The International Spillovers of Synchronous Monetary Tightening Dario Caldara, Francesco Ferrante, Matteo Iacoviello, Andrea Prestipino, and Albert Queralto* June 20, 2023 #### Abstract We use historical data and a calibrated model of the world economy to study how a synchronous tightening of monetary policy can amplify cross-border transmission of monetary policy. The empirical analysis shows that historical episodes of synchronous tightening are associated with tighter financial conditions and larger effects on economic activity than asynchronous ones. In the model, a sufficiently large synchronous tightening can disrupt intermediation of credit by global financial intermediaries causing large output losses and an increase in sacrifice ratios, that is, output lost for a given reduction in inflation. We use this framework to show that there are gains from coordination of international monetary policy. KEYWORDS: Monetary Policy; Inflation; International Spillovers; Financial Frictions; Open Economy Macroeconomics; Panel Data Estimation. JEL CLASSIFICATION: C33. E32. E44. F42. ^{*}Corresponding author: Dario Caldara (dario.caldara@frb.gov). All authors work at the Federal Reserve Board. All errors and omissions are our own responsibility. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System. ## 1 Introduction Starting in 2022, central banks around the world have tightened monetary policy at an unprecedented pace to contain the rise in global inflation that began in 2021. The synchronous nature of this global monetary tightening has raised concerns that interest rate hikes could mutually compound and lead to significant cross-border spillovers, resulting in a deep global downturn. Accordingly, some commentators have called on central banks to coordinate their fight against inflation to avoid driving the world economy into an unnecessarily harsh contraction (Obstfeld, 2022). In this paper, we first show that, in the data, international spillovers of monetary policies are large and mutually reinforcing. Episodes of global tightening are associated with larger economic downturns, worse financial conditions, and a relatively muted decline in inflation, resulting in effects on activity that are larger than the sum of the effects of asynchronous tightening events. We then develop a model that is consistent with our findings. In the model, the amplification of synchronous tightening works through its effects on the balance sheets of global financial intermediaries that face occasionally binding leverage constraints. The nonlinear financial amplification of global tightening episodes is greater on output than on inflation, thus worsening monetary policy trade-offs. Finally, we investigate the optimal policy prescriptions of our model. When global adverse shocks are small and the financial channel is not active, we find that the optimal policy from an individual country perspective remains close to optimal from a global perspective. However, when adverse shocks are significant and credit intermediation by global intermediaries is impaired, global strategic considerations become relevant for the conduct of monetary policy and countries can gain from coordinating their monetary policies. Section 2 presents the empirical facts that support and motivate our model. We proceed in two steps. First, we show—using predictive regressions—that tighter monetary policy actions in one country lower GDP both at home and abroad, and these effects are amplified when the tightening episodes are synchronous and when GDP growth—used as an indicator of the overall health of the economy—is relatively low. Second, using event study regressions, we document that tightening episodes in one country are associated with a larger deterioration in economic and financial conditions when they occur during periods of global monetary tightening. The amplification is substantial for GDP, unemployment, credit spreads, and the equity price of global banks. In contrast, the additional effects on inflation are muted, so that monetary policy trade-offs appear to worsen significantly during episodes of global monetary tightening. ¹ These findings are in line with other existing literature that studies the transmission of monetary policy shocks both domestically and across countries. Gertler and Karadi (2015) and Caldara and Herbst (2019) are examples of paper documenting that a monetary policy tightening raises spreads on corporate credit. Motivated by the empirical results, in Section 3 we present a two-country new-Keynesian model that is consistent with the evidence. Central to our model is the presence of leveraged global financial intermediaries (GFIs) that raise funds both domestically and abroad and face occasionally binding leverage constraints. We assume that GFIs' ability to intermediate assets depends on their net worth, due to an agency problem similar to the one proposed by Gertler and Kiyotaki (2010). When net worth is high, global intermediaries absorb losses by raising more debt, guaranteeing a smooth functioning of international credit markets. When net worth is low, for instance due to a decline in asset prices caused by higher interest rates, financial intermediaries are limited in their ability to issue new debt and are forced to sell assets. Assets are absorbed by less specialized buyers at a discount and, as a result, credit spreads rise rapidly. In Section 4 we illustrate how the nonlinear amplification of global tightening shocks arises from the interaction between the "financial accelerator" mechanism and the global exposure of financial intermediaries. When only one central bank hikes, the geographic diversification of their portfolios implies that global financial intermediaries suffer losses only on a portion of their assets. As a result, equity losses are contained and intermediaries' ability to issue debt is not impaired. In this case, debt issuance makes up for net worth losses, credit intermediation remains efficient, and monetary spillovers, that work through traditional trade channels, are small. However, when both central banks hike, capital losses occur on many assets at the same time and cause intermediaries' equity to decline more. If the synchronous tightening is large enough, the global economy can reach a tipping point beyond which the effects of higher interest rates are greatly amplified. In this region, the financial accelerator channel is activated, and credit spreads rise rapidly across countries causing large financial spillovers. In line with the empirical evidence on the effects of global tightening episodes, in the model financial amplification of global policy shocks is larger for output than for inflation—thus increasing sacrifice ratios, measured as the output lost to achieve a given reduction in inflation.² The reason is that financial constraints in our model act primarily to restrict demand for investment. The additional drop in output due to financial amplification is therefore associated with muted effects both on rental rates—because of lower capital accumulation—and on wages—because by weighing more on investment than on consumption, financial amplification is associated with smaller wealth effects on labor supply. The upshot is that when the financial channel is active, policy spillovers are larger and policy trade-offs worsen globally, which affects strategic interdependence of global monetary policy. ² Schularick and Taylor (2012) also find that banking crises in the post World War II period have been associated with large declines in activity but muted response of inflation. Christiano, Eichenbaum, and Trabandt (2015), Del Negro, Giannoni, and Schorfheide (2015), and Gilchrist et al. (2017) argue that financial factors can help explain the surprisingly contained decline in U.S. inflation during the Global Financial Crisis. In Section 5 we study how financial spillovers affect optimal monetary policy in response to shocks that cause an increase in global inflation, i.e. a global markup shock. We first show that when global inflationary shocks are small, credit spreads do not rise, financial spillovers are muted, and the model predicts that the optimal monetary policy from an individual country's perspective remains nearly optimal from a global perspective. This case of strategic independence confirms, within our model, a result established by a large body of literature that finds that spillovers through traditional trade channels do not materially alter optimal monetary policy prescriptions from closed economy analyses. We then show that when the inflationary shocks are large enough, financial frictions become active, credit spreads rise, and macroeconomic spillovers become large. When this happens, strategic considerations become relevant for the conduct of monetary policy. The optimal policy in one country depends on the policy stance in the other country, with policy actions being strategic substitutes: a more-aggressive response in the foreign country to the rise in inflation is met with a more accommodative response in the home country. The reason is that a more-aggressive central bank response to inflation in the foreign country, by pushing global intermediaries further into the leverage constraint, significantly worsens the trade-offs in the home country. We also document that state-dependent monetary policy trade-offs are a key motive underlying international policy coordination. In our model, a wide range of policies can lead to improved global outcomes by containing the increase in spreads associated with the Nash equilibrium. The policy arrangement that achieves the best global outcome involves a reduction in spreads through a less aggressive response to inflation in the home country compared
to the Nash equilibrium. This helps mitigate financial spillovers, resulting in improved policy trade-offs for the foreign economy. Consequently, the foreign central bank can adopt a more aggressive stance towards inflation compared to the Nash equilibrium. This policy configuration capitalizes on a key model asymmetry, namely that the home country, calibrated to the U.S. economy, exerts a disproportionately significant influence on global financial conditions. ³ However, under this policy arrangement, the home country experiences a worse outcome compared to the Nash equilibrium, as the more accommodating response to inflation leads to a greater increase in inflation. In contrast, the foreign economy benefits from leveraging the home country's accommodative response to achieve better outcomes in both inflation and output. While the optimal global outcome is attained through a policy configuration that does not attain a Pareto improvement, we also explore the possibility of achieving Pareto improvements within our model. We find that there is a range of policies that make both countries better off relative to the Nash equilibrium. Under these policies, both countries contribute to easing financial conditions by accepting slightly higher inflation in exchange for substantially lower output ³ This asymmetry is in line with the role of U.S. monetary policy in driving the global financial cycle, as described by Miranda-Agrippino and Rev (2020). losses. #### Related Literature Our paper is related to three broad streams of research: literature on the foreign spillovers of monetary policy shocks; literature on banking and financial frictions in international business cycle models; and literature on international monetary policy coordination. Our empirical analysis of monetary spillovers follows a large body of literature that has looked at the cross-border effects of monetary policy and financial shocks. Recent examples include Iacoviello and Navarro (2019), who find that international spillovers of higher U.S. interest rates are stronger for countries that are more financially vulnerable, as well as the work of Dedola, Rivolta, and Stracca (2017), Degasperi, Hong, and Ricco (2020), Albrizio et al. (2020), and di Giovanni and Shambaugh (2008). Our novel contribution is to highlight the interaction between domestic and global monetary shocks, and the nonlinear and state-dependent nature of their effects. Our modeling approach focuses on the prominent role played by global financial intermediaries in allocating funds across countries, and builds on the idea that financial integration can act as an important channel of financial contagion. Examples include Gabaix and Maggiori (2015), Maggiori (2017), Morelli, Ottonello, and Perez (2022), Devereux and Yetman (2010), Cetorelli and Goldberg (2012), and Bruno and Shin (2015), who study the role of global financial intermediaries in asset pricing, international lending, and in the transmission of real and financial shocks across borders. Our contribution is to show how the stance of global monetary policy is a key determinant of how financial intermediation matters for economic outcomes.⁴ Finally, our paper contributes to the literature that studies the gains from policy coordination. The seminal work of Obstfeld and Rogoff (2002) shows, using a canonical open-economy new-keynesian model, that the gains associated to optimal departures from domestically oriented policies are negligible. Corsetti and Pesenti (2005), Devereux and Engel (2003), and Taylor (2013) confirm this result in quantitative international macro models in which, however, policy spillovers only work through traditional trade channels. Recent contributions have analyzed departures from the canonical framework that can yield significant gains from cooperation: recent examples include Dedola, Karadi, and Lombardo (2013), who focus on unconventional monetary policies, Bodenstein, Corsetti, and Guerrieri (2020), who study the how incentives to manipulate terms of trade can vary when net foreign asset positions are large, and Fornaro and Romei (2022), who study gains from coordination in response to large sectoral shocks. Our contribution is to highlight the ⁴ Our work is also related to Devereux and Yu (2020) who show how financial integration can act as an important source of financial contagion. See also Ahmed, Akinci, and Queralto (2021) and Ferrante and Gornemann (2022) for models studying cross-border spillovers of monetary shocks through financial channels. role of financial frictions and cross-border financial integration as potential sources of gains from cooperation. Specifically, we show that gains from cooperation could vary depending on the state of the economy: when adverse shocks are severe and financial intermediation becomes impaired, financial spillovers are large, and the monetary policy cooperation becomes relevant. When shocks are small and financial frictions are negligible, the gains from monetary policy cooperation are small. # 2 Empirical Background In the empirical section, we present two sets of results that motivate our model and that are consistent with its predictions. The theme connecting the two sets of results is that joint changes in monetary policy stance may produce effects that are larger than the sum of their individual parts, particularly when occurring during periods of either weak country-level growth or tight global financial conditions. First, using simple predictive regressions, we show that tighter monetary policy actions in one country lower GDP both at home and abroad, and these effects are amplified when the tightening episodes are synchronous and when growth is relatively low. Second, using event study regressions, we estimate the dynamic response of a larger set of economic and financial variables in the aftermath of tightening episodes. Our findings confirm that tightening episodes are associated with a more significant deterioration in economic and financial conditions when they occur during periods of global monetary tightening. Conversely, the additional effects on inflation are relatively muted in comparison. #### 2.1 The Data Our baseline analysis uses quarterly data from 1980 through 2019 for 21 advanced economies.