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1 Introduction

"Just-in-Time" (JIT) manufacturing was introduced in Japan during the late 1940s and early
1950s by Toyota, with the purpose of reducing inventories, reducing setup times, and saving
costs in other aspects of the supply chain. The reasons why it started in Japan are not
completely clear. Some have argued that it was a combination of limited natural resources,
a lack of physical space to hold the inventories, and financial constraints that the Japanese
industry faced at the end of the war1. The cost reduction and efficiency gains of JIT became
well known worldwide. Indeed, it became the standard of excellence in a short period of time
and was adopted by many corporations. In fact, the globalization of the manufacturing of
goods and services that started in the 1980s was, for the most part, inspired by JIT premises.
Interestingly, even from the very beginning, Toyota suggested that the main risk of this
strategy was its excessive reliance on suppliers — which could be less resilient and flexible
than Toyota itself. Hence, a successful JIT implementation required a large emphasis on
supplier development. Toyota argued that the JIT’s biggest weakness was its vulnerability.

In response to those risks and seeking resilience, companies have explored other
alternatives. These strategies, dubbed "Just-in-Case", usually recommend actions such as
larger inventories, diversification of the production network, and parts harmonization. In
the end, the advice is simple: to develop flexibility and redundancy in the supply chain.
Regardless of all these efforts, the world’s supply chains were proved to be unreliable during
the Covid-19 pandemic. Either international trade frictions, quarantine restrictions, large
shifts in demand (such as protective equipment), or even panic demand purchases of some
products (such as toilet paper and disinfectant wipes in the US) highlighted the fragility
of supply chains in the world. Over the past months, many countries experienced supply
disruptions for various products. The collapse is due to a design flaw: while the just-in-
case approach might be appropriate for idiosyncratic shocks, it seems to have failed in the
presence of an aggregate shock.

The need to redefine the internationalization of production was eloquently captured
by the Financial Times headline: From "Just-in-Time" to "Just-in-Case"2. Many have argued
that resilience and robustness are needed. However, what exactly does it mean to have
a robust supply chain? How does it differ from assuming a larger shock? In this paper,
we make the case that just-in-case manufacturing strategies were not enough to patch the
existing vulnerabilities. We believe it is now time to approach supply chain optimization
through robust control. Robustness implies more than just assuming larger shocks; it implies

1See the Toyota Production System, where one of the two pillars for production is just-in-time: a type of pro-
duction where "only the necessary products, at the necessary time, in the necessary quantity are manufactured,
and in addition, the stock on hand is held to a minimum." Also see Plenert (2007).

2See The FT Editorial Board (2020), Evans (2020) and Long (2020)
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concentrating on the worst possible outcome; it implies shifting to "Just-in-Worst-Case".
In this paper, we present a very simple model. It introduces the idea that, in the

pursuit of efficiency, a decentralized supply chain could become vulnerable to aggregate
shocks. In other words, our setup reflects the well-known trade-off between efficiency
and robustness. We are interested in understanding the consequences of natural disasters,
environmental shocks, and pandemics on the global supply chain. These shocks tend to
be substantial and infrequent, but also widespread — affecting many countries and regions
at the same time. Just-in-Case’s standard supply chain analysis suggests that increased
inventories or diversified production protect against large and frequent idiosyncratic shocks.
In the presence of aggregate shocks, however, the right notion of diversification needs to be
expanded.

We study the survival of a multinational firm that purchases from small global suppli-
ers. The suppliers decide where to locate, and locations are subject to aggregate shocks. We
compare two types of global supply chain arrangements and two different natures of shocks.
First, the small suppliers individually decide their location, and the multinational purchases
the surviving suppliers’ products. Second, we study the case when the multinational can
choose all its suppliers’ locations, thereby internalizing the location decision (i.e., the sup-
pliers are subsidiaries of the multinational firm). From the perspective of the shocks, we
compare the situation of risk versus uncertainty through two settings of random aggregate
shocks. In the first case, we assume the distribution is known, while in the second case, only
the distribution’s support us known.

In addition to these two aspects, our model has four additional ingredients: possible
locations for production facilities, aggregate shock characteristics, prices of intermediate and
final products, and growth of the number of suppliers.

Our basic model has two locations: the Mountain and the Valley3. The two locations
differ only in the probability that an aggregate shock hits. We assume the aggregate shock
is extreme, such that all suppliers in the affected location perish. We also assume that the
shock is more likely to occur in the Mountain than in the Valley. Therefore, if an aggregate
shock occurs, then the conditional probability of the shock affecting the Mountain (or the
Valley) is 𝜃 (or 1 − 𝜃), where 𝜃 > 1/2.

Each supplier produces a single unit, or a "part". The cost to produce and price per part
are the same: in both locations, for all producers, and in any state of the world. In particular,
we assume that prices are independent of both the realization of the aggregate shock, and the
number of surviving suppliers4. However, in canonical macroeconomic and international

3This example is inspired by Lo (2017) discussion on probability matching.
4This assumption is motivated by price gouging laws and consumer anger in response to natural disasters.

For consumer anger see Rotemberg (2002, 2011)) and for price gouging laws Executive Order 13910 of March
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models, this would not be the case. The demand is usually chosen such that when quantities
tend to zero, prices increase and can even tend to infinity. Models based on Cobb-Douglas
or CES functions have this feature, and the pricing system reflects scarcity. Nonetheless, if
firms are concerned about the consequences of increasing their prices after natural disasters,
or there is a law that does not allow prices to increase after such an event, then the price
required to achieve the efficient allocation may never be realized. If this were known ex-ante,
then it would affect the willingness of suppliers to diversify into risky locations. Our model
takes an extreme assumption — prices are fixed — to capture this feature of regulations and
institutions. Moreover, below we include some anecdotal evidence of law enforcement and
consumers’ negative reactions to price gouging during the Covid-19 pandemic.

The number of suppliers grows and depends on the number of surviving suppliers.
We treat each suppliers’ part as a different intermediate good, and the multinational pur-
chases as many parts as possible to sell the final product internationally. The product is more
desirable the more parts it has — but it can be manufactured with a subset of the parts. This
setting is equivalent to assume that the quality of the item increases with the number of parts
it has5.

The parameters in the model are such that each supplier’s location decision has a
dominant strategy, which is not collectively optimal when the probability of global survival
is taken into account. This discrepancy comes from the inability of the pricing system to
compensate firms properly for moving into the Mountain. In this setting, the multinational
wants to ensure its suppliers survive. Putting this differently, the multinational cares about
survival, while the suppliers do not. This difference implies that the multinational might
be willing to set production facilities in the Mountain to insure itself against an aggregate
shock in the Valley. This part of the model captures a simple externality and the need for a
diversified supply chain, but not yet a robust one.

This is where the nature of the shock matters. When the shocks have known distribu-
tions — what is known as risk or the nominal model — the multinational will exhibit behavior
that takes into account all the sources of risk. This setting implies a desire for diversification,
and one of the implications, for example, is that the multinational’s optimal allocation of
firms to the Mountain depends on the number of suppliers that have survived. There is both
a marginal benefit and cost of diversification, and in general, an internal solution is found
(at least under our assumptions). The multinational’s policy changes dramatically when the
shock has bounded uncertainty — meaning that the distribution is unknown — in the robust

23, 2020, Preventing Hoarding of Health and Medical Resources To Respond to the Spread of COVID-19. For a list of
price gouging laws in the US, see King and Spalding (2020)

5It is very common in supply chain management to assume that if one good or part is missing, the whole
product can’t be manufactured. By relaxing this assumption, we can eliminate the typical assumptions behind
just-in-case theories and concentrate on the robustness aspect.
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model. In this setting, utility optimization requires a robust control approach. For example,
the optimal allocation of firms is independent of the number of surviving firms. The robust
supply chain decision, therefore, looks very different from the nominal model.

Our model replicates a behavior from evolutionary games known as the probability
matching. Even though, for individual firms, the rational optimal decision is to always locate
in the Valley, the socially optimal allocation implies a higher degree of diversification. In the
case of uncertainty, firms’ optimal allocation is independent of the number of suppliers that
exist– very much in the spirit of probability matching. However, the optimal solution does
not coincide exactly with the probability matching from the experimental literature.

