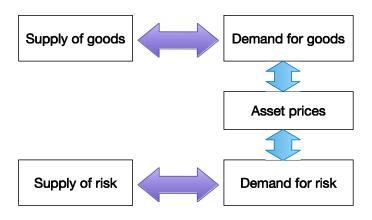

A Model of Asset Price Spirals and Aggregate Demand Amplification of a "Covid-19" Shock

Ricardo J. Caballero MIT and NBER Alp Simsek MIT, NBER, and CEPR


July 2020

A non-financial shock almost turns into a Financial Crisis...

This paper: Risk-centric amplification via demand. Policy implications

How to absorb goods and risks? Problems are linked

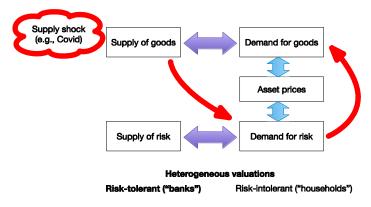
Heterogeneous valuations:

Risk tolerant and intolerant investors Optimists and pessimists (speculation)

• • •

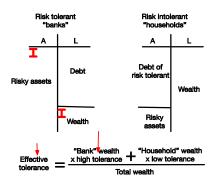
A three equation model to analyze the "Covid" shock

Output (aggregate demand)-asset price relation


Risk balance condition: Asset price given risk, tolerance, policy rate...

Endogenous risk tolerance via heterogenous risk attitudes: risk-tolerant ("banks") and risk-intolerant ("households") investors

• "Covid" shock: Non-financial—supply (demand shocks extension)...


Main results: Financial amplification of the "Covid" shock

• Endogenous risk tolerance can amplify "real" shocks via demand

• "Large-scale asset purchases (LSAPs)" can mitigate the damage

Key mechanism - "Bank" losses reduce risk tolerance

- The supply shock reduces asset prices. Lowers "bank" wealth
- This lowers risk tolerance and asset prices & aggregate demand
- With high leverage or a sufficiently large (or persistent) shock:
 Asset prices & demand decline more than the decline in supply

Summary of the (simplified) model

- Single factor, capital. Potential output z_t . Actual output y_t
- Two periods 0, 1
 - Future output = potential. Risk: $y_1 = z_1 \sim LN\left(z_0(1+g) rac{\sigma^2}{2},\sigma^2
 ight)$
 - Current output y_0 determined by **demand** (fully sticky prices)
- Two assets
 - Market portfolio with (ex-dividend) price $z_0 Q_0$. Return r^m
 - ullet Risk-free asset (zero net supply) with return r^f
- Two agents b, h with Epstein-Zin preferences:
 - EIS=1 (similar to log)
 - "Banks" are more risk tolerant, $\tau^b > \tau^h$
 - ullet "Banks" start with initial leverage, $\emph{l}_0 \in (0,1)$
- Central bank: $r^f = \max(0, r^{f*})$ where r^{f*} replicates $y_0 = z_0$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (*)

The model has three key equations

Output-asset price relation (wealth effects+):

$$y_0 = z_0 Q_0 \implies Q_0^* = 1.$$

• **Risk balance condition (**supply of risk = demand):

$$\sigma = \tau_0 \frac{r^m \left(\frac{z_0(1+g)}{z_0 Q_0}\right) - r^f}{\sigma}.$$

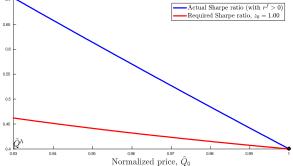
Risk tolerance-asset price relation. Increasing:

$$\tau_0\left(z_0\,Q_0\right) = \tau^h + \underbrace{\alpha_0\left(z_0\,Q_0\right)}_{\text{banks' wealth share }\left(1 - \frac{l_0}{z_0\,Q_0}\right)\kappa_0} \left(\tau^b - \tau^h\right).$$

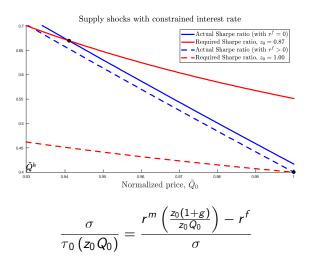
Supply shock can reduce AD and "rstar"

Required Sharpe ratio
$$\frac{\sigma}{\tau_0(z_0Q_0)} = \frac{r^m \left(\frac{z_0(1+g)}{z_0Q_0}\right) - r^f}{\sigma}$$

- Covid shock: A decline in z₀.
- Efficient benchmark $Q_0 = Q_0^* = 1$:

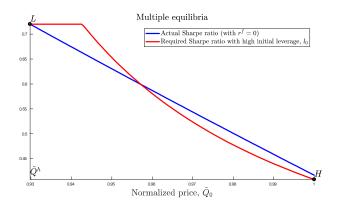

$$r^{f*} = r^m \left(\frac{z_0(1+g)}{z_0 Q_0^*} \right) - \underbrace{\frac{\sigma^2}{\tau_0 \left(z_0 Q_0^* \right)}}_{\text{lower risk tolerance}}.$$

• Risk tolerance effect is worse with high l_0 or low z_0 .