⁵ In line with the scope of our analysis, our dataset includes measures of interest rates, GDP and its private components—consumption, investment, and net exports—, unemployment, inflation, the real exchange rate, credit spreads, and bank equity. We report details of the data collection in Appendix A. Data coverage, which varies across countries and variables, is listed in Table A.1. We measure interest rates with the policy rate set by the national central bank, or, if unavailable, with the yields on short-term government bonds. Inflation is measured using the four-quarter change in the core CPI index. The real exchange rate is the effective measure described in Darvas ⁵ The economies in the sample are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States. (2012). Credit spreads, which are available for a subset of countries, are given by the difference between 5 or 10-year yields on BBB corporate bonds relative to government bonds of the same maturity. Finally, for bank equity we use the list of global banks from Acalin (2022), which contains 20 banks across eight advanced economies, and construct a weighted stock price index of global banks operating in each country. #### 2.2 Identification of Monetary Policy Shocks Our empirical analysis is aimed at assessing whether tighter monetary policy actions in one country spill over to other countries and are amplified during episodes of tight economic or financial conditions. To this end, we need plausibly exogenous measures of tight monetary policy for a large set of countries and over a long sample period. A lot of progress has been made in constructing measures of exogenous monetary shocks identified using large sets of data, narrative records, or high-frequency information from financial markets. However, these measures are typically available only for a handful of countries and for samples that are shorter than needed for our analysis, limiting their usefulness to study the effects of monetary tightening episodes across countries and at different stages of the business cycle. For this reason, we identify monetary policy shocks by regressing country-by-country policy rates on a set of macroeconomic controls as follows: $$R_{i,t} = \alpha_i + \beta_i \mathbf{Z}_{i,t} + u_{i,t}, \tag{1}$$ where the set of controls $\mathbf{Z}_{i,t}$ includes a time trend and two lags of interest rates, two lags of inflation, two lags of unemployment, and two lags of the real exchange rate.⁶. We look at the aftermath of these monetary shocks—the $u_{i,t}$ measures estimated above—in the analysis that follows. The identification strategy aligns with the tradition of identifying monetary policy shocks using vector autoregressive models, with the interest rate placed first in a recursive ordering.⁷ ⁶ In Subsection 2.4, we discuss that our results change little when we include additional variables, such as global inflation, global activity, and oil prices, as controls in equation (1) ⁷We note that our monetary shocks are positively correlated with measures of monetary policy shocks constructed using high-frequency or narrative identification. For instance, our shocks have a correlation of 0.57 with the Romer and Romer (2004) measure of U.S. monetary shocks (over the sample 1980-2007) updated by Wieland and Yang (2020), a correlation of 0.47 with the Champagne and Sekkel (2018) measure of Canadian monetary shocks constructed via a narrative approach (over the sample 1980-2015), a correlation of 0.53 with the Cloyne and Hürtgen (2016) measure of UK monetary
shocks (over the sample 1980-2007), and a correlation of 0.32 with the Holm, Paul, and Tischbirek (2021) narrative measure of Norwegian monetary shocks (over the sample 1990-2018). ## 2.3 State dependent policy spillovers: a simple predictive regression Our analysis builds on the idea that domestic and foreign tightening episodes weaken domestic economic activity, and that the effects of tighter policy are amplified by the tightening actions of other countries, particularly when economic fundamentals are weak. To test this idea, we estimate a simple panel regression of the form: $$\Delta y_{i,t+8} = \beta_D \mathbb{D}_{i,t} + \beta_F \mathbb{F}_{i,t} + \beta_H \mathbb{D} \mathbb{F}_{i,t} \times \mathbb{Y} \mathbb{H} \mathbb{I}_{i,t} + \beta_L \mathbb{D} \mathbb{F}_{i,t} \times \mathbb{Y} \mathbb{L} \mathbb{O}_{i,t} + \alpha_i + \varepsilon_{i,t}. \tag{2}$$ Where $\Delta y_{i,t+8}$ is country i's log GDP level eight quarters ahead minus log GDP at time t; $\mathbb{D}_{i,t}$ is an indicator function equal to 1 in the event of an exogenous domestic tightening, corresponding to quarters when a country's monetary policy shock is positive; $\mathbb{F}_{i,t}$ is an indicator function equal to 1 in the event of an exogenous foreign tightening, corresponding to quarters when the GDP-weighted average of other countries' monetary policy shocks is positive; $\mathbb{DF}_{i,t}$ is an interaction effect $(\mathbb{DF}_{i,t} := \mathbb{D}_{i,t} \times \mathbb{F}_{i,t})$ denoting the simultaneous occurrence of domestic and foreign tightening; and $\mathbb{YHI}_{i,t}$ and $\mathbb{YLO}_{i,t}$ are mutually exclusive dummies equal to 1 if a country is in a period of high or low growth, respectively. A high-growth period is defined as a period of annual GDP growth $(\mathbb{Q}4/\mathbb{Q}4)$ above each country's median. Two observations are in order regarding the specification in equation (2). First, our measure of tightening does not capture the intensity of the tightening. However, we believe it is best suited to measure the typical effects of shifts in monetary policy in a long sample including changes in central banks practices and regimes across heterogeneous countries. Second, the specification embeds the possibility of two, distinct nonlinearities. The first nonlinearity allows for joint monetary actions to exert effects that are larger than the sum of their individual parts. The second nonlinearity allows for monetary actions to have larger effects depending on a country's own business cycle. The first column of Table 1 tabulates the estimated coefficients from regression (2), when the nonlinearities are turned off. Two years after a domestic tightening episode, the level of GDP is 1.1 percent lower than otherwise.⁸ The effects of a foreign tightening are of similar magnitude: a foreign tightening lowers the level of GDP by nearly 0.9 percent. Thus, spillovers from foreign monetary policy tightening are sizeable.⁹ The second and third column of Table 1 show the results allowing for nonlinearities. In the second column, we allow for the effects of the joint monetary policy tightening to be larger than the ⁸ On average, a domestic tightening results in policy rates that are 69 basis points higher than otherwise. The average domestic tightening raises rates by 35 basis points, while the average domestic easing lowers them by 34. ⁹ On average, a foreign tightening results in foreign policy rates that are 40 basis points higher than otherwise. The average foreign tightening raises rates by 20 basis points; the average foreign easing lowers them by 20. sum of their two parts, but restricting $\beta_H = \beta_L$. The estimated coefficient on the interaction term is negative: that is, the negative effects of domestic and foreign tightening episodes are amplified when they occur simultaneously, resulting in an additional 0.6 percent decline in GDP. In the third column, we allow for both nonlinearities. The coefficient β_L is more negative than β_H , and only β_L is statistically different from zero at conventional significance levels: in words, joint tightening events produce effects that are larger than the sum of their parts, particularly during periods of low growth. Figure A.1 in the Appendix provides a visual interpretation of the size of the effects. If the marginal effects of tighter domestic or foreign policies were linear, the four lines would be parallel, but they are not. #### 2.4 State dependent policy spillovers: an event study analysis We now examine the dynamic effects of tighter monetary policy using event study regressions. Specifically, we compare the aftermath of synchronous and asynchronous monetary policy actions, classified by the behavior of global interest rates at the onset of these episodes.¹⁰ #### Global Tightening Windows Over the past half century, central banks have tightened the monetary policy stance synchronously on several occasions. We illustrate this fact in Figure 1, which shows the time-series behavior of global policy interest rates between 1980 and 2022, constructed as the GDP-weighted average of each country's interest rate. The top panel shows that there are several periods in history in which global interest rates rise persistently. The bottom panel shows that episodes of rising global interest rates have resulted from synchronous actions of central banks, with the share of central banks tightening exhibiting large increases over very short periods of time. We select global tightening windows using quantitative criteria. Specifically, we assume that the tightening windows last two years and that they begin in a quarter t^* that satisfies two criteria: (a) global interest rates are higher by more than 25 basis points than four quarters before; (b) global interest rates are higher than six quarters later. If the criteria are satisfied more than once in a four-quarter window, we select the first quarter in which they are met. As denoted by the gray areas in Figure 1, this approach results in 8 global tightening windows starting in 1981Q1, 1984Q1, 1989Q2, 1994Q4, 2000Q1, 2006Q3, 2011Q1, and 2018Q2. As illustrated by the Figure, each window includes the build-up period, the peak, and the immediate aftermath of each tightening cycle. ¹⁰ We do not consider emerging market economies in our baseline specification due to the lack of consistent data on financial conditions. We present robustness exercises—including the addition of emerging market economies to sample—in the Appendix. #### Amplification of synchronous tightening events: Empirical Evidence We employ event study panel regressions where the aftermath of a country-level tightening episode is allowed to differ across synchronous and asynchronous events. Formally, we estimate: $$y_{i,t} = \gamma_i + \sum_{\tau = -2}^{10} \sigma_{\tau} \mathbb{S}_{i,t-\tau} + \sum_{\tau = -2}^{10} \alpha_{\tau} \mathbb{A}_{i,t-\tau} + \varepsilon_{i,t}, \tag{3}$$ where $y_{i,t}$ is an outcome variable; $\mathbb{S}_{i,t}$ is an indicator function equal to 1 in the event of a synchronous tightening event in country i at time t, and $\mathbb{A}_{i,t}$ is an indicator function equal to 1 in the event of an asynchronous tightening event in country i at time t. In order to estimate equation (3), we first select policy tightening events for each country as every quarter in which the monetary policy shocks $u_{i,t}$ are larger than 25 basis points. We then split these events into those occurring during a global tightening window—synchronous tightening episodes—and those that occur outside of a global tightening window—asynchronous tightening episodes. Using this criterion, we find 144 synchronous and 154 asynchronous tightening events. Figure 2 plots how macroeconomic variables respond in the aftermath of synchronous and asynchronous tightening episodes. Following standard practice in event study analysis, we plot the sequence of regression coefficients σ_{τ} and α_{τ} —expressed in deviation from their estimated values σ_{-1} and α_{-1} in period t-1, respectively.¹¹ During both synchronous and asynchronous tightening events, interest rates increase for one year and start declining thereafter. Asynchronous tightening episodes result in small declines in GDP and limited increases in unemployment relative to their jump-off points. Inflation and corporate spreads react very little, and bank equity prices decline by a small amount. By contrast, synchronous tightening episodes are associated with larger economic costs, with GDP declining by nearly 3 percent and unemployment rising more than 1 percentage point after two years. There are additional effects on inflation, but they are very small and only materialize after several quarters. Additionally, synchronous tightening episodes are associated with a greater deterioration in financial conditions, with corporate spreads rising by about 50 basis points and bank equity prices falling by around 20 percent. The last four panels of Figure 2 zoom in on the behavior of the components of GDP and the exchange rate. The response of consumption and net exports is similar across synchronous and asynchronous tightening events. By contrast, the majority of the additional decline in GDP during synchronous tightening events is attributed to a much larger decline in investment, which aligns ¹¹ See Freyaldenhoven et al. (2021) for the suggestion of normalizing the regression coefficients relative to period $\tau = -1$. We depart from these authors in that in the event study plot we do not plot the cumulative effects of the policy since the variables in $y_{i,t}$ are expressed in levels or log levels. with the more pronounced deterioration in financial conditions. The real exchange rate exhibits a slightly greater appreciation during asynchronous episodes, but there is minimal disparity in its behavior between synchronous and asynchronous events. The Appendix presents robustness