This paper includes several theoretical results worth highlighting. First, we compare
the centralized and decentralized solutions to the model. We show a corner solution of the
decentralized allocation (all firms locate themselves in the Valley), exposing the multina-
tional to an aggregate shock to the Valley. This result contrasts with the internal solution
(a proportion larger than zero of firms in the Mountain) when a centralized approach is
used. Individual suppliers maximize efficiency (or productivity) while the multinational
maximizes survival.

Second, we study the implications of risk and uncertainty in the probability distribu-
tion of the aggregate shock. We depart from the assumption of the first part of our paper:
that the value of 𝜃, the probability the aggregate shock affects the Mountain, is known. We
first study what occurs when 𝜃 is risky; for example assuming that it is distributed between
[𝜃̄ − Δ, 𝜃̄ + Δ] with some known distribution. This exercise represents a risky setup — the
nominal model. We compare it to the uncertain setup where the multinational only knows
that 𝜃 ∈ [𝜃̄ − Δ, 𝜃̄ + Δ], but the distribution is unknown. This case represents uncertainty,
and the optimal control problem implies a robust approach. The individual suppliers and
the multinational maximize assuming the worst-case scenario. For example, if 𝜃̄ > 1/2 but
the interval contains 1/2 then the robust control makes the choice as if 𝜃 = 1/2. Robust-
ness implies a degree of diversification in the supply chain that is not achieved when the
multinational faces only risk.

Finally, we study what happens when prices and costs of production differ across
locations. We compare three settings for the global supply chain: (i) the decentralized
myopic setting that always chooses a corner solution, except when prices and costs are at the
knife-edge when the value of both locations is the same; (ii) the probability matching heuristic
where the allocation of firms coincides with the probabilities of survival in each location; (iii)
and the optimal allocation by the multinational. We show that the decentralized solution can
replicate the centralized solution when the value in the Mountain is equal to the value in the
Valley. Our model justifies why governmental subsidies can help the decentralized economy
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achieve the robust solution. Our discussion was motivated by Japan’s policy actions during
the summer of 2020, where Japan set up a fund to compensate firms that diversify out of
China6. Of course, the decision could have been driven by political aspects not considered
in this paper, but our model at least rationalizes economically why such industrial policy
makes sense.

In each of the different simple models, we draw some policy implications that have
been motivated by the recent experience with the pandemic, which is summarized in the
end. All of them, however, have a simple message: robustness is under-supplied.

1.1 Price Gouging

One of the important assumptions of our model is that prices do not adjust to the aggregate
shocks. This has been motivated by price gouging laws in many countries — either because of
fairness considerations or consumer anger. This subsection discusses the origin and evidence
of such an assumption.

When facing large aggregate shocks, the price of essential goods cannot float freely
as assumed by the classic general equilibrium model. Take Covid-19 as an example; during
the pandemic, the demand for personal protective equipment, foods, and other essential
supplies has risen dramatically, which raises the concern of price gouging with both the
regulators and the general public.

On the side of regulators, Executive Order 13910 of March 23, 2020, Preventing Hoarding
of Health and Medical Resources To Respond to the Spread of COVID-19 was issued by the US
to deal with the threat of price gouging. Individual States in the US, referring to the laws
of King and Spalding (2020), are very active in controlling companies pricing for products
related to the pandemic.

6See Bloomberg News (2020)
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Figure 1.1: Law enforcements’ efforts to control price gouging.

As shown in Figure 1.1, many State Attorney General Offices created procedures
to deal with price gouging complaints. The purpose of these laws is quite "benevolent";
regulators seek to prevent hoarding and ensure that the prices of essential goods do not
increase beyond that which is considered "reasonable or fair". However, in practice, it is not
possible to distinguish which part of the price increase is reasonable (e.g., a price increase
which generates profits to compensate for the cost of diversification in normal times) and
which part is not reasonable (e.g., price increase due to hoarding).

During Covid-19, the companies that had previously diversified their production,
and were hence able to keep producing essential products during the pandemic, were not
rewarded with higher profit. Instead, they were penalized by the increasing litigation risk
of anti price gouging enforcement. As a result, diversifying and preparing for aggregate
shocks may not a financially optimal decision for companies in classic market equilibrium
models. Theoretically, the problem described above is inefficient allocation due to market
incompleteness. Our model, with individual producers and the fixed-price assumption,
reflects this issue.

The general public was also paying attention to price gouging. For example, a Google
Images search on October 5th for "price gouging" presents the following results.
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Figure 1.2: Google Search results for Price Gouging.

Some of the images are shown in detail in figure 1.3: consumers compare the price
of isopropyl alcohol with a a bottle of champagne, a convenience store clarifies the price of
toilet paper is not a joke, and water purchases are restricted.

When the consumers and law enforcement are so concerned with price increases after
a natural disaster, is reasonable to expect that firms will prefer not to supply than to face the
public relations nightmare that would require explaining the price needed to sell.

The examples we show here are only in the US, but Europe experienced a similar search
intensity of firms violating price gouging laws. See Cary et al. (2020) and UK Competition
Authority (2020) for a discussion of the recent law enforcement efforts regarding complains
of price abuses in many developed nations.
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Figure 1.3: Price gouging examples in stores and online.

On the side of the general public, price gouging receives immediate attention at the
start of the pandemic. And even though the images constitute anecdotal evidence, we can
provide evidence on the intensity people were searching.

Figure 1.4 shows the Google search frequencies of topics "Coronavirus" and "Price
Gouging" in different regions (US, UK, and worldwide) as well as different languages (English
and Spanish). It is evident that the public’s awareness of "price gouging" rises almost
simultaneously with awareness of "Coronavirus" itself.
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Figure 1.4: Google search frequencies of topics "Coronavirus" and "Price Gouging". Numbers
are normalized by 100 at maximum values. Data Source: https://trends.google.com/trends/

1.2 Literature Review

Probability Matching: Our model provides a control problem rationalization of probabil-
ity matching. When a game similar to ours is presented to individuals, experiments show
that individuals tend to locate at the Valley roughly with probability 𝜃, and locate at the
Mountain roughly with probability 1 − 𝜃. This experimental result is known as probability
matching in the literature7. Many different theoretical approaches to behavior are developed
to explain this phenomenon that humans prefer probability matching over rational expected
utility maximization. Some early work suggests that it is a behavioral limitation due to
bounded rationality, but more recent literature attributes that to learning strategies. Vulkan
(2000) and Gaissmaier and Schooler (2008) argue that people would consistently try to learn
patterns of the outcome series in a repeated game even when they are informed that the
series is completely i.i.d. As a result, if the outcome series is truly i.i.d. as many of the earlier
models assume, then probability matching seems irrational. On the other hand, if there is, in
fact, a pattern in the series, probability matching claims a higher expected reward in the long

7See, for example, Fiorina (1971), Morse and Runquist (1960), Vulkan (2000), and Brennan and Lo (2011)
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run by gradually learning the patterns. Other literature suggests that probability matching is
related to the growth pattern of a group of individuals. For example, Brennan and Lo (2011)
concludes that if two choices result in similar growth rates, then deterministic decision rule
prevails. On the other hand, if two choices result in drastically different growth rates, then
probability matching gives an evolutionary advantage over the deterministic decision rules.

In our model, the intuition of the mechanism is simple: what is individually optimal
is not globally optimal. The reason is that the survival of firms in our model has a global
externality from the inability of firms to coordinate — the increase in the number of firms
that could produce — that given our set up the decentralized market does not take into
account. When the social planner solves the model, however, it internalizes this effect, and
it forces firms to do something that looks locally irrational. As said before, locating firms in
the Mountain provides insurance to the multinational when an aggregate shock to the Valley
takes place. That insurance is extremely valuable when uncertainty is present.

Supply Chain: The literature on the supply chain is extensive and impossible to summarize
in a few paragraphs. There are, however, aspects that have been discussed in the literature
that are relevant to the model we present here.

