfect learning can drive seeming collusion.

Environment: A prisoner dilemma framework. Two possible
actions: Cooperate (C) or Compete/Defect (D).

Al: Two stylized stateless Q-learning (cannot deploy
reward/punishment).

Exploration: The general case where exploration decreases with
learning.

Technical assumptions:
» A mean-field approach

» Algorithms find it at some point that cooperation outperforms
competition in their Q-matrices

» + reasonable technical assumptions on the learning rates
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Figure 1: Normal-form representation|of the game

The static Nash
equilibrium



Q-learning in a nutshell

Reinforcement learning:

* Interaction with environment generates penalties/rewards

 Model-free

« Balance between exploration (of uncharted territory) and exploitation (of current

knowledge)

Q-Learning : value-based reinforcement learning algorithm used to find the optimal

action-selection policy using a Q matrix

Market price
at period t-1

Q Table

State-Action

Value

State
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Q-value : maximum future expected discounted payoff of the agent starting from state s

Q(s,a) = rt(s,a) + 51]512131( EQ(s'(s,a),a")



Q-matrix updating

Q-matrix updating: Updating, the learning rate

it s=s,anda = a,: Qn+1(5m an) :(1 — “)Qn(sman) + &H(Sman)
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Slow exploration decay

Exploration:

« The choice of the action a, to play at each iteration is the 51
result of a tradeoff between exploration and exploitation.

« Various exploration strategies can be implemented:
Boltzmann, epsilon-greedy, etc. o

Fast exploration decay
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The main theoretical results for Q-learning

= If the exploration rate is constant and the learning horizon if infinite, algorithms do
not learn to cooperate at convergence.

= Cooperation as an equilibrium can be driven by mistake: if the exploration rate of the
algorithms decreases too rapidly, the algorithms will never lean to compete.

» The intuition is that algorithms may be trapped at some point into believing that
cooperation yields higher payoffs and as exploration decreases, this belief will be
reinforced.

= The latter is a sufficient but not necessary condition!
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A numerical application with Q-learning
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The numerical setting: from stylized to more
realistic algorithms

= A Cournot competition with a linear (and elastic) demand
function

= A one period memory (as in Calvano et al. [2020]) with
price monitoring

_ _ HC’artel . HAI
= A measure of the level of seeming collusion: the v

cooperation rate at convergence

- HC’artel _ HC’ournot

= Avarying exploration rate of the algos tuned by the final €f =0,1% or 1% or 10%
epsilon value (epsilon-greedy).



Cooperation rate

A more thorough exploration decreases the

cooperation rate
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Al over-sophistication can reduce seeming
collusion
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Three other basic Reinforcement learning
algorithms

= The Reinforce algorithm (Williams [1992]): a policy-based reinforcement learning
with memory.

= Exp3 (Lattimore and Szepesvari [2020]): a policy-based reinforcement learning

without memory (stateless). Recently used in den Boer et al. [2022] to investigate
the impact on cooperation.

= More sophisticated Actor-Critic algorithms.



Continuous actor critic networks (CAC): a model-free
RL setup with two interwined neural networks

Input Output
' A (normal)
The market price pml) distribution of the

action to play

Simulation of the action to ( Simulation of the rewards to learn
play to learn the value ) which actions lead to high payoffs

function

Input Output

The market price #

- The value function
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Unlike Q-learning, CAC are policy-
based algorithms

Both networks have three layers with
256 neurons in the hidden one.

The exploration is endogenous to
learning and can be tuned via an
entropy parameter.

CAC algos are routinely used in
many fields: computer vision,
robotics, autonomous driving,
antilock braking system (ABS), etc.



More sophisticated algorithms may not cooperate

0.5 l | | Cooperation rate after learning for various
| T w' algorithmic interactions.

T '|' The result has already been proven for Exp3
T In den Boer et al. [2022].
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The game of the technological choice
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The choice of Al technology

Manager 1 Competes in the market against Manager 2

More
sophisticated
Algorithm

\Yle](
sophisticated
Algorithm

Simple
Algorithm

Simple
Algorithm



What would prevent agents from choosing simple
seemingly colluding algorithms?

Manager 2
Q-learning CAC
Q-learning | (12.13,12.13) | (10.41, 11.42)

(0.29,0.29) (0.50, 0.24)
(11.42,10.41) | (11.00, 11.00)
(0.24, 0.50) (0.38, 0.38)

CAC

Manager 1

Table 1: Normal-form representation of the supergame when managers can choose Q-learning
or CAC (bold characters show average limit payoffs, standard font shows the limit standard
deviation).

The (sophisticated) CAC algorithm consistently outperforms Q-learning.

The choice of the colluding Q-learning algorithm is not individually rational.

The equilibrium of the game of the algorithmic choice can lead to a competitive outcome.

Results are qualitatively similar with Reinforce and Exp3.
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Conclusion
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When algorithms collude by mistake

The degree of exploration of Q-learning algorithms seems to have an impact on their propensity to
cooperate at equilibrium.

» We encourage to verify that algorithmic cooperation is not due to insufficient exploration
before investigating whether it is due to genuine collusion.

Sophistication limits cooperation (at least in our economic environment):
» The reason might lie in the fact that the alternative algos we studied are policy-based.
» We encourage the use of algorithms other than Q-learning to study algorithmic collusion.

The game of algorithmic choice is complex, and selecting basic cooperative algorithms is not the
only possible equilibrium for managers.

» This might be an indication of genuine collusion.

Extension:

» Other competing environments.
» Other sophisticated algorithms.
» Other exploration strategies.
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