analysis. We show that our results are qualitatively similar when we use an alternative window that selects global tightening events based on whether HP-filtered global interest rates are above or below 50 basis points relative to trend—see Figure A.2. We also show that our results are largely unchanged when we include emerging economies in our sample, as shown in Figure A.3. One possible concern is that global tightening events may be partly caused by large adverse global supply shocks, so that the monetary shocks extracted during these events are themselves a combination of endogenous responses to global supply shocks and pure deviations from the rule. In that case, the contractionary monetary shocks that we extract across the two episodes may be different in magnitude too, and the large adverse responses to synchronous tightening events may reflect the effects of shocks other than pure monetary policy shocks. We allay this concern in two ways. First, we compare the distributions of the estimated monetary shocks across asynchronous and synchronous episodes (see Figure A.4). Synchronous tightening shocks are a touch larger, on average, than asynchronous ones, but the difference between the two distributions is small. A Kolmogorov-Smirnov test of equality does not reject the null hypothesis that the two shocks distributions are equal at the 5 percent level (the p-value of the Kolmogorov-Smirnov test is 0.086). Second, we re-estimate the country-specific monetary shocks by including additional controls in the specification of Equation (1). Specifically, we add two lags of global unemployment, two lags of global inflation, two lags of global interest rates, and current and two lags of oil price inflation. As shown in Figure A.5, our results are similar to those of the baseline specification. In sum, spillovers from foreign monetary policy tightening on individual countries are large, negative, and significant. Furthermore, these spillovers are amplified when tightening events happen simultaneously and during periods of low growth. We conclude this section by highlighting key empirical findings from our analysis that are consistent with our model and the insights of the optimal monetary policy exercise. First, during global tightening episodes, the effects of contractionary monetary policy shocks are amplified by financial factors. Second, while financial factors amplify the response of GDP and unemployment, the additional effects on inflation are more muted. Accordingly, policy trade-offs worsen significantly. # 3 A Model of International Financial Spillovers #### 3.1 Model Overview We study a medium scale international New-Keynesian DSGE model that includes a home (H) bloc, calibrated to represent the United States, and a "foreign" (F) bloc. The model features nominal and real rigidities that are standard in quantitative macro models following Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007), and embeds them into an open-economy DSGE model following Clarida, Galı, and Gertler (2002), Kollmann (2001), Corsetti and Pesenti (2005), and Erceg, Guerrieri, and Gust (2005). The model's key non-standard feature is the presence of global financial intermediaries (GFIs) specialized in holding assets from both countries and subject to occasionally binding leverage constraints that limit their ability to raise external funds. Our definition of financial intermediaries is broand and includes banks and non-banks financial institutions. In this section, we characterize the key features of the model. We first discuss global financial flows. We then present the equations describing the six types of agents present in the model: global financial intermediaries, households, final good retailers, intermediate good producers, final good producers, and central banks. #### 3.2 Global Financial Flows Figure 3 provides a visual representation of global financial flows in our model. GFIs issue dollardenominated liabilities to home and foreign residents, and combine liabilities and their net worth to finance investment both in the U.S. and abroad. Funds can flow from households to productive assets either through direct financial claims issued by firms to domestic households, or through bank intermediation. Let $K_{i,t}^h$ be the amount of households' direct finance, and $K_{i,t}^b$ the capital intermediated by GFIs in country i. Then we have: $$K_{i,t} = K_{i,t}^h + K_{i,t}^b. (4)$$ Households' direct finance is relatively inefficient, an assumption similar to Gertler and Kiyotaki (2015). In particular, we assume that households incur quadratic costs of holding capital directly. These costs depend on the share of capital intermediated by households and take the form: $$\zeta_i\left(K_{i,t}^h, K_{i,t}\right) = \frac{\chi}{2} \left(\frac{K_{i,t}^h}{K_{i,t}} - \gamma_i\right)^2 K_{i,t},\tag{5}$$ where the parameter γ_i is the share of capital that households can hold without incurring costs. Global financial intermediaries are specialized in intermediating assets globally, and their holdings do not involve resource costs. Their economic function is to adjust their global asset holdings in order to ensure that the allocation of capital is efficient. That is, absent financial frictions, they adjust $K_{H,t}^b$ and $K_{F,t}^b$ in order to ensure that no costs from direct households finance are incurred, so that $\frac{K_{i,t}^b}{K_{i,t}} = \gamma_i$. However, when financial intermediaries suffer large losses on their balance sheets, their leverage constraints become binding, their ability to issue new debt is limited, and they are forced to sell assets to households. As the fraction of direct finance rises, i.e. $\frac{K_{i,t}^b}{K_{i,t}} > \gamma_i$, the returns on holding capital must increase to compensate households for the associated costs. As a result, the spread between the return on capital and the return on safe assets rises both at home and abroad. #### 3.3 Global Financial Intermediaries In country H there is a continuum of families of measure \mathcal{N}_H , each consisting of a continuum of members. At each point in time, a fraction f of family members manage a GFI—the bankers—,while the remaining fraction 1-f supply work to non-financial firms. At the beginning of each period, a fraction $1-\sigma$ of bankers become workers and an equal amount of workers, $(1-\sigma)f\mathcal{N}_H$ in total, start a new bank with some startup funds from the family, as discussed below. This is a standard approach to introduce financial intermediation while keeping the tractability of the representative family framework (see Gertler and Kiyotaki, 2010). We now focus on the problem of a banker. A GFI raises dollar deposits (d_t) globally, and uses these deposits together with its own net worth (n_t) to finance investment in domestic and foreign capital. We assume that a GFI can directly hold capital at home, but needs to establish a foreign subsidiary in order to hold foreign capital. The flow budget constraint for a GFI is given by: $$Q_t k_{H,t}^b + s_{F,t} \le n_t + d_t, \tag{6}$$ where $Q_{H,t}$ is the price of capital at home, $k_{H,t}^b$ are the GFI's holdings of capital at home, and $s_{F,t}$ are the GFI's holdings in the foreign subsidiary. Let $R_{H,t+1}^k$ denote the real dollar return on domestic capital investment, and $R_{F,t+1}^s$ the real dollar return on investment in the foreign subsidiary. These returns are determined in equilibrium as described below in equations (26) and (30). Also, let $R_{H,t}^d$ denote the time-t determined, real dollar return on riskless deposits held from t to t+1. The evolution of net worth is given by the ¹² Technically, this is true under our approximation of the true policy functions. In general some small costs are always incurred even when bankers are arbitraging away excess returns since their stochastic discount factor is more countercyclical than households, see equations (14)-(17) below. returns on investments minus the costs of deposits: $$n_{t+1} = R_{H,t+1}^k Q_t k_{H,t}^b + R_{F,t+1}^s s_{F,t} - d_t R_{H,t}^d.$$ $$\tag{7}$$ Equations (6) and (7) reflect our assumption, common in the literature, of no new equity issuance. We can express the objective of the banker recursively as follows: $$V_t = \beta E_t \Lambda_{H,t+1} [(1 - \sigma) n_{t+1} + \sigma V_{t+1}]$$ (8) where $\Lambda_{H,t+1}$ is the stochastic discount factor of the representative U.S. household between t and t+1, and, as discussed above, $(1-\sigma)$ is the probability of exiting in each period.¹³ The final ingredient of the banker's problem is the presence of an agency problem between the GFI and its depositors, which gives rise to an endogenous leverage constraint. In particular, we assume that the banker can divert a proportion θ_H of home assets and a proportion θ_F of assets held in the foreign subsidiary, where $\theta_F > \theta_H$.¹⁴ Given this agency problem, rational depositors will limit the amount of lending to the bank to ensure that the banker does not have an incentive to divert the funds. The resulting incentive constraint is: $$V_t \ge \theta_H Q_{H,t} k_{H,t}^b + \theta_F s_{F,t}. \tag{9}$$ The problem of the banker is to choose assets $k_{H,t}^b$ and $s_{F,t}$, deposits d_t , and net worth n_{t+1} , in order optimize the objective in equation (8), subject to the constraints in (6), (7) and (9). Given the linearity of the objective function and of all constraints, the optimal value V_t^* of operating a bank with net worth n_t is given by $$V_t^* = \psi_t^* n_t. \tag{10}$$ The variable ψ_t^* is the bank's franchise value: the ratio between the marginal value of wealth inside the bank and the marginal value of wealth to the household. To describe the optimal choices of the banker it is useful to define the leverage multiples, $\phi_{H,t} = \frac{Q_{H,t}k_{H,t}^b}{n_t}$ and $\phi_{F,t} = \frac{s_{F,t}}{n_t}$. Using these to substitute for
$k_{H,t}^b$ and $s_{F,t}$ in (6) and (7), the evolution of net worth can be written as: $$n_{t+1} = n_t [(R_{H,t+1}^k - R_t^d)\phi_{H,t} + (R_{F,t+1}^s - R_t^d)\phi_{F,t} + R_t^d].$$ (11) ¹³ The objective in equation (8) implicitly uses the fact that the banker will not want to payout dividends to the family until exit. This is true given that the banker will occasionally make excess returns on investments so that the marginal value of wealth inside the bank is higher than the household's marginal value of wealth. ¹⁴ We allow these parameters to be different to capture that it is more difficult for investors to recover foreign assets if the banker were to abscond with them. Accordingly, in our calibration $\theta_F > \theta_H$ as discussed below. Using equations (11) and $V_{t+1} = \psi_{t+1}^* n_{t+1}$ to substitute for n_{t+1} and V_{t+1} in equation (8), the bankers problem simplifies to: $$\max_{\phi_{H,t},\phi_{F,t}} \mu_{H,t}\phi_{H,t} + \mu_{F,t}\phi_{F,t} + \nu_t \tag{12}$$ s.t. $$\mu_{H,t}\phi_{H,t} + \mu_{F,t}\phi_{F,t} + \nu_t \ge \theta_H\phi_{H,t} + \theta_F\phi_{F,t} \tag{13}$$ where $\mu_{H,t}$ and $\mu_{F,t}$ are the excess returns on investments in U.S. capital and in the foreign subsidiary, discounted with the marginal value of banker's wealth: $$\mu_{H,t} = \beta E_t \Lambda_{H,t+1} \left[1 - \sigma + \sigma \psi_{t+1}^* \right] \left(R_{H,t+1}^k - R_t^d \right)$$ (14) $$\mu_{F,t} = \beta E_t \Lambda_{H,t+1} \left[1 - \sigma + \sigma \psi_{t+1}^* \right] \left(R_{Ft+t}^s - R_t^d \right). \tag{15}$$ and ν_t is the present discounted cost of a unit of deposit $$\nu_t = \beta E_t \Lambda_{H,t+1} \left[1 - \sigma + \sigma \psi_{t+1}^* \right] R_t^d. \tag{16}$$ Notice that the individual banker's net worth n_t does not appear in equations (12) and (13). This implies that optimal leverage is constant across bankers, $\phi_{H,t} = \Phi_{H,t}$ and $\phi_{F,t} = \Phi_{F,t}$. To characterize the solution to the banker's problem, we distinguish two cases. If the incentive constraint in equation (13) does not bind, then excess returns must be zero and the banker is indifferent about any leverage choice: $$\mu_{H,t} = \mu_{F,t} = 0. (17)$$ Alternatively, when $\mu_{H,t}$ and $\mu_{F,t}$ are positive, the incentive constraint binds and the optimality conditions are given by the incentive constraint at equality, $$\mu_{H,t}\phi_{H,t} + \mu_{F,t}\phi_{F,t} + \nu_t = \theta_H\phi_{H,t} + \theta_F\phi_{F,t},\tag{18}$$ and a condition that equates the ratio of excess returns to the ratio of their incentive costs $$\frac{\mu_{H,t}}{\mu_{Ft}} = \frac{\theta_H}{\theta_F}.\tag{19}$$ To get the intuition behind equation (19), it is useful to suppose that, for instance, excess returns on home capital are relatively higher than excess returns on foreign investments, i.e. $\mu_{H,t} > \frac{\theta_H}{\theta_F} \mu_{F,t}$. Then, consider a trade in which the banker sells $\frac{\theta_H}{\theta_F}$ units of the foreign asset and buys one unit of U.S. capital. This trade is both profitable, since $\mu_{H,t} - \frac{\theta_H}{\theta_F} \mu_{F,t} > 0$, and feasible, since it keeps the right hand side of equation (13) constant while increasing the left hand side. With all bankers engaging in this trade, $\mu_{H,t}$ falls and $\mu_{F,t}$ rises until equation (19) is satisfied. The tight link between excess returns on U.S. and foreign assets implied by equation (19) is a key feature for our analysis of spillovers. Irrespective of whether losses originate on holdings at home or abroad, once GFIs become constrained, equation (19) implies that spreads must rise simultaneously in both countries. The global exposure of banks implies that their balance sheet can become a conduit for financial transmission of shocks across countries. #### 3.4 Aggregate GFI net worth and the occasionally binding constraint The leverage constraint on GFIs becomes binding when excess returns are positive. The variable that determines whether or not excess returns are positive is the aggregate level of GFIs net worth. This is given by the sum of net worth of bankers surviving from the previous period, plus the net worth of new bankers E_t , which is given by an endowment proportional to the GFIs domestic capital, that is $E_t = \xi Q_{H,t-1} K_{H,t-1}^b$. Aggregating equation (7) over surviving bankers and entering bankers we get $$N_t = \sigma[Q_{H,t-1}K_{H,t-1}^b R_{H,t}^k + S_{F,t-1}R_{F,t}^s - D_{t-1}R_{t-1}^d] + E_t$$ (20) where $K_{H,t}^b$ and $S_{F,t}$ represent the aggregate GFIs holdings of domestic capital and foreign assets, while D_t represents aggregate deposits. To illustrate why a large enough drop in N_t can trigger the leverage constraint, suppose that at time t the constraint is not binding and excess returns are arbitraged away, i.e. $\mu_{H,t} = \mu_{F,t} = 0$. Let $\Phi_{H,t} = \frac{Q_{H,t}K_{H,t}^b}{N_t}$ and $\Phi_{F,t} = \frac{S_t^f}{N_t}$ be the GFIs leverage multiples. Given that the constraint is not binding, $\Phi_{H,t}$ and $\Phi_{F,t}$ satisfy $$\nu_t > \theta_H \Phi_{H,t} + \theta_F \Phi_{F,t},\tag{21}$$ which is the incentive constraint in (13) with strict inequality and with $\mu_{H,t} = \mu_{F,t} = 0$. Now consider a sudden drop in net worth from N_t to \hat{N}_t , for instance because of a decline in E_t . In order for asset prices to remain constant so that excess returns remain at zero, GFIs aggregate asset holdings $K_{H,t}^b$ and S_t^f must be unaffected. But with lower aggregate net worth this implies higher leverage $\hat{\Phi}_t^h = \frac{Q_{H,t}K_{H,t}^b}{\hat{N}_t}$ and $\hat{\Phi}_t^s = \frac{S_t^f}{\hat{N}_t}$. If the drop in net worth is large enough, the incentive constraint is violated, i.e. $$\nu_t < \theta_H \hat{\Phi}_{H,t} + \theta_F \hat{\Phi}_{F,t}$$ and so GFIs are forced to sell assets causing excess returns to rise and the constraint to bind. ## 3.5 Foreign Subsidiaries Foreign subsidiaries of GFIs are one-period-lived entities that invest in foreign capital and finance these investments with equity injections from GFIs, $s_{F,t}$, and local deposits $b_{F,t}$. The flow of funds constraint of the foreign subsidiary is given by $$Q_{F,t}k_{F,t}^b = s_{F,t} + b_{F,t}. (22)$$ We assume a simple leverage constraint on foreign subsidiaries of the form: $$s_{F,t} \ge (1 - \lambda)Q_{F,t}k_{F,t}^b.$$ (23) Let $X_{FH,t}$ be the real exchange rate value of the foreign consumption good in terms of the home consumption good, and $R_{F,t}^d$ the interest rate on foreign deposits. The return on GFIs' investment in its foreign subsidiary is given by $$r_{F,t+1}^s = \frac{X_{FH,t+1}}{X_{FH,t}} \left[R_{F,t+1}^k Q_{F,t} k_{F,t+1}^b - R_{F,t}^d b_{F,t} (1-\tau) \right], \tag{24}$$ where we introduce a tax advantage on deposits τ to ensure that the foreign subsidiary always wants to increase its leverage up to the constraint even when the GFIs constraint is not binding.