Aggregate shocks like Covid-19 has a significant implication of global supply chain
risk management. Earlier empirical research describes this as supply chain flexibility, see
Vickery et al. (1999). That paper defines flexibility as the ability to adapt to aggregate
shocks. It shows through correlation analysis that supply chain flexibility is critical to the
long-run survival of an organization. On the other hand, flexibility may affect the immediate
competitiveness of the firm in the short run.

The vulnerability of the global supply chain to identical suppliers has already raised
some concerns in the industry. Wagner and Bode (2006) studied questionnaires from com-
pany executives in Germany and concludes that a firms dependence on single type customers
and suppliers is the largest contributor to a firms exposure to supply chain risk.

In recent years, the question of whether to integrate suppliers or not has been receiving
more and more attention to supply management. The existing empirical literature has been
studying this issue by looking at the elasticity of substitution of produces, see Antràs and
Chor (2013) and Alfaro et al. (2019). When the demand for the final product is elastic, and
inputs are not substitutable, firms choose not to integrate upstream suppliers. On the other
hand, when the demand for the final product is inelastic, and inputs are substitutable, firms
choose to integrate upstream suppliers. This finding shows that firms supply chain decision
is optimal for the deterministic case, but not necessary when aggregate shock hits.

Apart from the works highlighted above, two groups of literature align with the spirit
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of this paper.
First, there is ample literature discussing the organization of the supply chain. Fol-

lowing Antràs (2020), global supply chains can be viewed through different lenses. First,
the value-added approach where firms allocate production internationally, and each stage
of production contributes to the final product. In general, this literature concentrates on
countries and industries as the unit of analysis. Second, the firm-level perspective — started
by Melitz (2003) — offers an alternative to the aggregate view of the first approach. In this
literature, the firms are the unit of analysis, and they are the ones that decide whether or
not to participate in global supply chains. Both of these approaches assume there is no
informational problem. This is relaxed by the relational view of supply chains. In this view,
firms and suppliers face contracting problems — moral hazard or incomplete contracts —
and therefore enter in relation to solve the informational problem. The main question it
addresses is the organizational structure of the firm. The boundary of the firm in the global
supply chain started with the seminal contribution of Antras (2003). The author discusses
how incomplete contracts determine whether a firm should be integrated internationally
versus enter in arms-length negotiations8. Finally, Yeaple (2003) studies the vertical and
horizontal integration of multinationals.

Second, the literature on supply resilience highlights that resilience can be obtained
by organizational robustness or organizational flexibility. See, for instance, Ambulkar et al.
(2015), Töyli et al. (2013), Zhao and You (2019), Saenz et al. (2015), Durach and Machuca
(2018), Helpman et al. (2004) and the references therin. Most of this literature, however, has
two features. One is very related to our model — the literature advises that a robust supply
chain can be achieved by working closely with the suppliers. In the spirit of our model, that
is equivalent to when the multinational decides the global allocation problem. The second
aspect is that most of these papers think about the robustness of a supply chain in response
to shocks to the firms — i.e. the robustness to idiosyncratic shocks.

2 Model

In this section, we present a firm-location-problem model that highlights the vulnerability
of the global supply chain to aggregate shocks. It is a simple survival model in which
individual firms fail to take into consideration the impact they have on the aggregate —
a standard externality argument — and whose decisions change quite substantially once
uncertainty is taken into account.

We assume two different forms of organizing the world supply chain. In the first,

8See Antràs and De Gortari (2020), Antràs and Chor (2018) and Antras (2015).
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a multinational asks already established firms (factories) to independently offer the parts
required to produce a final product. In this case, the factories decide where to locate
themselves. We identify this structure with a global supply chain of Independent Suppliers
or the Decentralized economy. The second organization is one in which the multinational
allocates its production facilities — which are the subsidiaries of the multinational. We
identify this structure as Multinational Subsidiaries or as the Centralized economy.

As said before, a second ingredient in our model is the difference between risk and
uncertainty. Optimization under risk produces a policy function that is very different from
that derived under uncertainty. Our model is a single firm, partial equilibrium model, which
concentrates on the existence and response of the supply chain to aggregate shocks. The
Covid-19 pandemic was an obvious aggregate shock. However, natural and environmental
disasters becoming more prevalent implies that we need a different approach to the under-
standing of resilience and robustness of the supply chain. A distinct feature of these shocks
is their aggregate nature, but also how uncertain they are; we might know that sea level will
be rising, but the extent of the damage has tremendous uncertainty, and the distribution
itself is likely to be unknown.

We use both ingredients — the internalization of survival (the externality) and the
robust approach (uncertainty) — to rationalize supply chains whose level of diversification
are an order of magnitude larger than what we observe in practice.

2.1 Baseline Model

A product sold by a multinational is comprised of many "parts", each produced by a factory,
and each factory can be located in two different regions. Time occurs in discrete steps, and
the discount rate is 𝛽.

Assume there are 𝑁𝑡 firms at the start of period 𝑡. Each factory/supplier has a
location decision: for simplicity, we will identify the locations as the Mountain and the
Valley. Factories choose one of these two locations at time 𝑡 where they set up production.
Each factory only produces one unit of the part, which has a constant cost 𝑐. Suppliers sell the
part to the multinational, who produces the final good. The cost is paid before production
takes place.

Production is uncertain. In each period, one of two locations might suffer an aggregate
shock with arrival probability 𝛾. Conditional on such a shock, and before production occurs,
all firms in the Mountain or Valley perish with probability 𝜃 or 1−𝜃, respectively. We assume
that 𝜃 >> 1/2. In other words, the Mountain is significantly riskier than the Valley. With
probability 1 − 𝛾 there is no aggregate shock. Production takes place only by the surviving
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firms, and the multinational produces the final product with the parts it has access to9.
At the end of each period, the number of subsidiaries can grow. The growth rate is

given by
𝑁𝑡+1 = 𝐴 · (𝑁 𝑠

𝑡 )1−𝜇 (2.1)

where 𝑁 𝑠
𝑡 denotes the number of firms that have survived the aggregate shock. Notice that

this growth process has a fixed point at 𝑁 ∗ = 𝐴1/𝜇. The timing is denoted in Figure 2.1.

𝑡 𝑡 + 1

𝑁𝑡

Initial
Number
of Firms

𝜓𝑡

Location
Decision

𝑐

Cost
payment

𝛾 and 𝜃

Aggregate
Shock

𝑁 𝑠
𝑡

Production
with surviving

Firms

𝑁𝑡+1

Firms
Growth

Figure 2.1: Model timing.

The multinational aggregates parts from all the suppliers and produces a final good.
The complexity of the final good depends on the number of parts included. This model has
an extremely simple demand side; we assume that the final product’s revenue when sold is
linear in the number of parts it includes. Furthermore, we add a Survival Constraint to this
model by assuming that the firm needs at least 1 part to be able to produce the final product.
In other words, 𝑁 𝑠

𝑡 ≥ 1 for the firm to be able to continue operating.

Π𝑡 =

{
𝑝𝑁 𝑠

𝑡 if 𝑁 𝑠
𝑡 ≥ 1

0 o.w.

The price per part, 𝑝, is constant and independent of production and the state of the
world. This is equivalent to assuming that the multinational is a price taker, but it also is
capturing the fact that prices rarely move freely after natural disasters. This is a very simple
demand that simplifies the exposition.

One crucial reason why prices might not adjust after aggregate shocks is the presence
of price gouging. In many countries, there are price gouging regulations that limit the extent
to which the pricing system helps ameliorate the supply chain problem. Therefore, the
pricing system cannot finance the supply chain reforms required to reestablish production,
and instead other actions (such as time or government subsidies) are required to recover
the supply chain. During the Covid-19 pandemic, it has been clear that fairness arguments
have dominated the discussion. For example, see Executive Order 13910 of March 23, 2020,

9The reason behind this assumption is that in the canonical model of complementary inputs (e.g., Kremer
(1993)) an idiosyncratic shock has macroeconomic consequences. In our model, we want idiosyncratic shocks
to be "harmless" and concentrate on the role of aggregate shocks.
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Preventing Hoarding of Health and Medical Resources To Respond to the Spread of COVID-19, or
King and Spalding (2020) for a list of price gouging laws in the US. A more detailed discussion
of price gouging during Covid-19 was given earlier in Subsection 1.1.

