
Improved Codelists’
Handling

January 27, 2021

Edgardo Greising
Head of Knowledge Management Solutions Unit / ILO

Chair SDMX-TWG

Issues with Codelists
 A Concept can be enumerated by one and only one Codelist
 Using Global Codelists (cross-domain or domain specific) is

a good practice
 Usually, an Organization using such Codelists needs to add

some own codes
 e.g. National codes (5th digit) in ISIC Rev.4

 In other cases, they want to use the harmonized Codelists,
but don’t need all the items
 e.g. Only a sub-set of all the age bands in IAEG-SDGs:CL_AGE(1.0)

 The only solution is to create this new Codelist ‘by
hand’, selecting the items to include from the global
Codelist and/or adding the new items.

Solution

3

 Enable a Codelist to be extended in order to include the
Codes from other Codelists.
 Resolution of duplicates
 included codes can either be given a sequence, or a unique prefix

defined
 Including a explicit subset of codes from the other Codelists
 specific lists of codes may be defined for either inclusion or exclusion

 Expressions defining which codes to include
 the '%' wildcard may be used in a similar way to Constraints

 Exchange of either the resulting 'resolved' Codelist, or a 'raw'
description of how it is composed

Solution explained

 A Codelist can extend one or more Codelists.
 Codelist extensions are defined as a list of references to parent

Codelists.
 When two codelists have items with the same Code Id,

the Codelist referenced later takes priority.
 The ‘sequence’ may be used to establish the order that will be

used when extending a Codelist
 As the extended Codelist may also define its own Codes, these

take the ultimate priority over any extension Codelists.

Solution explained

 A reference to a Codelist may contain a prefix.
 This ‘prefix’ will be applied to all the codes in the Codelist before

they are imported into the extended Codelist.
 An explicit list of Code Ids may be provided for explicit

inclusion or exclusion.
 May contain ‘wildcards’ using the same notation as Constraints (%).
 ‘Cascading’ values is also supported using the same syntax as the

Constraints.
 It is also possible to include children and exclude the Code by using

‘excluderoot’
 Exclusion and inclusion is not supported against a single Codelist.

Example

 Code Lists representing breakdowns may frequently include
several variants of the classification. For example, the standard
classification of economic activities (ISIC) includes several
revisions, plus aggregations; each of them is a variant.

 These variants are mutually exclusive, in the sense that,
although they enumerate the same concept, only one should be
used at a time, based on certain context: country, time
reference, representativeness of the sample, etc.

 In SDMX, the “context” is defined at the Dataflow or Provision
Agreement level.

The flagship use case:
Discriminated Union

 A single Code List can be defined as the representation of the
concept “ACTIVITY”, which must include all the categories for all
the variants that may be used, i.e. ISIC Rev. 4 codes, plus Rev. 3.1
codes, and any aggregate(s) used by the particular implementation.

 The result is a huge code list, hard to maintain, for which only a
small percentage of the codes are relevant for each Dataflow.

 A Dataflow would reference a “generic” DSD for all data reporters,
but depending on the context of each of them, different code sets
(i.e. different variants) should be used.

 Since only one Code List enumerates the “ACTIVITY” concept, a
Constraint should be defined for each dataflow to use a particular
variant.

 In other words, it is required to have one dataflow with a
specific constraint per variant used to select the proper codes.

Issues with multiple variants

 Two issues to solve:
1. the burden of maintaining a huge Code List with all the variants
2. the selection of a different subset of codes depending on the PA

 Having independent Code Lists for each variant (i.e.each
classification version) solves issue 1.

 Have the Dimension ACTIVITY represented by the Code List
CL_ACTIVITY with no codes

 CL_ACTIVITY has extension references to CL_ISIC4,
CL_ISIC3, CL_AGGR, etc..

 In the extension clause, a “prefix” attribute is specified for
each one, as ISIC4_, ISIC3_, AGGR_, etc..

 Each PA has a specific ContentConstraint to keep the
items of the variant used by the data provider (solves issue 2)

Solution: Discriminated Union

 Each variant in a separate Code List facilitates the
maintenance and allow keeping the original codes,
regardless of potential conflicts:
 ISIC Rev. 4: “A” represents “Agriculture, forestry and fishing”,
 ISIC 3.1: “A” means “Agriculture, hunting and forestry”

 Specifying “prefix=<variant_>” for each Code List in
the “ExtendedBy” clause prevents duplicates
 CL_ISIC4 with prefix=“ISIC4_” gets “ISIC4_A”
 CL_ISIC3 with prefix=“ISIC3_” returns “ISIC3_A”.

How it works:

 Each PA has a specific ContentConstraint to include
Value=“<variant>_%” items and
removePrefix=“<variant>_”

 A query for the PA with references=descendants and
detail=referencepartial will return CL_ACTIVITY with
the extensions resolved and the constraints applied, so
it will only include codes originally from
CL_<variant>.

How it works:

	Improved Codelists’ Handling
	Issues with Codelists
	Solution
	Solution explained
	Solution explained
	Example
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