¹⁵ The foreign subsidiary chooses $k_{F,t}^b$ and $b_{F,t}$ to maximize $$E_t \Lambda_{H,t+1} [1 - \sigma + \sigma \psi_{t+1}^*] r_{F,t+1}^s$$ subject to equations (22) and (23). The solution to this problem is given by the leverage constraint at equality, which we can rewrite as $$Q_{F,t}k_{F,t}^b = \frac{1}{1-\lambda}s_{F,t} \tag{25}$$ together with the flow of fund constraint (22). Using equations (22), (25) and (24), we get an expression for the return on GFIs' investments in their foreign subsidiaries given by: $$R_{F,t+1}^{s} = \frac{X_{FH,t+1}}{X_{FH,t}} \left[\frac{R_{F,t+1}^{k} - R_{F,t}^{d}(1-\tau)}{1-\lambda} + R_{F,t}^{d}(1-\tau) \right]. \tag{26}$$ In practice given our solution is piecewise linear, an infinitesimally small value of τ suffices. Equation (26) shows that the return on GFIs investment in foreign subsidiaries is a leveraged return on foreign capital. The leverage of foreign subsidiaries, $\frac{1}{1-\lambda}$ amplifies the sensitivity of GFIs balance sheet to fluctuations in returns on foreign capital. This sensitivity is key for the quantitative transmission of a foreign tightening. To illustrate, if we assume that foreign subsidiaries are simply pass-through entities with no leverage, i.e. $\lambda=0$, the GFI would be directly investing in foreign capital, just as it invests in domestic capital. The return on the investment in the foreign subsidiary would then be given simply by $R_{F,t+1}^s = \frac{X_{FH,t+1}}{X_{FH,t}} R_{F,t+1}^k$. In this case, a foreign tightening would still cause the foreign currency returns on foreign capital, $R_{F,t+1}^k$, to decline. This effect, however, would be largely offset by an appreciation of the foreign currency, i.e. an increase in $X_{FH,t+1}$. The presence of leverage amplifies the capital losses on foreign subsidiaries associated to any given decline in $R_{F,t+1}^k$ by a multiple of $\frac{1}{1-\lambda}$ and hence increases the sensitivity of GFIs balance sheets to foreign policy tightening actions. ¹⁶ As discussed in the calibration section, we assume a rather conservative value of λ that implies a leverage multiple of 3 for foreign subsidiaries. #### 3.6 Households The representative family in country i = H, F maximizes a utility function that depends on consumption of a bundle of goods $C_{i,t}$ and on the amount of labor supplied to non-financial firms $L_{i,t}$: $$E_t \sum_{s>t} \beta^{s-t} \left[\frac{(C_{i,s} - \iota C_{i,s-1})^{1-\rho}}{1-\rho} - \psi \frac{L_{i,s}^{1+\varphi}}{1+\varphi} \right]$$ Households can save in GFIs dollar deposits, $D_{H,t}$, in government bonds, $G_{i,t}$, whose nominal riskless interest rate, R_t^g is set by the central bank, or in local capital, $K_{i,t}^h$, subject to the cost, $\zeta_i\left(K_{i,t}^h, K_{i,t}\right)$, in equation (5). Households' budget constraint in real terms is given by $$C_{i,t} + X_{Hi,t}D_{i,t} + g_{i,t} + Q_{i,t}K_{i,t}^{h} + \zeta_{i}\left(K_{i,t}^{h}, K_{i,t}\right) =$$ $$w_{i,t}L_{i,t} + X_{Hi,t}D_{i,t-1}R_{t-1}^{d} +
g_{i,t-1}\frac{R_{t-1}^{g}}{\pi_{t}} + K_{i,t-1}^{h}(z_{i,t} + (1-\delta)Q_{i,t}) + T_{i,t}$$ (27) ¹⁶ Notice that it is also important that foreign subsidiaries borrow in foreign currency, as this mutes any effect of foreign currency appreciation on the subsidiary's debt. All these assumptions are made for simplicity. If we assume that GFIs loans were denominated in dollars, as is mostly the case in practice, the offsetting effect of the appreciation of the foreign currency would disappear. However our simple modeling of banks following the Gertler and Kiyotaki (2010) approach, implies that banks loans must bear the exchange rate risk. An interesting alternative would be to introduce long-term defaultable dollar bonds issued by foreign firms. As in the Gertler and Kiyotaki (2010) framework, our approach has the advantage of being more tractable. where $X_{ij,t}$ is the real exchange rate of goods from country i to country j (so that $X_{ii} = X_{jj} = 1$ and $X_{ij} = \frac{1}{X_{ji}}$), $g_{i,t}$ are real holdings of government bonds, $w_{i,t}$ is the real wage, π_t is inflation, and $T_{i,t}$ are profits from firms plus net transfers from bankers. Optimality conditions are given by a labor supply schedule: $$\psi L_{i,t}^{\varphi} = U_{ci,t} w_{i,t}, \tag{28}$$ optimal demand for GFIs deposits and government bonds: $$1 = \beta E_t \Lambda_{i,t+1} \frac{X_{Hi,t+1}}{X_{Hi,t}} R_t^d = \beta E_t \Lambda_{i,t+1} \frac{R_{t+1}^g}{\pi_{t+1}}, \tag{29}$$ and optimal demand for capital $$1 + \frac{\partial \zeta_i}{\partial K_{i,t}^h} \frac{1}{Q_{i,t}} = E_t \Lambda_{i,t+1} \frac{(z_{i,t+1} + (1-\delta)Q_{i,t+1})}{Q_{i,t}} = E_t \Lambda_{i,t+1} R_{i,t+1}^k, \tag{30}$$ where $U_{ci,t} = (C_{i,t} - \iota C_{i,t-1})^{-\rho} - \beta \iota E_t (C_{i,t+1} - \iota C_{i,t})^{-\rho}$ and $\Lambda_{i,t+1} = \frac{U_{ci,t+1}}{U_{ci,t}}$. From equation (5) we get that the marginal cost of household capital holdings is $$\frac{\partial \zeta_i}{\partial K_{i,t}^h} = \chi \left(\frac{K_{i,t}^h}{K_{i,t}} - \gamma_i \right).$$ Equation (30) then implies that when households are forced to absorb capital from banks they require a discount in order to cover the marginal cost of direct intermediation. #### 3.7 Final Goods Retailers Retailers of final goods in country i buy intermediate goods from domestic producers $Y_{ii}(s)$ and foreign producers $Y_{ii}(s)$ and bundle them with a CES aggregator: $$Y_{i,t} = \left[\omega_i^{\frac{1}{\theta}} Y_{ii,t}^{\frac{\theta-1}{\theta}} + (1 - \omega_i)^{\frac{1}{\theta}} Y_{ji,t}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$ $$(31)$$ where ω_i is the home bias parameter, θ is the trade elasticity, and $Y_{ii,t}$ and $Y_{ij,t}$ are bundles of domestically produced inputs and and imported inputs respectively: $$Y_{ii,t} = \left[\int (Y_{ii,t}(s))^{\frac{1}{\mu_t}} \right]^{\mu_t}, \tag{32}$$ $$Y_{ij,t} = \left[\int (Y_{ij,t}(s))^{\frac{1}{\mu_t}} \right]^{\mu_t}, \tag{33}$$ where $\mu_t = \mu exp(u_t)$ is a time-varying desired gross markup. Final goods retailers are perfectly competitive and choose $Y_{ii}(s)$, $Y_{ji}(s)$, Y_{ii} , Y_{ji} and Y_{ii} to solve $$\max_{Y_{ii,t},Y_{ij,t}} P_{i,t}Y_{i,t} - P_{ii,t}Y_{ii,t} - P_{ij,t}Y_{ij,t}$$ (34) subject to (31)-(33). Optimality implies familiar demand schedules for imported and domestically produced goods: $$Y_{ii,t} = p_{ii,t}^{-\theta} \omega_i Y_{i,t} \tag{35}$$ $$Y_{ji,t} = p_{ji,t}^{-\theta} (1 - \omega_i) Y_{i,t}, \tag{36}$$ where $p_{ii,t} = P_{ii,t}/P_{i,t}$ and $p_{ji,t} = P_{ji,t}/P_{i,t}$ are real prices. Similarly, for firm-specific varieties: $$Y_{ii,t} \left(\frac{P_{ii,t}(s)}{P_{ii,t}}\right)^{-\frac{\mu_t}{\mu_t - 1}} = Y_{ii,t}(s)$$ (37) $$Y_{ji,t} \left(\frac{P_{ji,t}(s)}{P_{ji,t}}\right)^{-\frac{\mu_t}{\mu_t - 1}} = Y_{ji,t}(s)$$ $$(38)$$ The final good is used both for consumption and investment: $$Y_{i,t} = C_{i,t} + I_{i,t}. (39)$$ #### 3.8 Intermediate Goods Production There is a continuum of monopolistically competitive intermediate goods firms. Firm f produces output, $\bar{Y}_{i,t}(f)$, that is sold either domestically $Y_{ii}(f)$ or abroad $Y_{ij}(f)$. The production function is Cobb-Douglas in capital and labor: $$\bar{Y}_{i,t}(f) = Y_{ii}(f) + Y_{ij}(f) = l_t(f)^{1-\alpha} k_{t-1}(f)^{\alpha}$$ (40) We assume that local currency pricing (LCP) holds, implying that firms set prices in the currency of the destination market for their products. In the appendix B we show that our main results are robust to using alternative pricing assumptions. Letting $P_{ii}(f)$ and $P_{ij}(f)$ denote the prices in the domestic and foreign market, demand schedules for firm f goods are (as described above in equations (37) and (38): $$Y_{ii,t} \left(\frac{P_{ii,t}(f)}{P_{ii,t}} \right)^{-\frac{\mu_t}{\mu_t - 1}} = Y_{ii,t}(f)$$ (41) $$Y_{ij,t} \left(\frac{P_{ij,t}(f)}{P_{ij,t}} \right)^{-\frac{\mu_t}{\mu_t - 1}} = Y_{ij,t}(f)$$ (42) We assume Rotemberg adjustment costs on $P_{ii,t}(f)$ and $P_{ij,t}(f)$. Accordingly real profits are given by $$O_{t}(f) = \frac{P_{ii,t}(f)}{P_{i,t}} Y_{ii,t}(f) + X_{ji,t} \frac{P_{ij,t}(f)}{P_{jt}} Y_{ij,t}(f) - w_{t}l_{t}(f) - z_{t}k_{t-1}(f) - \sum_{i \in H,F} \frac{\kappa}{2} \left(\frac{P_{ij,t}(f)}{P_{ijt-1}(f)} - 1 \right)^{2} Y_{ij,t}(f)$$ Firm f chooses $P_{ii,t+s}(f), P_{ij,t+s}(f), Y_{ii,t+s}(f), Y_{ij,t+s}(f), l_{t+s}(f), and <math>k_{t-1+s}(f)$ to solve $$\max \sum_{s=0}^{\infty} E_t \beta^{s-t} \Lambda_{t,t+s} O_s(f)$$ subject to (40)-(42). Aggregating over the optimal pricing conditions and imposing symmetry across firms yields two Phillips curve for domestic and export prices: $$(\pi_{ii,t} - 1) \pi_{ii,t} = s_t \left[mc_{i,t}\mu_t - p_{ii,t} \right] + \beta E_t \Lambda_{H,t+1} \left(\pi_{iit+1} - 1 \right) \pi_{iit+1} \frac{Y_{iit+1}}{Y_{ii,t}}$$ (43) $$(\pi_{ij,t} - 1) \,\pi_{ij,t} = s_t \left[mc_{i,t}\mu_t - X_{ji,t}p_{ij,t} \right] + \beta E_t \Lambda_{t,t+1} \left(\pi_{ijt+1} - 1 \right) \pi_{ijt+1} \frac{Y_{ijt+1}}{Y_{ij,t}} \tag{44}$$ where $\pi_{ii,t} = \frac{P_{ii,t}}{P_{iit-1}}$ and $\pi_{ij,t} = \frac{P_{ij,t}}{P_{ijt-1}}$, are the inflation rates of domestic and foreign sales respectively, $s_t = \frac{1}{\kappa(\mu_t - 1)}$ is the slope of the Phillips curve, and marginal costs are given by: $$mc_{i,t} = \left(\frac{w_{i,t}}{1-\alpha}\right)^{1-\alpha} \left(\frac{z_{i,t}}{\alpha}\right)^{\alpha}.$$ (45) # 3.9 Capital goods production Capital producers create new capital, which is sold at price $Q_{i,t}$, using the final good as input and face convex adjustment costs $S(\frac{I_t}{I_{t-1}}) = \frac{\gamma_k}{2} \left(\frac{I_t}{I_{t-1}} - 1\right)^2$ proportional to total investment. Their optimization problem is $$\max E_t \Lambda_{t,t+i} \left[Q_{i,t+i} I_{i,t+i} - I_{i,t+i} - \frac{\gamma_k}{2} \left(\frac{I_{t+i}}{I_{t+i-1}} - 1 \right)^2 I_{t+i} \right]$$ which implies the following first order condition relating investment to the price of capital: $$Q_{i,t} = 1 + \frac{\gamma_k}{2} \left(\frac{I_{i,t}}{I_{i,t-1}} - 1 \right)^2 + \gamma_k \frac{I_{i,t}}{I_{i,t-1}} \left(\frac{I_{i,t}}{I_{i,t-1}} - 1 \right) - \beta \Lambda_{i,t+1} \gamma_k \left(\frac{I_{i,t+1}}{I_{i,t}} \right)^2 \left(\frac{I_{i,t+1}}{I_{i,t}} - 1 \right)$$ (46) ## 3.10 Monetary policy, shocks, and market clearing In both countries, monetary policy follows a simple Taylor rule that responds to inflation of domestic goods: $$\log\left(R_{i,t}^g\right) = (1 - \rho_r)R_{SS} + \rho_r \log\left(R_{i,t-1}^g\right) + \varphi_i \log\left(\pi_{ii,t}\right) + \varepsilon_{i,t}^m. \tag{47}$$ We assume that $\varepsilon_{i,t}^m$ is a random shock $\varepsilon_{i,t}^m \sim N(0, \sigma^m)$. We also assume that the global markup is given by $\mu_t = \mu \exp(u_t)$, where u_t follows an AR(1) process: $$u_t = \rho_\mu u_{t-1} + \varepsilon_t^\mu. \tag{48}$$ Market clearing in the goods market requires $$\bar{Y}_{i,t} = C_{ii,t} + I_{ii,t} + \frac{\mathcal{N}_j}{\mathcal{N}_i} (C_{ij,t} + I_{ij,t}) = Y_{ii,t} + \frac{\mathcal{N}_j}{\mathcal{N}_i} Y_{ij,t} \text{ for } i \in \{H, F\}$$ (49) Market clearing for capital requires $$K_{i,t} = K_{i,t}^h + K_{i,t}^b \text{ for } i \in \{h, f\}$$ (50) Market clearing for bank deposits $$D_t = D_{H,t} + D_{F,t} \tag{51}$$ Finally, by combining the budget constraint of the representative household in country h, with the bank's balance sheet we can derive the balance of payment equation as $$C_{H,t} + I_{H,t} = p_{HH,t}\bar{Y}_{H,t} + \left(D_{F,t} - D_{F,t-1}R_t^d\right) + \left(R_{F,t}^s S_{F,t-1}^b - S_{F,t}^b\right)$$ (52) # 4 Model Analysis #### 4.1 Calibration and Solution We calibrate the model so that in the steady state the leverage constraint on global banks is not binding. We solve the model using the OccBin toolkit (see Guerrieri and Iacoviello, 2015) so as to capture the nonlinearities in the decision rules which arise from the occasionally binding leverage constraint. Table 2 reports our baseline calibration. We set the population shares so that the home country, assumed to be the United States, accounts for 25 percent of world GDP. For preferences, we assume log utility with habit and calibrate the discount factor β to obtain a world annualized real interest rate of 1 percent in steady state. The consumption habit parameter, h, is set at 0.8 in line with for instance Justiniano, Primiceri, and Tambalotti (2010). We set both the Frisch and the trade elasticity to unity. The Rotemberg adjustment cost parameter delivers a slope of the Phillips curve in line with a Calvo-style probability of not resetting prices of approximately 0.85, as estimated by Del Negro, Giannoni, and Schorfheide (2015). The parameter governing the elasticity of the price of capital to investment is in the range of the ones estimated in the literature (for example, Justiniano, Primiceri, and Tambalotti, 2010 estimate a value around 2.5). The remaining parameters are specific to our model and are related to the global
financial sector. We set $\gamma_H = 0.67$ so that global banks intermediate one-third of U.S. capital, as discussed in Gertler, Kiyotaki, and Prestipino (2020). A key element of our calibration is the foreign share of GFIs assets, which determines global banks exposure to a foreign monetary tightening. We set γ_F so that the steady state ratio of foreign assets to total assets, $\frac{S^f}{S} + K_H^b$, matches the average ratio of foreign exposure to total assets of U.S.-headquartered banks as reported in the BIS locational banking statistics. The bank survival rate σ_b implies a 5 percent dividend payout ratio as in Gertler and Kiyotaki (2015). We assume that $\lambda = 0.66$, which implies a conservative value of 3 for the leverage of GFIs foreign subsidiaries. The parameters χ , ξ , θ_H , θ_F are jointly calibrated to hit the following targets. First, an increase in global spreads of about 60 basis points during a synchronous tightening of 150 basis points (relative to an asynchronous one), in line with the evidence shown in Figure 2. Second, an average increase in US spreads equal to about one and half times the increase in foreign spreads when the leverage constraint binds, in line with the relative movements of U.S. and foreign spreads during the Great Recession. Third, a steady state leverage ratio of GFIs of 4.75, i.e. $\phi = \phi_H + \phi_F = 4.75$, in line with the estimate of 4.8 computed by Morelli, Ottonello, and Perez (2022) for global banks.¹⁷ Forth, a steady state level of GFIs net worht that is 5 percent in ¹⁷ As discussed by Morelli, Ottonello, and Perez (2022), this value should be considered an average of the leverage excess of what required by the leverage constraint. Finally, we adjust foreign holdings of global banks deposits, D_F , to obtain balanced trade in steady state. ## 4.2 Nonlinear Effects of Synchronous Tightening We now explore how our model delivers nonlinear financial spillovers through the interaction of global monetary policies and the GFIs' leverage constraint. In line with the evidence reported in Section 2, our model can generate state-dependent impulse responses to a monetary tightening. In particular, when the foreign bloc is tightening, a policy hike at home can have larger effects on economic activity by tipping the economy into the region where the bank leverage constraint becomes binding. As a result, the effect of a synchronous rate hike can be larger than the sum of the individual ones. Figure 4 showcases the model nonlinearities by showing the impact response of some key variables to a home/U.S. monetary policy shock of different sizes. Absent shocks, the economy is in a steady state in which the bank leverage constraint is not binding. The blue lines illustrate the case in which the only shock is a surprise policy hike in the U.S.. The red dashed lines illustrate the marginal effect of the U.S. policy shock assuming a monetary policy shock of 150 basis points abroad.