Denote 𝜓𝑡 the proportion of firms that are located in the Valley. The evolution of firms
is given by

𝑁𝑡+1 =


𝐴 · (𝑁𝑡)1−𝜇 w/p (1 − 𝛾)
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇 w/p 𝛾𝜃

𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇 w/p 𝛾(1 − 𝜃)
where the top realization occurs when there is no aggregate shock, and the second

(third, respectively) one is when the aggregate shock hits the Mountain (Valley, respectively).
The growth of the firms has two components: multiplicative and exponential. As can be
seen, the growth of suppliers depends on the total number of surviving suppliers in the
world. We assume that the new suppliers are distributed according to the existing number
of surviving firms in each location, but that the growth rate depends on the total number
of existing firms. This assumption in the basic model is innocuous, but it is essential if
the model is extended to introduce adjustment costs — or switching costs. We leave this
interesting application for future research.

2.1.1 Independent Producers

In the independent producers setting, the suppliers decide their location individually, and
then the multinational contracts with the firms. We assume that all the revenue from the
multinational is transferred to the suppliers — i.e. the multinational has zero profits. The
total revenue is equally shared among the surviving suppliers.

Suppliers are small and they do not take into account the impact their decision has
on the decision of the location of others (𝜓𝑡). As we mentioned before, there is no cost of
switching between locations. Therefore the suppliers are solving a static problem — the
continuation value is exactly the same for all firms. Firms are maximizing the expected value
of Mountain versus Valley and given our assumptions Valley dominates for all firms. Then,
the value at time 𝑡 of locating in the Valley or the Mountain is given by

𝑉𝑣
𝑡 = ((1 − 𝛾) + 𝛾𝜃)𝑝 − 𝑐 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾𝜃)𝑉𝑡+1 (2.2)

𝑉𝑚
𝑡 = ((1 − 𝛾) + 𝛾(1 − 𝜃))𝑝 − 𝑐 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾(1 − 𝜃))𝑉𝑡+1. (2.3)

The continuation value for each supplier, conditional on having survived the aggregate
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shock, is independent of the location. This is a feature of the zero cost of relocation. Therefore,
the value of locating in the Valley is always larger than the value of locating in the Mountain.
Formally,

𝑉𝑣
𝑡 −𝑉𝑚

𝑡 = 𝛾(2𝜃 − 1)
(
𝑝 + 1

1 + 𝛽
𝑉𝑡+1

)
> 0 (2.4)

for 𝜃 > 1/2, and hence 𝜓𝑡 = 1.

2.1.2 Multinational Subsidiaries

Assume now that the multinational has all the decision power and it allocates the production
units. Two aspects now matter for the multinational firm that were not relevant for the
independent suppliers: the multinational takes into account the distribution of firms, and it
takes into account the expected value of continuation in all states of the world.

The problem of the multinational firm can be written as follows

𝑉(𝑁𝑡) = max
𝜓𝑡




(1 − 𝛾) · (𝑝𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝑁𝑡)1−𝜇) )

+𝛾𝜃 · (𝑝𝜓𝑡𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇) )

+𝛾(1 − 𝜃) · (𝑝(1 − 𝜓𝑡)𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) )

 − 𝑐𝑁𝑡

 (2.5)

where
lim
𝑁→1−

𝑉(𝑁) = 0 (2.6)

is the value matching constraint.
As before, the top line represents the value when the aggregate shock does not occur,

and the second (third, respectively) when the aggregate shock hits the Mountain (Valley,
respectively). Although the cost is the same 𝑐𝑁𝑡 , the revenue depends on the number of
surviving firms. Recall that the cost of production is paid irrespectively of the aggregate
shock.

The first-order condition (FOC) with respect to 𝜓𝑡 , after simplifying, is

(2𝜃 − 1)𝑝 = 𝐴(1 − 𝜇) 𝑁
−𝜇
𝑡

1 + 𝛽

{(1 − 𝜃)(1 − 𝜓𝑡)−𝜇𝑉′ (𝐴((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) − 𝜃𝜓
−𝜇
𝑡 𝑉′ (𝐴(𝜓𝑡𝑁𝑡)1−𝜇)} .

(2.7)
We simulate the discrete time version of the model to characterize the solution10. The

parameters used in the simulation are: 𝛽 = 0.02, 𝛾 = 0.2, 𝜃 = 0.6, 𝜇 = 0.5, 𝐴 = 5, 𝑝𝑚 = 𝑝𝑣 = 1
and 𝑐𝑚 = 𝑐𝑣 = 0.5.

In terms of the number of suppliers in equilibrium, the choice of 𝜇 = 0.5 implies a

10We present the derivation of a continuous time version of the model in Appendix A.
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fixed point of 𝑁𝑡 = 25, in the absence of aggregate shocks. We initialize all simulations in
this fixed point.

In Figure 2.2, we present the proportion of firms in the Valley as a function of the
total number of suppliers (horizontal axis). The orange line represents the decentralized
allocation — the individual rationality solution. The blue line indicates the probability
matching solution for survival. Finally, The green line indicates the optimal solution of the
multinational.
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Figure 2.2: Optimal 𝜓∗ as a function of 𝑁𝑡 .

The multinational has a tradeoff between instantaneous profits (what the individual
suppliers maximize) and the probability of survival. The right panel of Figure 2.2 is a closer
view of the left panel, but concentrating on relatively small 𝑁 .

As shown in Figure 2.2, the multinational’s optimal 𝜓 is a function of the number of
production units 𝑁𝑡 , and has three distinct phases. In the first phase, when 𝑁𝑡 ∈ [1, 2), the
multinational’s optimal choice is a corner solution, which coincides with individuals’ opti-
mum. This occurs because when 𝑁𝑡 < 2, losing one unit will discontinue the multinational’s
operation. Hence, there is no way to ensure survival and to realize the benefit of continua-
tion value. In the second phase, when 𝑁𝑡 ∈ [2, 3), the multinational will allocate exactly one
production unit to the Mountain to take advantage of the continuation value. As a result, the
optimal allocation is given by 𝜓∗ = 1 − 1/𝑁𝑡 . In the third phase, when 𝑁𝑡 ≥ 3, the optimal
𝜓 is a concave increasing function of 𝑁𝑡 . It is increasing because, with guaranteed survival,
it is optimal to allocate a greater percentage of production units to the Valley to maximize
profit. It is concave because the function 𝜓∗(𝑁𝑡) asymptotically approaches a constant less
than 1.
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Figure 2.3: Value function 𝑉(𝑁𝑡) with optimal 𝜓.

The value function of the multinational, with the optimal 𝜓, is presented in Figure
2.3. The concavity of the value function comes from the concavity of the growth function
of the suppliers, and also from the value matching constraint. If the suppliers grow at a
constant rate, the value function would be linear with respect to the number of suppliers —
and therefore, even the solution of the multinational would be at a corner.

The value function has two discontinuities points at 𝑁𝑡 = 1 and 𝑁𝑡 = 2. The discon-
tinuity at 𝑁𝑡 = 1 is trivial due to the constraint that 𝑉(𝑁𝑡) = 0,∀𝑁𝑡 < 1. On the other hand,
the discontinuity at 𝑁𝑡 = 2 has an important implication about continuation value. When
the number of production units is less than 2, the multinational firm cannot ensure survival.
When the number of production units is greater than or equal to 2, the multinational can
allocate one production unit on the Mountain to ensure survival. This ensured survival
creates a continuation value for the multinational, which is responsible for the jump of value
function at 𝑁𝑡 = 2.

2.2 Probability Matching

As was shown in Figure 2.2, the optimal proportion of firms in the Valley varies with
the number of suppliers. It is interesting to compare the effectiveness of the optimal firm
allocation with respect to a naive strategy — a constant 𝑝𝑠𝑖 independent of the number
of firms. For instance, assuming the probability matching strategy is adopted, the value
function of the multinational with constant 𝜓 = 0.6 is presented in Figure 2.4.
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Figure 2.4: Value function 𝑉(𝑁𝑡) with constant 𝜓 = 0.6.