Conventional monetary policy

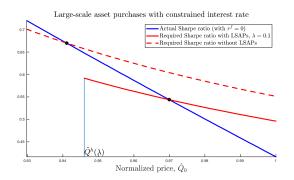
Actual Sharpe ratio Required Sharpe ratio σ $\overline{\tau_0(z_0Q_0)}$ σ

Initial state: Normal supply and a positive rate


A productivity shock can trigger an asset price spiral

A steeper red-line (high l_0 , low z_0) means a more powerful amplification

Caballero and Simsek () Demand Amplification July 2020 11


With high leverage, there are multiple equilibria

$$\frac{\sigma}{\tau_0\left(z_0Q_0\right)} = \frac{r^m\left(\frac{z_0(1+g)}{z_0Q_0}\right) - r^f}{\sigma}$$

4□ > 4□ > 4 = > 4 = > = 90

LSAPs increase asset prices and mitigate the spiral

$$\frac{\sigma(1-\lambda)}{\tau_0(z_0Q_0)} = \frac{r^m\left(\frac{z_0(1+g)}{z_0Q_0}\right) - r^f}{\sigma}$$

Note: A steeper red-line (high l_0 , low z_0) means a more powerful policy s_0

Caballero and Simsek () Demand Amplification July 2020 13 / 18

Optimal LSAP: Increasing with severity of downward spiral

benefit from output gap

gov's marginal cost from adding risk (relative to market)
$$= \frac{\tilde{Q}_0'\left(\lambda\right)}{\tilde{Q}_0\left(\lambda\right)}$$

- More LSAP with greater fiscal capacity
- More LSAP with greater leverage or worse recession
 - A steeper red line makes the policy more desirable

Final remarks: A risk-centric perspective on "Covid-19"

- Asset price spirals and aggregate demand can amplify real shocks when economic agents have heterogeneous risk tolerance
 - As supply (or demand) drops, so do asset prices
 - The "representative investor" becomes less risk tolerant
 - An interest rate cut is the most effective response
 - Without it, asset prices drop further and trigger a downward spiral
 - Corporate debt overhang and insolvencies amplify the spiral
- LSAPs work by reducing the supply of risk market needs to absorb
 - The rationale is to boost aggregate demand via asset prices
- Other risk-centric policies
 - Loosening capital requirements
 - Offering public guarantees ("put policies")
- **Debt overhang:** Supply is a function of $z_0 Q_0$, which increases τ'

Caballero and Simsek () Demand Amplification July 2020

15 / 18

Appendix: large-scale asset purchases (LSAPs)

Government Balance Sheet Before LSAP		After LSAP	
		A	L
		λ units of m	$\lambda z_0 Q_0 ext{ units of } f$
A	L		
Future tax revenues (claims on future generation)	Government wealth (spending, transfers to future generation)	η^g units of m	$\eta^g z_0 Q_0$
η^g units of m	$\eta^g z_0 Q_0$		
	I		

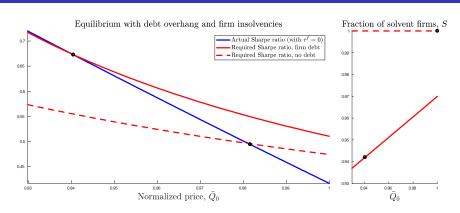
LSAPs (λ) reduce the risk that private sector needs to absorb:

$$\frac{\sigma(1-\lambda)}{\tau_0(z_0Q_0)} = \frac{r^m\left(\frac{z_0(1+g)}{z_0Q_0}\right) - r^f}{\sigma}$$

Appendix: Debt overhang-Asset prices affect firm insolvencies

- Firm ν manages capital. Initial debt $b(\nu)$ where $\int_{\nu} b(\nu) dF(\nu) = 0$
- Insolvent firms become unproductive. Solvency condition:

$$y_0(\nu)+z_0Q_0\geq b(\nu)$$
.


• Fraction of solvent firms is increasing in the asset price:

$$\overline{S}(z_0Q_0) \equiv F(2z_0Q_0)$$
.

- This leads to a stronger output-asset price relation
- And a stronger risk tolerance-asset price relation

$$\tau_0\left(\overline{S}\left(z_0Q_0\right)z_0Q_0\right).$$

Appendix: Debt overhang- Amplifies spirals (strengthens LSAPs)

$$\frac{\sigma}{\tau_0\left(\overline{S}\left(Q_0\right)z_0Q_0\right)} = \frac{r^m\left(\frac{z_0(1+g)}{z_0Q_0}\right) - r^f}{\sigma}.$$