¹⁸ We consider the case of an asynchronous tightening first. When only the U.S. tightens, the increase in U.S. interest rates causes U.S. asset prices to decline. As long as U.S. policy shocks are below a certain threshold—125 basis points—, the leverage constraint is not binding, the price of foreign capital remains unaffected, and the effect of a policy tightening are small. In particular, the response of asset prices, bank net worth, spreads, output and inflation to a monetary shock remains relatively contained. To illustrate why, we linearize the GFIs' unconstrained optimality condition (equation 17) around the steady state. So long as the leverage constraint is not binding, the price of capital $$\frac{dv_0}{\bar{v}}(\epsilon_{H,0}^m; \epsilon_{F,0}^m = 0)$$ whereas the dashed red line plots $$\frac{dv_0}{\bar{v}}(\epsilon_{H,0}^m; \epsilon_{F,0}^m = 150bps) - \frac{dv_0}{\bar{v}}(\epsilon_{H,0}^m = 0; \epsilon_{F,0}^m = 150bps).$$ ratio of several types of financial institutions that operate internationally, for instance broker dealers, hedge funds, and money market funds. ¹⁸ That is, we assume that the system is in steady state at t = -1. For any variable v_t , the solid blue line plots the impact impulse response function computed as satisfies a standard pricing equation: $$\tilde{q}_{i,0} = \sum_{t=0}^{\infty} (1 - \delta)^t \left[\bar{z} \tilde{z}_{i,t+1} - r_{i,t} \right].$$ (53) This equation states that the price of capital in each country is the present discounted value of future rental rates, $\bar{z}\tilde{z}_{i,t}$, where \bar{z} is the steady state rental rate and \tilde{z} is the percent deviation of the rental rate from steady state.¹⁹ Notice that a U.S. tightening directly affects $\tilde{q}_{H,0}$ by increasing future real rates $\sum_{t=0}^{\infty} (1-\delta)^t r_{H,t}$. By contrast, the effects of a U.S. tightening on foreign asset prices only work through the indirect effect of U.S. rates on foreign real rates and the foreign rental rate of capital. In particular, foreign real rates decline in response to lower U.S. demand while rental rates decline in response to lower foreign employment. These effects are small and offsetting, leaving essentially no imprint on $\tilde{q}_{F,0}$. However, a large policy shock—above 125 basis points—can push GFIs against the leverage constraint, even if asynchronous. When the constraint is binding, the financial amplification channel gets activated: GFIs are forced sell assets to meet their leverage constraint and cannot keep their demand for assets at a level that is consistent with the standard asset pricing equation given by 53. In particular, GFIs sell both domestic and foreign assets, the price of domestic and foreign capital drops, and the deleveraging of banks triggers a rise in spreads (see equation 19), a relatively larger decline in economic activity, and a slightly larger decline in inflation. We now turn to the case of a synchronous tightening. The U.S. tightening triggers the leverage constraint when it is larger than 25 basis points, a much smaller threshold than in the asynchronous case. With a synchronous tightening, GFIs' net worth is much lower because of large valuation losses on both U.S. and foreign holdings. Accordingly, a U.S. policy shock of, say, 150 basis points, causes a trough in U.S. output which is nearly twice as large (1.25 vs 0.7 percent) relative to the asynchronous tightening case. Figures 5 reports the impulse responses to an interest rate hike of 150 basis points, occurring either at home or abroad. The size of the increase mirrors the average interest rate hike documented in the event study analysis of section 2.4. Following a rate hike in the U.S./home (solid lines), domestic GDP and inflation decline by about 0.8 percent and 1.5 percentage point respectively, as higher rates depress domestic aggregate demand. Given the large exposure of global banks to U.S. assets implied by our calibration, GFIs' net worth declines almost 15 percent, causing the leverage constraint to bind for a few quarters. As a result, global spreads rise, causing negative spillovers to foreign economies: foreign GDP declines by about 0.2 percent, and foreign inflation decline, albeit ¹⁹ Future rental rates are discounted with the country specific real interest rate, $r_{i,t} = r_{i,t}^n - \pi_{i,t+1}$. only modestly. A foreign rate hike (dashed lines) yields effects that are the mirror image of the U.S. effects. However, given the relatively small exposure of GFIs to foreign assets, their net worth declines only by 5 percent, without triggering a binding leverage constraint. As a result, global spreads do not rise, and the spillovers to the U.S./home are smaller. Figure 6 shows the impulse responses to a joint tightening of 150 basis points occurring both at home and abroad. To illustrate the amplification, here we compare the effects of the joint tightening (the black lines) to the effects of the two shocks occurring either at home or abroad (the blue and green bars) depicted in Figure 5. The effect of a global tightening is larger than the sum of the individual rate hikes: the joint tightening pushes global banks into the region where the leverage constraint binds for an extended period, generating a sizeable amplification effect, as measured by the red bars. The financial accelerator channel causes banks' net worth to decline twice as much as in the case of asynchronous shocks. Global spreads rise significantly, and the U.S. and the foreign economy suffer an extra decline in GDP of about 0.5 and 0.75 percentage point, respectively. As shown in Figure 7, the nonlinear amplification is mainly driven by a larger decline in investment. As the leverage constraint becomes binding, GFIs have to reduce their holdings of U.S. and foreign capital, while households in both countries are unable to absorb completely these assets. As a result the price of capital plummets, activating the financial accelerator channel which causes investment to decline sharply. The decline in consumption is much smaller in both blocs, and the nonlinear amplification effect is actually positive for the first couple of years, as the collapse in investment causes domestic demand to shift towards consumption.²⁰ Finally, the global nature of the synchronous tightening results in a negligible movement in the real exchange rate and in net exports. In sum, the financial amplification channel of global monetary policy shocks delivers non-linear policy spillovers that are in line with the empirical evidence. Furthermore, the model response of the GDP components to a synchronous tightening aligns with the empirical behavior of macroeconomic aggregates depicted in Figure 2. It is noteworthy that, similar to the data, the additional decline in GDP resulting from a synchronous tightening primarily stems from a substantial decrease in investment, due to the increase in credit spreads that accompanies the decline in
net worth of global financial intermediaries. We now turn to study how such financial amplification affects monetary policy in the presence of shocks that create a trade-off between inflation and output stabilization. ²⁰ The amplification effect turns persistently negative later on, as consumption slowly reverts to steady state due to habits in preferences. #### 4.3 The Financial Amplification Channel and Policy Trade-Offs An important feature of our model is that the financial amplification of shocks is larger for output than for inflation. This property can be seen by returning to the case of a global monetary tightening. As illustrated in Figure 6, the extra output drop due to the nonlinear amplification is proportionally larger than the inflation drop. Two main forces contribute to this result. First, binding leverage constraints restrict the demand for investment, causing future rental rates to remain elevated because of lower capital accumulation. Second, financial amplification effects weigh more on investment than consumption, limiting wealth effects on labor supply and thus containing the decline in wages—and hence marginal costs—for a given drop in output. These are general properties of how financial amplification works in our model, and will therefore be operative irrespective of whether the source of the shock is a monetary policy shock or a global markup shock, as we describe below. An implication of this result is that when leverage constraints are binding, the inflation-output trade-offs induced by markup shocks worsen and monetary policies aimed at reducing inflation is more costly in terms of output. To dig deeper in the relationship between financial amplification and policy trade-offs, we consider monetary and markup shocks of different sizes and calculate the present discounted value of squared output and inflation deviations from steady state for country i, defined as $$\mathcal{L}_{i}^{y} = \sum_{t=0}^{T} \beta^{t} y_{i,t}^{2} \text{ and } \mathcal{L}_{i}^{\pi} = \sum_{t=0}^{T} \beta^{t} \pi_{i,t}^{2},$$ (54) where T is a large number. These two terms are standard components of ad-hoc loss functions used to compute optimal monetary policy in the literature and in central banks practice.²¹ Figure 8 plots \mathcal{L}_i^y and \mathcal{L}_i^π for the U.S., together with their ratio, for different configurations of monetary and markup shocks. The first row shows monetary shocks. As long as the leverage constraint on GFIs does not bind, output and inflation losses rise in lockstep as the size of policy shocks increases, and their ratio is constant, a direct consequence of the linearity of our approximation of the policy functions in this region. However, when the constraint binds, the effects of higher interest rates are larger on output than on inflation, as shown by the increasing ratio of the losses. The second row shows how output and inflation losses vary with the global markup shock. As with the case of monetary shock, trade-offs are invariant to the size of the shock as long as the constraint does not bind. When the shock becomes large enough, output-inflation trade-offs worsen. ²¹ Specifically, $y_{i,t}$ denotes percent deviations of output from steady-state, and $\pi_{i,t}$ denotes annualized percentage point deviations of inflation. Figure 9 shows the response to a large markup shock that occurs in the U.S. and abroad simultaneously. We size the markup shock so that it drives global inflation roughly 4 percentage points above steady state—similar to the rise in inflation in the U.S. observed in 2021 and 2022—and assume that the shock reverts back to steady state with an autoregressive coefficient of 0.5.²² The inflationary shock and associated monetary tightening reduce output, creating trade-offs between output and inflation stabilization. As shown in the figure, the trade-offs are worse when financial frictions are present, as the GDP losses due to leverage constraints occur without a material moderation in the inflation surge. We illustrate this effect by comparing our baseline model with an alternative calibration in which financial frictions are turned off altogether: despite a GDP decline that is much smaller absent financial frictions, the response in inflation is roughly unchanged across the two calibrations.²³ The worsening of trade-offs after a large markup shock could appear mechanical given that a large part of the inflation surge after markup shocks is exogenous and hence cannot be affected by the financial channel. In fact, financial channels affect output and the *endogenous* component of inflation similarly in this case too. To better illustrate this point, we follow Del Negro, Giannoni, and Schorfheide (2015), who break inflation down into an exogenous component driven by current and future markup shocks, and a "fundamental inflation" component $\tilde{\pi}_t$: $$\pi_t = \tilde{\pi}_t + \mu_t \tag{55}$$ Fundamental inflation is the discounted sum of expected marginal costs: $$\tilde{\pi}_{i,t} = lc_{i,t} + kc_{i,t},\tag{56}$$ where $$lc_{i,t} = \frac{1}{\kappa(\mu - 1)} (1 - \alpha) (w_{i,t} - p_{ii,t}) + \beta E_t[lc_{i,t+1}],$$ (57) $$kc_{i,t} = \frac{1}{\kappa(\mu - 1)} \alpha \left(z_{i,t} - p_{ii,t} \right) + \beta E_t[kc_{i,t+1}].$$ (58) ²² Because the effects of the shock on the U.S. and on the foreign economy are similar, we show only the U.S. in Figure 9, while Figure B.1 in the Appendix shows the effects abroad. ²³ To implement the unconstrained response we assume that the agency friction is not present. An alternative is to think that banks receive a large positive equity injection in the same quarter in which the markup shock hits. We choose this approach in order to measure the effect of financial frictions keeping the size of the shock fixed. The alternative approach of letting financial constraints switch on endogenously as the size of the shock varies was used in Figure 8. The term $lc_{i,t}$ captures the component of fundamental inflation driven by labor costs, while the term $kc_{i,t}$ captures the component driven by capital rental costs. Returning to Figure 9, financial frictions cause a large GDP decline—at the trough, GDP declines about 50 percent more with frictions than without. By contrast, the decline in inflation is smaller with financial frictions. In response to a markup shock that reduces activity, the drop in fundamental inflation is similar regardless of whether leverage constraints are present or not: $\tilde{\pi}_t$ falls 4.2 percentage points with leverage constraints and 3.7 without, an extra decline of 15 percent. This behavior occurs both because the cost-of-capital component of inflation is unaffected by financial constraints—financial frictions persistently reduce capital accumulation mitigating any decline in the rental rate—and because the cost of labor falls less than proportionally relative to GDP—because of the smaller stimulus to labor supply through wealth effects. These economic forces through which financial amplification affects policy trade-offs are invariant to the nature of the shock. In sum, the impulse responses to asynchronous and synchronous tightening episodes and to inflationary shocks illustrate two key findings from our model: first, the domestic effects of a monetary tightening by the domestic central bank depend on the simultaneous response of foreign central banks and how they affect the balance sheet of global financial intermediaries. Second, a tightening of global financial intermediaries' leverage constraints worsens monetary policy trade-offs globally. These findings are important in evaluating the gains from international monetary cooperation, which we turn to in the next section. # 5 Policy Coordination in a Global Inflation Surge We now turn to study how the financial spillovers in the model affect optimal monetary policy. We do so in two steps. We first show that when global inflationary shocks are small and credit spreads do not rise, our model predicts—in agreement with the consensus view—that the optimal monetary policy from an individual country's perspective remains nearly optimal from a global perspective. Next, we show that, when the inflationary shocks are large enough and credit spreads rise, strategic considerations become relevant in global policy actions, with optimal policy choices in one country depending on the policy stance in the other country. In addition, both countries can gain by coordinating their policy actions. ²⁴ This view is articulated in a large body of literature. See, for example, Corsetti and Pesenti (2005), Corsetti, Dedola, and Leduc (2010), Taylor (2013), or Bodenstein, Corsetti, and Guerrieri (2020), and references therein. #### 5.1 Financial spillovers and monetary policy interdependence After observing a positive, one-time global shock to retailers' desired markups, ϵ^{μ} , policymakers in each country set the policy rule parameter governing the response to inflation, $\varphi_j \in (1, 10]$. After a markup shock of size ϵ^{μ} , and given policy choices φ_H and φ_F at home and abroad, central banks losses depend on the associated inflation and output deviations from steady-state as follows: $$\mathcal{L}_i(\varphi_H, \varphi_F; \epsilon^{\mu}) = \sum_{t=0}^T \beta^t(\lambda_{\pi} \pi_{i,t}^2 + y_{i,t}^2) = \lambda_{\pi} \mathcal{L}_i^{\pi} + \mathcal{L}_i^y, \tag{59}$$ where π_{it} and y_{it} are inflation and output in deviation from steady state, and λ_{π} is the central banks' weight on inflation, which is assumed to be common across countries. For ease of notation, we omit the dependence of π_{jt} and y_{jt} from policy actions and the size of the shock. Some observations about our specification of the global policy game are in order. We restrict the strategy space to the choice of the Taylor coefficient φ_j and assume that central banks can commit to this choice. We