Apart from the trivial discontinuity at 𝑁𝑡 = 1, the value function has two other
discontinuous points at 𝑁𝑡 = 5/3 and 𝑁𝑡 = 2.5. Below 5/3, the constant 𝜓 = 0.6 does
not place a single production unit in either location, and the multinational fails when any
aggregate shock occurs. As a result, the discontinuity at 5/3 represents the continuation
value of firms in the Valley. On the other hand, the discontinuity at 𝑁𝑡 = 2.5 represents the
continuation value of firms in the Mountain. When the number of available production units
is less than 2.5, the multinational places fewer than one unit in the Mountain, and will not
survive an aggregate shock to the Valley. However, when the number of production units
is greater than or equal to 2.5, the multinational can allocate at least one production unit on
the Mountain, thereby ensuring survival. The jump of the value function at 𝑁𝑡 = 2.5 reflects
this guaranteed survival.

The difference between the value function using the optimal strategy, and the value
function following the probability matching strategy is small. We compare the optimal-
strategy value function with the probability-matching value function (when 𝜓 is constant
and equal to 0.60). Figure 2.5 shows the percentage increase in the value function when the
firm switches between probability matching to optimal.

The x-axis is the number of firms on a logarithmic scale, and for comparison purposes,
we concentrated on 𝑁𝑡 > 3. The discrete jumps in the value function for smaller 𝑁𝑡 swamp
any possible comparison outside that region. On the y-axis is the percentage difference
between the two value functions.

The relationship, as expected, is increasing. The reason is that the optimal 𝜓 increases
with the number of surviving firms; therefore, the loss incurred by fixing it at 0.60 is also
increasing. Having said this, notice that the magnitudes are small: between one and two
percent.
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Figure 2.5: Difference between Value function𝑉(𝑁𝑡) with optimal 𝜓 and Value function with
constant 𝜓 = 0.6.

One interesting question to ask is how the probability of survival is affected by different
possible allocation strategies by the multinational. Recall that Figure 2.2 indicates that the
optimal proportion of firms in the Valley is a function of the total number of suppliers that
exist. However, we here study a simple, naive allocation strategy in the spirit of probability
matching models. For instance, assume the multinational chooses a fixed proportion of
suppliers in the Valley regardless of the total number of suppliers that exist.

In Figure 2.6, we present the probability of survival for various fixed values of 𝜓 over
different horizons. We define the probability of survival as one minus the probability that
the number of suppliers is smaller than 1 for any time step within the horizon, and initialize
simulations with the same parameters as above.
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Figure 2.6: Probability of survival

For large time horizons, the probability is either one or zero; interestingly the break-
points include the probability matching proportion (𝜓 = 0.6).

2.3 Discussion

This model presents a simple contrast between three possible strategies: the decentralized
allocation in which firms do not take into account the survival probability of the multina-
tional, the centralized allocation in which the multinational internalizes the decision, and the
behavioral response that would use simple probability matching heuristics concentrating on
the maximization of the probability of survival.

The behavioral finance literature points out many cases in which individuals will tend
to chose the third strategy. In our model, indeed, such a strategy will guarantee the survival
of the multinational. However, it is inefficient. A dynamic allocation increases profits, for
example, and also guarantees the survival of the firm in equilibrium.

Many questions arise from this framework that we explore further in this paper and
some that are left for future research.

First, how can the probability matching behavior be rationalized in this setting? As
shown in figure 2.2 the optimal allocation in the Valley is an increasing function of the
number of surviving firms - after 𝑁𝑡 > 2. So, the optimal solution is an internal solution,
and it is dependent on the number of firms. As we discussed before, some jumps happen
at small numbers, which are the result of the constraint at which the multinational shuts
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down. Probability matching implies a constant proportion of firms regardless of the number
of surviving firms, which contradicts this feature of the multinational’s optimal allocation.
In Section 3 we will introduce uncertainty and show how the robust optimal response is
indeed very close in its spirit to the probability matching.

Second, given the externality, is there something that a government could do such that
the decentralized economy could reproduce the centralized allocation? The answer to this
question is usually yes, and it either requires taxes or subsidies. We study this point in Section
4. We show that in the context of differences in prices, there exists a governmental policy
in which the decentralized economy achieves the centralized outcome — or at least — the
firms are indifferent between locating in the Mountain versus the Valley, so the centralized
allocation is available. The price or cost differences can be interpreted as an ex-ante tax or
subsidy to the allocation of a firm in a particular destination.

Although trivial, it is worth highlighting that if prices are allowed to adjust, the
decentralized allocation will replicate the centralized one. In our model, prices are not
allowed to change, and therefore it is impossible to compensate the firms in the Mountain
when a shock to the Valley has taken place. If the prices were to adjust, then once an aggregate
shock takes place, the revenues of the surviving suppliers would increase. Moreover, because
there are fewer firms in the Mountain, the price increase when a shock to the Valley takes
place would increase the price of parts more than when the shock occurred in the Mountain.
Because survival is very important, any usual demand function — CES for example —
implies that the expected value of firms in the Mountain and the Valley are equalized.
Under those circumstances, the decentralized economy reproduces the centralized one. The
assumption of prices NOT adjusting is crucial. We do believe it is a reasonable assumption
when aggregate shocks occur, justified through the prevention of price gouging.

Third, a simplifying assumption in our model is that the growth of firms is related
to the total number of surviving firms regardless of where the firms were located. Also, we
are assuming that there is no cost of reallocation. These are simplifying, but unreasonable
assumptions. Further research should look into the implications when the growth of firms
is specific to the location, and there are adjustment costs. We leave this extension to future
research.

Finally, our supply chain structure is extremely simple. In reality supply chains look
like complex networks11. Future research should look at the implications of robustness in a
more complex structure.

11See Yeaple (2003)
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3 The Nominal and the Robust Models

The model in the previous section only deals with risk. In this section, we explore the impli-
cation of adding uncertainty into the model. In particular, we will assume the probability of
the aggregate shock in the Valley (𝜃) is uncertain. As has been said before, this section shows
that the optimal robust strategy is exactly in the spirit of probability matching: a constant
proportion regardless of the number of firms that exist.

We study two cases: in the first, we consider a risky 𝜃. Here we assume that 𝜃 is
uniformly distributed in [𝜃̄−Δ, 𝜃̄+Δ]. Due to the linearity of the value function with respect to
𝜃, we show that the optimal choices for both the individual producers and the multinationals
are the same as the baseline case. Though the result is trivial in this case, it allows us to set
up the comparison with our second case, where we assume model uncertainty: 𝜃 can be any
value between [𝜃̄ −Δ, 𝜃̄ +Δ] and agents deploy a robust decision rule by solving a minimax
problem.

3.1 Risk: the Nominal Model

Let us assume that 𝜃 ∈ [𝜃̄−Δ, 𝜃̄+Δ]whereΔ is small enough to guarantee that the support of
𝜃 is contained in [0, 1]. We assume that the distribution is uniform and known by all agents.
This setting is identified in our discussion as the nominal model. We will continue to assume
that the Mountain is riskier, therefore, 𝜃̄ > 1/2. Because individual suppliers are risk-neutral
and the aggregate shock enters linearly, the decentralized equilibrium is identical: all the
suppliers choose to locate in the Valley.

Similarly for the multinational, because 𝜃 enters linearly to the value function, the
profit maximization problem and its solution is unchanged. More specifically

𝑉(𝑁𝑡) = max
𝜓𝑡(𝑁𝑡)

∫ 𝜃̄+Δ

𝜃̄−Δ


(1 − 𝛾) · (

𝑝𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝑁𝑡)1−𝜇) )

+𝛾(𝜃) · (
𝑝𝜓𝑡𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇) )

+𝛾(1 − 𝜃) · (
𝑝(1 − 𝜓𝑡)𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) ) − 𝑐𝑁𝑡

 𝑑𝜃

= max
𝜓𝑡(𝑁𝑡)


(1 − 𝛾) · (

𝑝𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝑁𝑡)1−𝜇) )

+𝛾(𝜃̄) · (
𝑝𝜓𝑡𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇

) )
+𝛾(1 − 𝜃̄) · (

𝑝(1 − 𝜓𝑡)𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) ) − 𝑐𝑁𝑡


Therefore, under the assumption of risk the solutions of the decentralized and de-

centralized economy are identical to the baseline model. Of course this is a feature of the
assumptions we have chosen to make and where the parameter risk was introduced. We
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have made these choices for simplicity.