parameterize the game by the size of the unexpected global markup shock, ϵ^{μ} , and conduct "comparative static" exercises on the properties of the global policy game as the size of the unexpected shock parameter ϵ^{μ} changes. This allows us to illustrate in the clearest possible way how central banks incentives and strategic interaction vary as shocks become large enough to trigger the leverage constraint.²⁵ We adopt the ad-hoc loss function in equation (59) for two reasons. First, the presence of occasionally-binding leverage constraints makes it challenging to compute a higher order approximation of our system of equilibrium equations that could be used to determine a utility-based welfare criterion. Second, we want to focus on how the presence of financial spillovers affects policy trade-offs and strategic interaction in global monetary policy actions, in a context in which monetary policymakers' objectives are based on the traditional stabilization motives which guide central banks' actions in practice. Accordingly, in what follows we assume a high value for the weight on inflation, $\lambda_{\pi} = 48$, to capture a substantial focus on inflationary pressures—consistent with central banks' communications in the wake of the post-Covid inflation spike.²⁶ ²⁵ An alternative approach would be to assume that global markup shocks follow a stochastic process and simulate the economy under different assumptions about the standard deviation of the innovations to global markup shocks. In a stochastic environment, central banks trade-offs would depend on the likelihood of observing markup shocks large enough to trigger the leverage constraint. So for any fixed standard deviation of the markup shock, the incentives that guide optimal policy would incorporate both the trade-offs involved in reacting to small shocks and to shocks that trigger the constraint, where these trade-offs would be weighted by the relative probability that the shocks are large enough to trigger the constraint. The advantage of our approach is that it allows us to directly isolate how shocks of different size affect trade-offs and incentives in optimal policy setting. ²⁶ Applied analyses of federal reserve monetary policy often assume a loss function depending on quadratic Let $\varphi_H^{br}(\varphi_F; \epsilon^{\mu})$ be the best response of country H to country F choice φ_F given shock ϵ^{μ} : $$\varphi_H^{br}(\varphi_F; \epsilon^{\mu}) = \arg\min_{\varphi_H} \mathcal{L}_H(\varphi_H, \varphi_F; \epsilon^{\mu}),$$ and let the foreign best response function $\varphi_F^{br}(\varphi_H;\epsilon^{\mu})$ be defined analogously.²⁷ For any given size of the inflationary shock ε^{μ} , a Nash equilibrium is given by a pair of policies $(\varphi_H^*(\varepsilon^{\mu}), \varphi_F^*(\varepsilon^{\mu}))$ that are best responses to each other: $$\varphi_H^*(\varepsilon^\mu) = \varphi_H^{br}(\varphi_F^*; \epsilon^\mu) \; ; \; \varphi_F^*(\varepsilon^\mu) = \varphi_F^{br}(\varphi_H^*; \epsilon^\mu) \, . \tag{60}$$ The Nash equilibrium of the global policy game depends on whether the shock is large enough to trigger financial spillovers. Figure 10 illustrates this result by plotting the Nash policy and credit spreads for the home economy (top row) and the foreign economy (bottom row) as functions of the size of the global mark-up shock. When the shock is sufficiently small, both countries respond aggressively to inflation in the Nash equilibrium, a policy described by an inflation coefficient of 10. The equilibrium is invariant to the size of the shock until the point where constraints are binding, the portion to the left of the green circle. As discussed in the previous section, an increase in markups that is sufficient to trigger the leverage constraint results in worse trade-offs between output and inflation stabilization, and policies that aggressively respond to inflation, i.e. high values of φ_j , are more costly both in terms of domestic output and in terms of cross country spillovers. As a result, to the right of the green circle, Nash equilibria are characterized by less aggressive policies. The less aggressive equilibrium response to inflation when shocks are large enough to trigger the leverage constraint depends on worse domestic trade-offs and larger cross-country spillovers from policy actions, as we illustrate in Figure 11. The figure plots best response functions of the home and foreign central banks. These functions describe the optimal policy of one country for a given policy in the other country. The top row considers the case of a small global markup shock, the green circle in the previous figure. When shocks are small and financial spillovers muted, there is *strategic independence* of policy actions: best response functions are flat, and each country finds it optimal to aggressively respond to the inflationary shock irrespective of the policy choice in the other country. As a result, the Nash equilibrium is given by the most aggressive policy allowed. The bottom row considers the case of a large global markup shock, the red diamond in the previous figure. When shocks are large and financial spillovers active, strategic interactions between central banks become important. Policy actions are strategic substitutes. For the home country deviations of annualized inflation and unemployment from their respective targets. ²⁷ We verify numerically that $\varphi_{i}^{br}\left(\cdot\right)$ are functions rather than correspondences. the best response function is decreasing in the aggressiveness of the foreign country (while the loss function is increasing). A more-aggressive central bank response to inflation in the foreign country, by pushing global banks further into the leverage constraint, significantly worsens the trade-offs in the home country and causes the home central bank to reduce its own response. The effect of varying the home country response is even stronger, as depicted in the lower right panel, as home policy rates have larger effects on financial conditions given the larger exposure of GFIs to home assets. Accordingly, The Nash equilibrium, shown by the red diamond, is now given by an inflation response of about 7 in the home country and 4.5 in the foreign bloc. Having illustrated how financial spillovers affect optimal policy and strategic interaction in global policy actions, we turn to investigating potential gains from international cooperation. #### 5.2 Gains from cooperation To study the gains from monetary policy cooperation, we begin by defining the global loss function: $$\bar{\mathcal{L}}\left(\varphi_{H},\varphi_{F};\epsilon^{\mu}\right) = \sigma_{h}\mathcal{L}_{H}\left(\varphi_{H},\varphi_{F};\epsilon^{\mu}\right) + \left(1 - \sigma_{h}\right)\mathcal{L}_{F}\left(\varphi_{H},\varphi_{F};\epsilon^{\mu}\right),$$ which corresponds to the weighted average of the country loss functions. The weight of the home economy is the global loss function is given by $\sigma_h = \frac{N_H}{N_H + N_F} = \frac{1}{4}$. The optimal cooperative solution is the pair of home and foreign policies $(\varphi_h^{coop}(\varepsilon^{\mu}), \varphi_f^{coop}(\varepsilon^{\mu}))$ that minimizes the global loss $\bar{\mathcal{L}}(\varphi_H, \varphi_F; \epsilon^{\mu})$: $$\left(\varphi_{H}^{coop}\left(\epsilon^{\mu}\right), \varphi_{F}^{coop}\left(\epsilon^{\mu}\right)\right) = \arg\min_{\varphi_{H}, \varphi_{F}} \bar{\mathcal{L}}\left(\varphi_{H}, \varphi_{F}; \epsilon^{\mu}\right). \tag{61}$$ The optimal cooperative solution does not guarantee that both countries are better off relative to the Nash equilibrium. Policies that minimize the global loss function could imply losses for one of the countries that are larger than under Nash. Accordingly, we also define the set of policies that improve upon the Nash equilibrium policies for both countries simultaneously: $$\mathcal{P}\left(\epsilon^{\mu}\right) = \left\{ \left(\varphi_{H}, \varphi_{F}\right) \in \left[1, 5\right]^{2} \mid \mathcal{L}_{i}\left(\varphi_{H}, \varphi_{F}; \epsilon^{\mu}\right) \geq \mathcal{L}_{i}\left(\varphi_{H}^{*}(\epsilon^{\mu}), \varphi_{F}^{*}(\epsilon^{\mu}); \epsilon^{\mu}\right) \text{ for } i = H, F \right\}.$$ Policies in the set $\mathcal{P}(\epsilon^{\mu})$ are *Pareto improvements* on the Nash equilibrium: both countries are better off. Therefore, international agreements that select policies in this set are more realistically enforceable. We define the "optimal Pareto improvement" policies as the strategies within the set of Pareto improvements \mathcal{P} that minimize the global loss: $$\left(\varphi_{H}^{pi}\left(\epsilon^{\mu}\right),\varphi_{F}^{pi}\left(\epsilon^{\mu}\right)\right) = \arg\min_{\left(\varphi_{H},\varphi_{F}\right)\in\mathcal{P}\left(\epsilon^{\mu}\right)} \bar{\mathcal{L}}\left(\varphi_{H},\varphi_{F};\epsilon^{\mu}\right). \tag{62}$$ Figure 12 illustrates the gains from international policy coordination. There are three results to highlight. First, there is a large set of policies—depicted by the light blue area—associated with a global loss that is smaller than under the Nash equilibrium. These policies feature a less-aggressive home monetary response to inflation than under Nash, while the foreign response can be more or less aggressive. Second, the global cooperative optimum—denoted by the black square—features a response to inflation of the home economy that is significantly smaller than in the Nash equilibrium, while a foreign response to inflation that is larger. Key to understand this optimal policy configuration is the observation that the home economy has a large influence on global financial conditions, but a small weight in the global loss function. A looser monetary policy at home eases global financial conditions—improving monetary tradeoffs globally—and allows the foreign bloc to fight inflation aggressively and obtain both lower inflation and higher output
than under Nash. However, the less aggressive policy response in the home country causes home inflation to be higher than under Nash. As a result, the home country is worse off in the optimal cooperative solution, which is the reason why the optimal cooperative policy configuration is not part of the Pareto improving set $\mathcal{P}(\epsilon^{\mu})$, depicted by the green area. The reason this configuration is optimal from a global perspective is that the weight of the foreign economy in the loss function is three times as large as the weight of the home economy. Third, the set of policies associated with higher welfare for *both* countries relative to the Nash equilibrium features a less aggressive response to inflation both in the home and foreign economy. The globally optimal constrained policy (the "optimal Pareto improvement") is characterized by an inflation coefficient of 5 at home and of 3 in the foreign economy, 2 and 1.5 lower than under Nash, respectively. Under this policy, easier financial conditions result from the cooperation of the two countries, as both forgo some inflation stabilization relative to the Nash equilibrium. The home economy continues to bear a prominent role in easing financial conditions, but can stabilize domestic inflation enough to be better off relative to Nash. Figure 13 plots outcomes for the home and foreign economies under the cooperative solutions and the Nash equilibrium, conditional on the same large global markup shock considered in optimal policy analysis. Under the optimal constrained cooperative solution—in which both countries are better off than in the Nash equilibrium— both countries are less aggressive in fighting inflation, moderating the rise in credit spreads both at home and abroad relative to Nash. The ability of both countries to simultaneously achieve better outcomes by coordinating is ultimately driven by two factors: First, reducing the extent of tightening of leverage constraints improves trade-offs for both countries, as discussed in section 4.3. Second, individual central banks do not internalize the fact that the effects of their actions on global banks affect trade-offs in the foreign economy. Thus, when acting in concert in choosing an easier policy, they are able to improve trade-offs globally. As a result, both countries are able to benefit from noticeably smaller output declines compared to the Nash equilibrium while experiencing just slightly larger increases in inflation. ## 6 Conclusions Global tightening events are associated with larger economic downturns, worse financial conditions, and a relatively muted decline in inflation, with effects on activity that are larger than the sum of their individual parts. Motivated by these events, we have developed a model where the amplification of synchronous tightening events works through its effects on the balance sheets of global financial intermediaries that face occasionally binding leverage constraints. The financial amplification of global tightening episodes is larger on output than inflation, thus worsening monetary policy trade-offs. Two key elements of the model are leverage constraints that bind only occasionally, and policy trade-offs that are worsened by such constraints. When global adverse shocks are small and the financial channel is not active, we find that there are no quantitative gains from coordination of monetary policy. However, when adverse shocks are large and the net worth of intermediaries is low, the financial channel becomes active, and we find larger gains from international monetary policy coordination. # References - Acalin, J. (2022). The global financial cycle meets global imbalances. Technical report, Johns Hopkins University. - Ahmed, S., O. Akinci, and A. Queralto (2021). Us monetary policy spillovers to emerging markets: both shocks and vulnerabilities matter. FRB of New York Staff Report 972, Federal Reserve Bank of New York. - Albrizio, S., S. Choi, D. Furceri, and C. Yoon (2020). International bank lending channel of monetary policy. *Journal of International Money and Finance* 102, 102124. - Bodenstein, M., G. Corsetti, and L. Guerrieri (2020). The elusive gains from nationally-oriented - monetary policy. International Finance Discussion Paper 1271, Board of Governors of the Federal Reserve System. - Bruno, V. and H. S. Shin (2015). Cross-border banking and global liquidity. *The Review of Economic Studies* 82(2), 535–564. - Caldara, D. and E. Herbst (2019). Monetary policy, real activity, and credit spreads: Evidence from bayesian proxy svars. *American Economic Journal: Macroeconomics* 11(1), 157–192. - Cetorelli, N. and L. S. Goldberg (2012). Banking globalization and monetary transmission. *The Journal of Finance* 67(5), 1811–1843. - Champagne, J. and R. Sekkel (2018). Changes in monetary regimes and the identification of monetary policy shocks: Narrative evidence from canada. *Journal of Monetary Economics* 99, 72–87. - Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005). Nominal rigidities and the dynamic effects of a shock to monetary policy. *Journal of Political Economy* 113(1), 1–45. - Christiano, L. J., M. S. Eichenbaum, and M. Trabandt (2015). Understanding the great recession. American Economic Journal: Macroeconomics 7(1), 110–167. - Clarida, R., J. Gali, and M. Gertler (2002). A simple framework for international monetary policy analysis. *Journal of Monetary Economics* 49(5), 879–904. - Cloyne, J. and P. Hürtgen (2016, October). The macroeconomic effects of monetary policy: A new measure for the united kingdom. *American Economic Journal: Macroeconomics* 8(4), 75–102. - Corsetti, G., L. Dedola, and S. Leduc (2010). Optimal monetary policy in open economies. In *Handbook of monetary economics*, Volume 3, pp. 861–933. Elsevier. - Corsetti, G. and P. Pesenti (2005). International dimensions of optimal monetary policy. *Journal of Monetary Economics* 52(2), 281–305. - Darvas, Z. (2012). Real effective exchange rates for 178 countries: a new database. Department of mathematical economics and economic analysis, Corvinus University. - Dedola, L., P. Karadi, and G. Lombardo (2013). Global implications of national unconventional policies. *Journal of Monetary Economics* 60(1), 66–85. - Dedola, L., G. Rivolta, and L. Stracca (2017). If the fed sneezes, who catches a cold? *Journal of International Economics* 108, S23–S41. 39th Annual NBER International Seminar on Macroeconomics. - Degasperi, R., S. Hong, and G. Ricco (2020). The global transmission of us monetary policy. - Del Negro, M., M. P. Giannoni, and F. Schorfheide (2015). Inflation in the great recession and new keynesian models. *American Economic Journal: Macroeconomics* 7(1), 168–96. - Devereux, M. B. and C. Engel (2003). Monetary policy in the open economy revisited: Price setting and exchange-rate flexibility. *The review of economic studies* 70(4), 765–783. - Devereux, M. B. and J. Yetman (2010). Leverage constraints and the international transmission of shocks. *Journal of Money, Credit and Banking* 42, 71–105. - Devereux, M. B. and C. Yu (2020). International Financial Integration and Crisis Contagion. Review of Economic Studies 87(3), 1174–1212. - di Giovanni, J. and J. C. Shambaugh (2008). The impact of foreign interest rates on the economy: The role of the exchange rate regime. *Journal of International Economics* 74(2), 341–361. - Erceg, C. J., L. Guerrieri, and C. Gust (2005). Sigma: A new open economy model for policy analysis. *International Journal of Central Banking*. - Ferrante, F. and N. Gornemann (2022). Devaluations, deposit dollarization, and household heterogeneity. International Finance Discussion Paper 1336, Federal Reserve Board. - Fornaro, L. and F. Romei (2022). Monetary policy during unbalanced global recoveries. - Freyaldenhoven, S., C. Hansen, J. P. Pérez, and J. M. Shapiro (2021). Visualization, identification, and estimation in the linear panel event-study design. - Gabaix, X. and M. Maggiori (2015). International liquidity and exchange-rate dynamics. *The Quarterly Journal of Economics* 130(3), 1369–1420. - Gertler, M. and P. Karadi (2015). Monetary policy surprises, credit costs, and economic activity. American Economic Journal: Macroeconomics 7(1), 44–76. - Gertler, M. and N. Kiyotaki (2010). Financial intermediation and credit policy in business cycle analysis. In *Handbook of monetary economics*, Volume 3, pp. 547–599. Elsevier. - Gertler, M. and N. Kiyotaki (2015). Banking, liquidity, and bank runs in an infinite horizon economy. *American Economic Review* 105(7), 2011–2043. - Gertler, M., N. Kiyotaki, and A. Prestipino (2020). A macroeconomic model with financial panics. The Review of Economic Studies 87(1), 240–288. - Gilchrist, S. and B. Mojon (2018). Credit risk in the euro area. *The Economic Journal* 128 (608), 118–158. - Gilchrist, S., R. Schoenle, J. Sim, and E. Zakrajšek (2017). Inflation dynamics during the financial crisis. *American Economic Review* 107(3), 785–823. - Guerrieri, L. and M. Iacoviello (2015). Occbin: A toolkit for solving dynamic models with occasionally binding constraints easily. *Journal of Monetary Economics* 70, 22–38. - Holm, M. B., P. Paul, and A. Tischbirek (2021). The transmission of monetary policy under the microscope. *Journal of Political Economy* 129(10), 2861–2904. - Iacoviello, M. and G. Navarro (2019). Foreign effects of higher us interest rates. *Journal of International Money and Finance* 95, 232–250. - Justiniano, A., G. E. Primiceri, and A. Tambalotti (2010). Investment shocks and business cycles. Journal of Monetary Economics 57(2), 132–145. - Kollmann, R. (2001). The exchange rate in a dynamic-optimizing business cycle model with nominal rigidities: a quantitative investigation. *Journal of International Economics* 55(2), 243–262. - Maggiori, M. (2017). Financial intermediation, international risk sharing, and reserve currencies. American Economic Review 107(10), 3038–3071. - Miranda-Agrippino,
S. and H. Rey (2020). Us monetary policy and the global financial cycle. *The Review of Economic Studies* 87(6), 2754–2776. - Morelli, J. M., P. Ottonello, and D. J. Perez (2022). Global banks and systemic debt crises. *Econometrica* 90(2), 749–798. - Obstfeld, M. (2022). Uncoordinated monetary policies risk a historic global slowdown. Realtime economics blog, Peterson Institute for International Economics. www.piie.com Posted 12-September-2022. - Obstfeld, M. and K. Rogoff (2002). Global implications of self-oriented national monetary rules. The Quarterly journal of economics 117(2), 503–535. - Romer, C. D. and D. H. Romer (2004). A new measure of monetary shocks: Derivation and implications. *American Economic Review* 94(4), 1055–1084. - Schularick, M. and A. M. Taylor (2012). Credit booms gone bust: monetary policy, leverage cycles, and financial crises, 1870–2008. *American Economic Review* 102(2), 1029–1061. - Smets, F. and R. Wouters (2007, June). Shocks and frictions in us business cycles: A bayesian dsge approach. American Economic Review 97(3), 586–606. - Taylor, J. B. (2013). International monetary policy coordination: past, present and future. Bis working paper, Bank for International Settlements. - Wieland, J. F. and M.-J. Yang (2020). Financial dampening. *Journal of Money, Credit and Banking* 52(1), 79–113. Table 1: Spillovers of Monetary Shocks | | (1) | (2) | (3) | |--|-------------------|-------------------|-------------------| | | $\Delta GDP(t+8)$ | $\Delta GDP(t+8)$ | $\Delta GDP(t+8)$ | | Dummy Own Tightening | -1.09*** | -0.77*** | -0.80*** | | Duminy Own Tightening | (-6.16) | (-3.61) | (-3.72) | | | (-0.10) | (-3.01) | (-3.12) | | Dummy Foreign Tightening | -0.87*** | -0.55** | -0.56** | | | (-3.39) | (-2.23) | (-2.18) | | | | | | | Dummy Own \times Foreign Tightening | | -0.65* | | | | | (-1.93) | | | Dummy Own × Foreign Tightening: Hi Growth | | | -0.07 | | Dunning Own A Poleign Figurening. In Growth | | | (-0.24) | | | | | (-0.24) | | Dummy Own \times Foreign Tightening: Lo Growth | | | -1.53*** | | | | | (-4.95) | | | | | , | | | | | | | Observations | 2,986 | 2,986 | 2,958 | | Fixed Effects | yes | yes | yes | | | | | | Notes: This table shows the results of a regression of log quarterly GDP two years ahead against a time-t dummy for contractionary monetary shocks at home or abroad. t statistics in parentheses. ***, ** and * denote 1, 5 and 10 percent significance levels, respectively. Standard errors based on 500 wild bootstrap replications. Table 2: Calibrated Parameter Values | Parameter | Symbol | Value | Target/Source | |--------------------------------------|--------------------------------|-------------|---| | Country Size | $\mathcal{N}_H, \mathcal{N}_F$ | 1,3 | Relative GDP share of United States | | Discount Factor | β | 0.9975 | World Interest Rate $=1\%$ | | CRRA coefficient | ρ | 1 | Standard | | Inverse Frisch Elasticity | φ | 1 | Standard | | Habit parameter | ι | 0.8 | Justiniano, Primiceri, and Tambalotti (2010) | | Disutility of Labor | ψ | 0.85 | $L_h = L_f = 1$ | | Home Bias | ω_{H,ω_F} | 0.85, 0.90 | U.S. import share =15 % and $X_{hf} = 1$ | | Foreign deposits | D_F | 9 | Balanced trade in steady state | | Trade Elasticity | θ | 1 | Standard | | Capital Depreciation Rate | δ | 0.025 | Standard | | Capital Share | α | 0.33 | Standard | | Markup | μ | 1.1 | 10% steady-state markup | | Rotemberg costs | κ | 300 | Phillips Curve slope=0.03 | | Investment adjustment cost | γ_k | 2 | Justiniano, Primiceri, and Tambalotti (2010) | | Taylor rule coefficient on inflation | φ_{π} | 1.5 | Standard | | Taylor rule inertia | $ ho_r$ | 0.8 | Standard | | Share of capital held by households | γ_H, γ_F | 0.67, 0.90 | GFIs hold 33% of US capital, GFIs foreign asset share=0.25 | | GFIs survival rate | σ_b | 0.95 | Gertler and Kiyotaki (2015) | | GFIs Subsidiary Leverage Constraint | λ | 0.66 | Leverage of GFIs subsidiaries =3 | | Households capital holding costs | χ | 100 | Global spreads rise 60bps with syncronous tightening | | Agency problem parameters | θ_H, θ_F | 0.1, 0.5 | Ratio of foreign to home spread=1.5; Steady-state leverage=4.75 | | GFIs endowment | ξ | 0.013 | Equity 5% above constraint | Figure 1: Global Tightening Episodes Notes: Global Interest Rates with global tightening events denotes by the shaded areas. The bottom panel plots the share of countries in the sample with higher rates (by 25 basis points) than in the year before. Observations end in 2022q4. Figure 2: Synchronous and Asynchronous Monetary Tightening Episodes Notes: Evolution over time of macroeconomic variables around interest rate tightening episodes in advanced economies. Each period is one quarter. Synchronous (red)/asynchronous (blue) tightening episodes are those that occur/do not occur during a global tightening cycle. The lines are constructed using event-study regressions. The shaded regions show 70% confidence intervals. Figure 3: International Financial Frictions in the Model Notes: Visual representation of global financial flows in the model. See Section 3 for additional details. Figure 4: Nonlinear Financial Amplification of Monetary Policy Shocks of Different Sizes Note: The panels in the figure report the impact impulse responses of several variables following U.S. monetary policy shocks of different sizes, ranging between 0 and 250 basis points. For US output we report the one-year ahead GDP growth since GDP bottoms out after around one year due to the real rigidities present in the model. For all the other variables, we report the response at time zero. The blue lines report the effects for simulations in which the foreign central bank follows what the policy rule would imply. The red dashed lines report the effects for simulations in which the foreign central bank raises the interest rate 150 basis points more than what the policy rule would imply, calculated as the difference between the model simulation with both countries tightening and the one with only the foreign country tightening by 150 basis points. Figure 5: Model Impulse Responses to Asynchronous Monetary Tightening Note: The panels in the figure report the impulse responses of several variables following a 160 basis points U.S. monetary policy shock (blue lines) or a 160 basis points foreign monetary policy shock (green dashed lines) of different sizes. All variables are in deviation from steady state. Policy rates and inflation rates are annualized values. Spreads are computed over a 5-year horizon. Each period is one quarter. Figure 6: Model Impulse Responses to Synchronous Monetary Tightening Note: The black lines in the figure report the impulse responses of several variables following a joint 160 basis points U.S. and foreign monetary policy shock. To illustrate the amplification, we report the effects of the U.S. shock (blue bars) and of the foreign shock (green bars) occurring in isolation. The red bars measure the size of the amplification effects. Policy rates and inflation rates are annualized values. Spreads are computed over a 5-year horizon. Each period is one quarter. The variables are reported in deviation from their steady state. Figure 7: Impulse Responses to Synchronous Monetary Tightening: Response of GDP components and Real Exchange Rate Note: The black lines in the figure report the impulse responses of several variables following a joint 160 basis points U.S. and foreign monetary policy shock. To illustrate the amplification, we report the effects of the U.S. shock (blue bars) and of the foreign shock (green bars) occurring in isolation. The red bars measure the size of the amplification effects. Each period is one quarter. The variables are reported in deviation from their steady state. Figure 8: Policy Trade-offs in Response to Monetary and Markup Shocks Note: The panels plot output and inflation losses as defined in equation (54), as a function of the size of the shocks in the x-axis. The "ratio" panel is the ratio of the output loss over the inflation loss. The top row shows losses in response to U.S. policy shocks. The bottom row shows losses in response to global markup shocks. Figure 9: Model Impulse Responses to a Global Markup Shock, U.S. Variables Note: The panels show the impulse responses to a global markup shock sized to raise global inflation by about 4 percent. The blue lines depict responses for the baseline model. The red dashed lines depict responses under the assumption that agency frictions are not present. All variables are in deviation from steady state. Each period is one quarter. Figure 10: Nash equilibria and the size of the inflationary shock Note: The figure plots the response coefficient to inflation in the Taylor rule under the Nash policy and credit spreads for the U.S./home economy (top row) and the foreign economy (bottom row), as function of the size of the global markup shock. The green circle highlights the case of small shock analyzed further in the top row Figure of 11. The red diamond highlights the case of small shock analyzed further in the bottom row of Figure 11 and in Figures 12 and 13. Figure 11: Strategic Dependence and Financial Spillovers for Small and Large Markup Shocks Note: The figure plots best response functions of the home and foreign central banks. The top row illustrates strategic independence of policy actions, arising when markup shocks are small. The bottom row illustrates strategic interactions of policy actions, arising when markup shocks are large. Note: The x and y-axis denote the response coefficients to inflation in the Taylor rule for the home and foreign economy, respectively. The shaded cyan area reports the combination of response coefficients that result in a smaller global loss for the home