3.2 Uncertainty: The Robust Model

The second case we study is the case of uncertainty in the sense of robust control. Assume
that all agents know that 𝜃 ∈ [𝜃̄ − Δ, 𝜃̄ + Δ], but they do not know the distribution.

Optimal control implies that the optimization maximizes the worst possible case. For
individual producers, the values in the Valley and the Mountain are

𝑉𝑣
𝑡 = min

𝛿∈[−Δ,Δ]
((1 − 𝛾) + 𝛾(𝜃̄ + 𝛿))𝑝 − 𝑐 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾(𝜃̄ + 𝛿))𝑉𝑡+1 (3.1)

𝑉𝑚
𝑡 = min

𝛿∈[−Δ,Δ]
((1 − 𝛾) + 𝛾(1 − 𝜃̄ − 𝛿))𝑝 − 𝑐 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾(1 − 𝜃̄ − 𝛿))𝑉𝑡+1 (3.2)

Because nature will choose a value of Δ that minimize producers’ value, the worst
case scenario for the Valley is when 𝛿 = −Δ, and the worst case scenario for the Mountain is
when 𝛿 = Δ. The difference in value between the Valley and Mountain is given by

𝑉𝑣
𝑡 −𝑉𝑚

𝑡 = 𝛾(2𝜃̄ − 1)
(
𝑝 + 1

1 + 𝛽
𝑉𝑡+1

)
> 0 (3.3)

for 𝜃̄ > 1/2. Note this is identical to the baseline case (Equation 2.4 in Section 2. The worst
case for each individual firm still implies that the worst case in the Valley is better than the
worst case in the Mountain.

The problem of the multinational firm can be written as follows

𝑉(𝑁𝑡) = max
𝜓𝑡(𝑁𝑡)

min
𝛿∈[−Δ,Δ]




(1 − 𝛾) · (
𝑝𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · (𝑁𝑡)1−𝜇) )

+𝛾(𝜃̄ + 𝛿) · (
𝑝𝜓𝑡𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇

) )
+𝛾(1 − 𝜃̄ − 𝛿) · (

𝑝(1 − 𝜓𝑡)𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) )

 − 𝑐𝑁𝑡


subject to

lim
𝑁→1−

𝑉(𝑁) = 0.

The above value function has the following characteristics: First, given any fixed 𝛿, the
value function is upper semi-continuous and concave in 𝜓, for all 𝑁𝑡 ≥ 2. For 𝑁𝑡 < 2 there
is a unique corner solution. Second, given any fixed 𝜓, the value function is linear (therefore
continuous and convex) in 𝛿. Finally, 𝜓 ∈ [0, 1] and 𝛿 ∈ [−Δ,Δ] are chosen from compact
sets.

As a result, according to Sion’s Minimax Theorem Sion et al. (1958), the maximization
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and minimization are interchangable, and the minimax problem has at least one solution.
The optimal 𝛿 (meaning the choice that produces the worst possible case for the

multinational) is given by

𝛿∗ =

−Δ if 𝜃̄ − Δ > 1/2

−𝜃̄ + 1/2 if 𝜃̄ − Δ <= 1/2
(3.4)

This then implies that the multinational’s optimal response is the 𝜓 from Figure 2.2,
but where the shock probability is given by 𝜃 = 𝜃̄ + 𝛿∗.

3.3 Efficiency vs. Robustness

It may seem too conservative to always considering the worst-case scenario, especially for
multinationals trying to maximize profit. Even though the worst-case scenario is known to
be 𝛿 = −Δ for small enough Δ, this scenario may not be considered by the agents in the
system who seek efficiency. Naturally, an efficiency versus robustness tradeoff emerges.
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Figure 3.1: Efficiency versus Robustness. Δ = 0.05 Efficiency is represented by the value
in nominal model, and robustness is represented by the value in worse-case model. The
number of firms 𝑁𝑡 is 25.
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Figure 3.1 compares the case of the nominal and worst-case models. The blue line
represents the value function for the nominal model, and the orange the value function for
the robust model. The simulations are constructed assuming that the uncertainty parameter
Δ = 0.05, and that 𝜃̄ = 0.6. So, the range for 𝜃 is between [.55, .65]. The nominal model
optimizes as if 𝛿 = 0, and we plot what the realized value function for 𝛿 < 0 instead being
zero. In other words, when 𝛿 = 0 the blue line reaches the maximum because the real value
of theta is exactly the one used by the multinational to optimize. on the other extreme (left)
when the value of 𝛿 = −0.05 the multinational makes choices thinking that the relative shock
parameter is 𝜃̄ when it actually is 𝜃̄ − 0.05. Therefore, the nominal value function is subject
to potential losses.

The orange line is the robust model. Given the assumption of the bounded range,
we know that the multinational assumes that the 𝜃 = 𝜃̄ − 0.05. In this case, notice that the
orange line is flatter, and the worst-case is better than when the nominal model chooses. In
fact, the robust model is optimal when 𝛿 = −0.05.

Figure 3.2 depicts the case when Δ = 0.15. In this case, the size of the uncertainty is
large enough that the case of 𝜃 = 0.5 is in the support. According to equation 3.4 the robust
approach assumes that 𝜃 = 0.5.

Notice that the blue line — the nominal model — behaves similarly as in the previous
case, except that a larger range implies bigger potential losses. Again, in the extreme left,
the multinational assumes that 𝜃 = 0.6 when it actually is 0.45. In contrast, the orange line
assumes a 𝜃 = 0.5 and produces a much flatter value function.
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Figure 3.2: Efficiency versus Robustness. Δ = 0.15. Efficiency is represented by the value
in nominal model, and robustness is represented by the value in worse-case model. The
number of firms 𝑁𝑡 is 25.

These two figures highlight the implications of applying robustness to a decision
problem. Robustness is needed when the agents do not know the distribution of the shock
they are facing, and therefore need to prepare for the worst. Robustness, then, serves to find
a policy that reduces the differences over all possible states of nature. In the limit, the most
robust action is one in which the outcomes are identical in all states of nature (as shown in
Figure 3.2)

3.4 Discussion

Robustness is often compared to the solution of a model with large risk aversion. In some
applications, that is indeed the case. In our model, robustness changes the nature of the
solution — the optimal allocation is independent of the number of firms, and the allocation in
Mountain and Valley is symmetric. Our model, implicitly, rationalizes probability matching,
which is considered a behavioral result in finance.

This result needs two ingredients that are quite specific to our model: robustness, and
a centralized decision maker that internalizes survival probabilities. Table 3.1 summarizes
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the relationships between the modeling choices and the characteristics of the policy function.

Table 3.1: Relationship between modeling choices and characteristics of the policy function.

Risk Uncertainty
Decentralized Corner Solution Corner Solution

Centralized
Internal Solution

𝜓(𝑁𝑡)
Probability Matching

𝜓′(𝑁𝑡) = 0

When the economy is populated with decentralized decision makers, the optimal
policy choices are independent of the nature of the shock. In other words, individual
suppliers will choose a corner solution (e.g. locating exclusively in the Valley) irrespectively
of whether they are facing risk or uncertainty. A centralized decision maker, on the other
hand, tends to prefer internal solutions. When they face risk, the optimal allocation of
firms is a function of the number of firms – which contradicts with the probability matching
patterns that are often found in experimental literature. It is when both uncertainty and
centralization are present that the solution is an internal and fixed ratio; very much in the
spirit of probability matching.

This result has important implications for the supply chain. In our model, irrespec-
tively of how bad the Mountain is relative to the Valley, there is a level of uncertainty for
which the multinational allocates half the firms in the Mountain. A robust supply chain
is one in which the survival probability is maximized, and where the firm will be able to
produce even in the worst of circumstances. Of course, this is a result that depends on the
underlying assumptions of the model, but the intuition should be easy to extend to more
realistic circumstances: if the supply chains in the world would have been prepared to supply
goods in the worst possible circumstance, then the Covid-19 shock should have produced
zero stockouts. A supply chain that deals with risk but optimizes using the "expected" value
is found to be ill-prepared to handle an aggregate shock.

4 Price and Cost Differences

Up to now, we have not allowed prices to change depending on the state of the world. This is
clearly a simplification that has allowed us to characterize the solution of the model and study
the price gouging case. This section, in practice, relaxes the price gouging assumption12. The
conclusion so far is that even when prices do not adjust — making the decision to locate

12See section 1.1 for the justification.
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the suppliers in the Mountain a less profitable decision — the values of continuation and
robustness are enough for the multinational to allocate firms in the Mountain. In this section
we study the implications of allowing prices and costs in the two locations to be different.

4.1 Model

We assume that there are heterogeneous costs 𝑐𝑣 ≠ 𝑐𝑚 and prices 𝑝𝑣 ≠ 𝑝𝑚 in the two locations.
We use this model to address many different questions. First, can the government define
an intervention (either reducing the cost of the Mountain, or increasing its price) for which
the decentralized economy achieves the social optimum - even in the case of uncertainty?
Second, what is the profit margin of the Mountain at which the robust control strategy ceases
to diversify the supply chain? In other words, when is robustness undesirable?

The value functions for the individual suppliers are given by

𝑉𝑣
𝑡 = ((1 − 𝛾) + 𝛾𝜃)𝑝𝑣 − 𝑐𝑣 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾𝜃)𝑉𝑡+1 (4.1)

𝑉𝑚
𝑡 = ((1 − 𝛾) + 𝛾(1 − 𝜃))𝑝𝑚 − 𝑐𝑚 + 1

1 + 𝛽
((1 − 𝛾) + 𝛾(1 − 𝜃))𝑉𝑡+1 (4.2)

The continuation values still are identical in each of the two locations because there is
no cost of relocation of suppliers. The difference between the two locations is given by

𝑉𝑣
𝑡 −𝑉𝑚

𝑡 = (((1− 𝛾)+ 𝛾𝜃)𝑝𝑣 − 𝑐𝑣)− (((1− 𝛾)+ 𝛾(1−𝜃))𝑝𝑚 − 𝑐𝑚)+ 𝛾(2𝜃− 1)
(

1
1 + 𝛽

𝑉𝑡+1

)
(4.3)

There is an expected markup in the Mountain larger than the markup at the Valley at
which the firms are indifferent in their location. Intuitively, it is not enough for the markups
of the Mountain and Valley to be the same. We need to compensate individuals going to the
Mountain for their lower probability of survival. Therefore, given 𝑝𝑣 , 𝑐𝑣 and 𝑐𝑚 , there exists
a cutoff 𝑝∗𝑚 at which 𝑉𝑣

𝑡 = 𝑉𝑚
𝑡 = 𝑉𝑡+1. Substituting in Equations 4.1 and 4.2, the transition

occurs when

(1 − 𝛾 + 𝛾𝜃)𝑝𝑣 − 𝑐𝑣
1 − 1

1+𝛽 (1 − 𝛾 + 𝛾𝜃) =
(1 − 𝛾 + 𝛾(1 − 𝜃))𝑝∗𝑚 − 𝑐𝑚
1 − 1

1+𝛽 (1 − 𝛾 + 𝛾(1 − 𝜃)) . (4.4)

Given the parameters of our simulation, 𝑝∗𝑚 ≈ 1.24. Then, for any 𝑝𝑚 < 𝑝∗𝑚 all
individual firms locate in the Valley, and for 𝑝𝑣 > 𝑝∗𝑚 all locate in the Mountain. The
intuition of Equation 4.4 is simple; it states that the expected markups adjusted by the
survival probabilities need to be equated in the two locations.

In this case, the individual allocation implies multiple equilibria due to the indifference
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between the two locations. Below that markup the dominant strategy is to locate in the Valley,
and above it the optimal decision is to locate in the Mountain. We compare this solution to
the one chosen by the multinational in the exact same setting.

The problem of the multinational firm can be written as

𝑉(𝑁𝑡) = max
𝜓𝑡




(1 − 𝛾) ((𝑝𝑣𝜓𝑡 + 𝑝𝑚(1 − 𝜓𝑡))𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝑁𝑡)1−𝜇

) )
+𝛾𝜃 (

𝑝𝑣𝜓𝑡𝑁𝑡 + 1
1+𝛽𝑉

(
𝐴 · (𝜓𝑡𝑁𝑡)1−𝜇) )

+𝛾(1 − 𝜃) (
𝑝𝑚(1 − 𝜓𝑡)𝑁𝑡 + 1

1+𝛽𝑉
(
𝐴 · ((1 − 𝜓𝑡)𝑁𝑡)1−𝜇) )


− (𝑐𝑣𝜓𝑡 + 𝑐𝑚(1 − 𝜓𝑡))𝑁𝑡

}
(4.5)

subject to the same boundary condition we have imposed before:

lim
𝑁→1−

𝑉(𝑁) = 0.

The instantaneous profits are linear in prices and costs, so we have decided to keep
costs constant and only change the Mountain’s price (𝑝𝑚) in our simulations. Our first result
studies how the multinational’s optimal policy 𝜓∗(𝑁) changes with the Mountain’s price 𝑝𝑚 .
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Figure 4.1: Optimal policy as cost of Mountain changes

In Figure 4.1 we present two panels. The left panel shows the optimal allocation for
different number of suppliers, and the panel on the right just zooms into the case when there
are few suppliers available. Each colored line indicates a different price level, and prices in
the Mountain were varied in the range [0.5, 2.0].
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As in the baseline model, when there are two firms the multinational allocates one
in each location to ensure survival. We decided to start the figure at that point because
nothing particularly new occurs for 𝑁𝑡 = 1. As 𝑁𝑡 increases, the multinational allocates
firms depending on the prices and the number of available suppliers.

When the prices are low, the optimal allocation is biased toward the Valley, and when
the prices are high, the allocation is biased toward the Mountain. Interestingly, there is a
price at which the allocation is virtually flat.

Figure 4.2 shows the optimal allocation in the Valley for a given 𝑁 , but different values
of 𝑝𝑚 . The plot has been drawn for 𝑁𝑡 = 10.
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Figure 4.2: Individual vs. Multinational Optimal with Heterogeneous prices.

The multinational transitions smoothly between extreme values of 𝜓∗ as the price of
the Mountain varies, but the decentralized equilibrium instantaneously shifts at a critical
value of 𝑝∗𝑚 ≈ 1.24. This phase transition from 𝜓∗ = 0 to 𝜓∗ = 1 occurs when the values of
the Mountain and Valley given by Equation 4.1 are equal.

There are two aspects worth highlighting from this simulation. First, the price at
which the multinational is indifferent between Mountain and Valley — the point at which
it allocates half the firms in the Valley — occurs between 1 and 1.2 (when 𝑁𝑡𝜓 = 5). Notice
that the price at this indifferent point is much lower than the price at which the individuals
are indifferent. The reason is that the value of continuation is marginally improved when
𝜓 is lowered from 1, and therefore the marginal contribution for the multinational is larger
than for the individual firm.

Second, there is a kink at the top left for the multinational. This is the place where
the optimal allocation in the Mountain would have implied less than one firm. However,
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because of the value matching condition, the multinational allocates a maximum of 9 firms
to the Valley. A similar kink occurs on the right side of the graph, but the prices required to
reach it are large - swamping the details of the graph presented.

4.2 Tax Incentives and Relaxing Price Gouging

As shown in Figure 4.1, there is a price of the Mountain at which the optimal policy implies
diversification similar to what is implied by the robust policy in the presence of uncertainty.
This implies a subsidy that can be given to the individual firms can achieve the robust policy
— or close enough.

This conclusion is important because governments and the private sector might ex-
perience risk differently. Typically, governments are the residual claimant in case of natural
disasters. Therefore, governments are more likely to prefer a "robust approach" than the
private sector would. For instance, if the cost of a natural disaster is very asymmetric, the
government is more likely to pay attention to the worst-case than the private sector would.
If that is the situation, a government can align private incentives with a small subsidy to the
costly location.