and foreign economies relative to the Nash equilibrium, when losses are evaluated according to the loss function in equation 5.2 and the markup shock is sized at 0.15, as in the case of the red diamond of Figure 10. The shaded green area reports the combination of response coefficients that improve upon the Nash equilibrium for both countries simultaneously, thus resulting in a Pareto improvement. Outside of the cyan and green area, all other combinations of response coefficients deliver worse average outcomes than under Nash. Figure 13: Model Impulse Responses to Large Markup Shock under Alternative Policies Note: The panels plot the impulse responses of several variables following a large markup shock under the Nash equilibrium (red lines), the cooperative optimum (black lines), and the cooperative Pareto improvement (blue lines). Policy rates and inflation rates are annualized values. Spreads are computed over a 5-year horizon. Each period is one quarter. # Appendix ### A Data Sources The sample runs from 1980Q1 through 2019Q4. Due to missing data coverage for some countries, the panel is unbalanced, with the initial period varying by country. The sample includes 21 advanced economies, and, for the specification with emerging economies, 9 additional emerging economies. The list of countries and data coverage for each country/variable is summarized in Table A.1. To create world aggregates for any variable, we weigh country-specific variables using nominal GDP (expressed in USD) from the World Bank's World Development Indicators. Below, we discuss data construction for advanced economies. - GDP is taken from each country's national statistical office, through Haver, and is quadratically detrended separately for each country. - The unemployment rate is taken in each country from the national statistical offices through Haver, the OECD statistical database, or FRED, and is linearly detrended by country. For Finland, the original series (lrhutttffm156s@FRED) was available starting in 1988Q1. The series was extended back to 1980Q1 using the predicted values of an auxiliary regression of the unemployment rate on current and four lags of the unemployment level (finurtotqdsmei@FRED), which is available since 1960. For Norway, we use the same procedure. The original series starts in 1989Q1. The unemployment level (lmunrlttnom647s@FRED) goes back to 1960. For Italy, the Netherlands, and Spain, quarterly data on the unemployment rate start in 1983Q1, 1983Q1, and 1986Q2, respectively. They were extended back to 1980 using interpolated values from annual unemployment data going back to 1960. The procedure is as follows. First, we convert the annual unemployment levels to quarterly by assigning the annual value to each quarter. Second, at the quarterly frequency, we take 5-period centered moving averages. Third, wherever the original quarterly unemployment data are missing, we fill it in with the moving average plus the first value of the original unemployment minus the value of the smoothed unemployment in that same period. - For interest rates, we use the following sources, in order of first preference to last preference: the central bank interest rate from the IMF International Financial Statistics (IFS), the treasury bill rate from the IFS, the short-term interest rate from the OECD Main Economic Indicators, and the overnight interest rate from the OECD Main Economic Indicators. Australia: 1969Q3-2019Q4 from IFS/central bank, then extended back until 1968Q1 by OECD/short-term. Austria: 1960Q1-1998Q4 from IFS/central bank, then extended forward through 2019Q4 by OECD/short-term. Belgium: 1960Q1-1998Q4 from IFS/central bank, then extended forward through 2017Q4 by IFS/treasury bill, then through 2019Q4 by OECD/short-term. Canada: 1992Q4-2019Q4 from IFS/central bank, then extended back until 1960Q1 by IFS/treasury bill. Denmark: 1960Q1-2019Q4 from IFS/central bank. Finland: 1960Q1-1998Q4, and 2004Q1-2005Q4 from IFS/central bank, then the gap from 1999Q1-2003Q4 and forward through 2019Q4 by OECD/short-term. France: 1970Q1-2017Q2 from IFS/treasury bill, then extended forward through 2019Q4 by OECD/short-term, then extended backward until 1960Q1 by OECD/overnight. Germany: 1960Q1-1998Q4 from IFS/central bank, then extended forward through 2007Q3 by IFS/treasury bill, then extended forward through 2019Q4 by OECD/short-term. Ireland: 1960Q1-1998Q4 from IFS/central bank, then extended forward by one quarter (1999Q1) by IFS/treasury bill, then extended forward through 2019Q4 by OECD/short-term. Italy: 1964Q1-1998Q4 from IFS/central bank, then extended forward through 2019Q4 by IFS/treasury bill. Japan: 1960Q1-2015Q2 from IFS/central bank, then extended forward through 2017Q2 by IFS/treasury bill, then extended forward through 2019Q4 by OECD/short-term. Netherlands: 1964Q1-1993Q4 from IFS/central bank, then extended forward through 2019Q4 by OECD/short-term. New Zealand: 1999Q1-2019Q4 from IFS/central bank, then extended back until 1978Q1 by IFS/treasury bill, then back again until 1974Q1 by OECD/short-term. Norway: 1964Q1-2017Q2 from IFS/central bank, then extended forward through 2019Q4 by OECD/short-term. Poland: 1998Q1-2013Q2 from IFS/central bank, then extended backward until 1992Q1 by IFS/treasury bill, back again until 1991Q2 by OECD/short-term, and back again until 1990Q1 by OECD/overnight. Extended forward through 2019Q4 by OECD/short-term, with IFS/treasury bill data in 2016Q1 and 2017Q1. Portugal: 1960Q1-1998Q4 from IFS/central bank, then 1991Q1 from IFS/treasury bill, then forward through 2019Q4 by OECD/short-term. Spain: 1964Q1-1998Q4 from IFS/central bank, then extended forward through 2019Q4 by IFS/treasury bill. Sweden: 2002Q3-2017Q2 from IFS/central bank, then extended back until 1960Q1 by IFS/treasury bill, and then extended forward through 2019Q4 by OECD/short-term. Switzerland: 2000Q1-2019Q2 from IFS/central bank, then extended forward through 2019Q4 by OECD/short-term. Extended backward until 1980Q1 by IFS/treasury bill, then back to 1974Q1 by OECD/short-term, then back to 1972Q1 by OECD/overnight. United Kingdom: 1960Q1-2016Q3 from IFS/central bank, then extended forward through 2019Q4 by OECD/short-term. United States: 1982Q3-2019Q4 from IFS/central bank, then extended backward until 1960Q1 by IFS/treasury bill. - Inflation is measured by the year-to-year change in quarterly core CPI (or core PCE) constructed as follows. We use core CPI from each country's national statistical offices, provided by Haver. For some countries, we extend the data back with inflation data from the Global Database of Inflation from the World Bank. Specifically, we fill in 1972Q2-1987Q3 for Australia, 1971Q1-1990Q4 for Austria, 1977Q3-1991Q4 for Belgium, 1971Q1-1990Q4 for Finland, 1971Q1-1990Q4 for Italy, 1971Q1-1971Q4 for Japan, 1971Q1-1990Q4 for the Netherlands, 1971Q1-1989Q3 for New Zealand, 1977Q1-1986Q3 for Spain, 1971Q1-1990Q4 for Sweden, and 1971Q1-1988Q4 for the UK. For some other countries, we extend the data back using the coefficients of a regression of core inflation on contemporaneous values and four lags of headline inflation and oil price inflation, two variables which were available over a longer sample. Specifically, we fill in 1962Q2-1990Q4 for France, 1962Q2-1994Q2 for Switzerland, 1962Q2-1995Q4 for Norway, and 1968Q1-1990Q4 for Denmark. - Measures of credit spreads are not available for all countries. For each country, we calculate spreads as follows. Canada: 5-year BBB-rated industrial yield minus 5-year government bond yield, from Bloomberg. France: From 1991Q1 onward, we use corporate spreads from Gilchrist and Mojon (2018). We supplement this with the difference between French corporate bond yields and 10-year German government bond yields, reaching back until 1983Q4. The supplementary data comes from Global Financial Data (GFD). Germany: Corporate bond yields minus 10-year government bond yields, from GFD. Italy: Italian corporate bond yields minus 10-year German government bond yields, from GFD. Japan: Corporate bond yields minus 10-year government bond yields, from GFD. Spain: Corporate spreads from Gilchrist and Mojon (2018). Switzerland: Corporate bond yield minus 10-year government bond yield, from GFD. UK: Corporate bond yields minus 10-year government bond yields, from GFD. USA: Corporate bond yields minus 10-year government bond yields, from GFD. - Net worth of global banks is available for Canada, France, Germany, Japan, Spain, Switzerland, United Kingdom and the United States. Net worth is constructed using a weighted stock price index of banks in each country that are global, using the definition of global banks in Acalin (2022). Specifically, the U.S. bank net worth is the weighted stock market index (using market capitalization share as a weight) of JPMorgan, Citi, Wells Fargo, Bank of America, Goldman Sachs, Morgan Stanley; the French index is the weighted index of BNP Paribas and Societe Generale; the UK index is the weighted index of HSBC, Barclays, NatWest, Lloyd's; the Japan index is the weighted index of Sumitomo Mitsui FG and Mitsubishi UFJ FG. The German index is the Deutsche Bank price index; the Spain index is the weighted index of Banco Santander and BBVA; the Switzerland index is the Credit Suisse price index; and the Canada index is the weighted index of Royal Bank of Canada and Toronto Dominion. - In each country, the construction of the monetary shocks is based on a Taylor rule regression in which the real exchange rate is used as an additional control. The real exchange rate is the effective measure described in Darvas (2012) and is available online. - In the bottom four panels of Figure 2 we show for the advanced economies the responses to tightening episodes of real consumption, real private investment, real net exports divided by trend GDP, and the real exchange rate. Consumption and investment are log detrended by country using a quadratic trend. Real net exports are
detrended by country using a quadratic trend. In general, we have fewer observations in total (about 10 percent less) in our panel for the components of GDP than we have for GDP. For emerging economies, we followed a similar approach, with the following exceptions: - We use total inflation instead of core inflation. - We use dollar corporate spreads for Chile and Mexico and local currency spreads for Korea, both from the Intercontinental Exchange (ICE). For the Philippines, we use sovereign spreads from JPMorgan. Finally, we use corporate blended spreads from JPMorgan for Hong Kong, Indonesia, Israel, South Africa, and Taiwan. - In some cases, unemployment was not available in the early part of the sample. We use the predicted values of a regression of unemployment on four lags of GDP to fill in the missing data by country. Table A.1: Data Coverage | Country | Unempl. | Inflation | Int.Rate | GDP | Spreads | BankEq. | |----------------|---------------|--------------------------------|---------------|---------------|---------------|---------------| | Australia | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | | | | Austria | 1980q1 2019q4 | 1980q1 2019q4
1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | | | | Belgium | 1983q1 2019q4 | 1983q1 2019q4 | 1983q1 2019q4 | 1980q1 2019q1 | | | | Canada | 1980q1 2019q4 | 1980q1 2019q1 | 1980q1 2019q4 | 1980q1 2019q4 | 1992q1 2019q4 | 1980q1 2019q4 | | Denmark | 1983q1 2019q4 | 1983q1 2019q4 | 1983q1 2019q4 | 1980q1 2019q4 | 100241 201041 | 1000q1 2010q1 | | Finland | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | | | | France | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1983q4 2019q4 | 1992q1 2019q4 | | Germany | 1980q1 2019q4 | 1992q1 2019q4 | | Ireland | 1984q1 2019q4 | 1984q1 2019q4 | 1984q1 2019q4 | 1980q1 2019q4 | 100041 201041 | 100241 201041 | | Italy | 1980q1 2019q4 | | | Japan | 1980q1 2019q4 | 2001q2 2019q4 | | Netherlands | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | | 44- | | New Zealand | 1986q1 2019q4 | 1986q1 2019q4 | 1986q1 2019q4 | 1980q1 2019q4 | | | | Norway | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | | | | Poland | 1999q1 2019q4 | 1999q1 2019q4 | 1999q1 2019q4 | 1995q1 2019q4 | | | | Portugal | 1983q1 2019q4 | 1983q1 2019q4 | 1983q1 2019q4 | 1980q1 2019q4 | | | | Spain | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1999q1 2019q4 | 1980q4 2019q4 | | Sweden | 1983q1 2019q4 | 1983q1 2019q4 | 1983q1 2019q4 | 1980q1 2019q4 | 1 1 | 1 1 | | Switzerland | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1997q2 2019q4 | 1992q1 2019q4 | | United Kingdom | 1980q1 2019q4 | | United States | 1980q1 2019q4 | | Chile | 1995q2 2019q4 | 1995q2 2019q4 | 1995q2 2019q4 | 1986q1 2019q4 | 1998q4 2019q4 | | | Hong Kong | 1992q2 2019q4 | 1992q2 2019q4 | 1992q2 2019q4 | 1990q1 2019q4 | 2001q4 2019q4 | | | Indonesia | 1990q1 2019q4 | 1990q1 2019q4 | 1990q1 2019q4 | 1983q1 2019q4 | 2001q4 2019q4 | | | Israel | 1995q1 2019q4 | 1995q1 2019q4 | 1995q1 2019q4 | 1995q1 2019q4 | 2001q4 2019q4 | | | Korea | 1991q1 2019q4 | 1991q1 2019q4 | 1991q1 2019q4 | 1980q1 2019q4 | 1999q1 2019q4 | | | Mexico | 1987q1 2019q4 | 1987q1 2019q4 | 1987q1 2019q4 | 1980q1 2019q4 | 1998q4 2019q4 | | | Philippines | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1981q1 2019q4 | 1993q4 2019q4 | | | South Africa | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 2001q4 2019q4 | | | Taiwan | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 1980q1 2019q4 | 2005q2 2019q4 | | Data Coverage for the variables shown in the event-study analysis of Figure 2. The top group denotes advanced economies, the bottom group emerging economies. Figure A.1: Marginal Effects of Tight Monetary Policies Note: How the effects of tight monetary policy at home depend on foreign stance and economic conditions. Figure A.2: Behavior around Tightening Episodes: HP-filtered Criterion for Global Tightening Note: The top chart plots global interest rates and global tightening episodes in the shaded areas. Global tightening episodes are assumed to start when the HP-filtered global interest rate (the difference between the global interest rate—black line—and its trend—blue line, estimated using a smoothing parameter of 1,600—) exceeds 0.5 percent, and are assumed to last no more than eight quarters. This criterion identifies seven global tightening events starting in 1981q1, 1984q3, 1989q1, 2000q1, 2006q2, 2018q4, 2022q3. The six panels at the bottom show the event-study analysis around tightening episodes constructed using HP-filtered criterion described above. Synchronous episodes are in red and asynchronous ones are blue. The lines are constructed using event-study regressions. The shaded regions show 70% confidence intervals. Figure A.3: Behavior around Tightening Episodes: Sample Including Advanced and Emerging Economies Note: Evolution over time of macroeconomic variables around interest rate tightening episodes in a sample that includes both advanced and emerging economies. Synchronous episodes are in red and asynchronous ones are blue. The lines are constructed using event-study regressions. The shaded regions show 70% confidence intervals. Figure A.4: Distribution of Monetary Shocks across Synchronous and Asynchronous Episodes Note: Estimated Distributions of Contractionary Monetary Shocks across Synchronous and Asynchronous Episodes. Figure A.5: Behavior around Tightening Episodes: Using Global Variables to Estimate Country-Specific Monetary Shocks Note: Evolution over time of macroeconomic variables around interest rate tightening episodes estimated adding global controls in each country's reaction function when estimating monetary shocks. Synchronous episodes are in red and asynchronous ones are blue. The lines are constructed using event-study regressions. The shaded regions show 70% confidence intervals. ## **B** Additional Model Results ### **B.1** Additional Impulse Responses from Baseline Experiments Figure B.1: Model Simulation of a Global Markup Shock, Foreign Variables Note: All variables are in deviation from steady state. #### B.2 Impulse Responses with Alternative Pricing Assumptions Figure B.2: Impulse Responses to Synchronous Monetary Tightening: LCP vs PCP and DCP Note: The figure compares the impulse responses for three versions of the model. One with Local Currency Pricing (LCP), our baseline; one with Producer Currency Pricing (PCP); and one with Dominant Currency Pricing (DCP).