Japan is indeed doing so right as a response to Covid-19. In August 2020, Japan set
up a fund to compensate firms that diversify out of China — see Bloomberg News (2020).
This is not the only case where countries are trying to diversify the supply chain. Moreover,
countries are also trying to change other aspects of the global economy. For example, Russia
announced a tax break for companies that diversify away from dollar-denominated exporting
contracts. In particular, if firms contract in Euros for their exports, they save the domestic
sales tax. The need to reduce the dependence on the dollar as the international currency is
an aspect that could also be understood through the lens of robustness.

5 Conclusions

Covid-19 was an aggregate shock that highlighted the weaknesses on the supply chain.
Many products suffered disruptions: from personal protective equipment, to toilet paper,
and beer. It is clear that the supply chains of the world were not prepared for this event.
Many are imploring that "future" supply chains become more resilient or robust — but what
exactly is a robust supply chain? and how exactly do firms’ decisions change when taking
that approach?

This paper studies a very stylized model of a supply chain. A company producing
a product benefits from many suppliers providing parts, but those firms might not choose
the best allocation of resources when aggregate shocks are present. Our model discusses
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how different arrangements of the supply chain emerge in different settings. In particular,
we concentrate on two factors: (i) the internalization of the survival probability — in the
spirit of the usual externalities; and (ii) the nature of the shocks when we contrast risk and
uncertainty.

We find that a robust supply chain implies concentrating on the worst-case. Robust-
ness yields a strategy that seems to maximize survival probability in the worst case, and
therefore our model rationalizes or explains the well known "probability matching" behavior
observed in experimental literature.

This solution needs a centralized decision maker who faces uncertainty. Our paper
finishes with the discussion of a policy in which the government can create circumstances for
which the robust strategy is viable in the decentralized setting. We briefly discuss the recent
policies in Japan to subsidize diversification and reduce reliance on China, as an example.

As we highlighted in this paper, robustness is not equivalent to assuming that shocks
are larger; it is a different strategy that tries to minimize the losses of the worst case outcome.
Increasing the variance of shocks is equivalent to arguing that the supply chain moves from
Just-in-Time to Just-in-Case. Robustness, on the other hand, implies that the supply chain
moves to Just-in-Worst-Case.
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Appendices

A Continuous-Time Model

In the main body of this paper, we study a discrete-time model of supply chains and aggregate
shocks. This section formulates a continuous-time model and studies the basic model, the
effects of robustness, and finally price differences.

To derive a similar model to that of Section 2, but in continuous time, we need to define
the stochastic process 𝑁𝑡 , and the value function 𝑣(𝑛). We treat shocks to the Mountain or
Valley as two independent Poisson counting processes 𝑀𝑡 and 𝑉𝑡 , with intensity 𝛾𝜃 and
𝛾(1 − 𝜃), respectively. Finally, we will assume that firms grow continuously in time, and
discontinuities occur only when a shock arrives. Therefore, the number of firms to evolve
according to the following.

𝑑𝑁𝑡 = 𝑏(𝑁𝑡)𝑑𝑡 − 𝜓𝑡𝑁𝑡𝑑𝑉𝑡 − (1 − 𝜓𝑡)𝑁𝑡𝑑𝑀𝑡

We can write this stochastic differential equation in a general setting, but for consis-
tency with Section 2, assume that 𝑏(𝑁𝑡) = 𝐴𝑁1−𝜇

𝑡 − 𝑁𝑡 . Notice that our choice of the drift
will yield a mean-reverting process.

The value function depends on a discount rate 𝛽 and a running reward 𝑟(𝑁𝑡). Similar
to the discrete time model, we will let 𝑟(𝑁𝑡) = 𝑝𝑁𝑡 − 𝑐𝑁𝑡−, where 𝑁𝑡− is the left-most limit,
so that the cost to produce is paid before any production occurs. The value function is then
the integral of discounted profit:

𝑣(𝑛) = max
(𝜓𝑠)𝑠≥0

E

[∫ ∞

0
𝑒−𝛽𝑡𝑟(𝑁𝑡)𝑑𝑡 | 𝑁0 = 𝑛

]
, (A.1)

where we require that 𝑣(𝑥) = 0, ∀𝑥 ∈ [0, 1) as the boundary condition, as in Section 2.
Due to the fact that 𝑣 does not depend on time, and the process 𝑁𝑡 is Markovian, a

dynamic programming argument means that we can re-write the value function as

𝑣(𝑥) = max
(𝜓𝑠)𝑠≥0

E

[∫ 𝑡

0
𝑒−𝛽𝑠𝑟(𝑁𝑠)𝑑𝑠 + 𝑒−𝛽𝑡𝑣(𝑁𝑡) | 𝑁0 = 𝑥

]
. (A.2)

Next, we work to find the HJB differential equation for the value function. First, we
apply Ito’s Lemma to 𝑓 (𝑡 , 𝑥) = 𝑒−𝛽𝑡𝑣(𝑥), which gives
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𝑓 (𝑡 , 𝑁𝑡) − 𝑓 (0, 𝑁0) =
∫ 𝑡

0

𝑑𝑓
𝑑𝑡

(𝑠, 𝑁𝑠)𝑑𝑠 +
∫ 𝑡

0

𝑑𝑓
𝑑𝑥

(𝑠, 𝑁𝑠)𝑑𝑁𝑠

+
∑

𝑠≤𝑡 ,𝑑𝑉𝑠=1

[
𝑓 (𝑠, 𝑁𝑠) − 𝑓 (𝑠, 𝑁𝑠−) + 𝜓𝑠𝑁𝑠

𝑑𝑓
𝑑𝑥

(𝑠, 𝑁𝑠)
]

+
∑

𝑠≤𝑡 ,𝑑𝑀𝑠=1

[
𝑓 (𝑠, 𝑁𝑠) − 𝑓 (𝑠, 𝑁𝑠−) + (1 − 𝜓𝑠)𝑁𝑠

𝑑𝑓
𝑑𝑥

(𝑠, 𝑁𝑠)
]

After some simplification, using the definition of 𝑓 (𝑡 , 𝑥) and 𝑁𝑡 , we arrive at the next
step in our derivation:

𝑒−𝛽𝑡𝑣(𝑁𝑡) − 𝑣(𝑁0) =
∫ 𝑡

0
𝑒−𝛽𝑠

[
𝑏(𝑁𝑠)𝑣′(𝑁𝑠) − 𝛽𝑣(𝑁𝑠)

]
𝑑𝑠

+
∑

𝑠≤𝑡 ,𝑑𝑉𝑠=1
𝑒−𝛽𝑠(𝑣(𝑁𝑠) − 𝑣(𝑁𝑠−))

+
∑

𝑠≤𝑡 ,𝑑𝑀𝑠=1
𝑒−𝛽𝑠(𝑣(𝑁𝑠) − 𝑣(𝑁𝑠−))

The left-hand side of this expression is present in Equation A.2, which when plugged
in yields

0 = max
(𝜓𝑠)𝑠≥0

E

[∫ 𝑡

0
𝑒−𝛽𝑠

(
𝑟(𝑁𝑠) + 𝑏(𝑁𝑠)𝑣′(𝑁𝑠) − 𝛽𝑣(𝑁𝑠)) 𝑑𝑠

+
∫ 𝑡

0
𝑒−𝛽𝑠

(
1𝑑𝑉𝑠=1

(
𝑣((1 − 𝜓𝑠)𝑁𝑠) − 𝑣(𝑁𝑠)) + 1𝑑𝑀𝑠=1(𝑣(𝜓𝑠𝑁𝑠) − 𝑣(𝑁𝑠)) ) 𝑑𝑠����𝑁0 = 𝑛

]
.

Now we use the definitions of 𝑟(𝑁𝑠) and 𝑏(𝑁𝑠):

0 = max
(𝜓𝑠)𝑠≥0

E

[∫ 𝑡

0
𝑒−𝛽𝑠

(
(𝑝 − 𝑐)𝑁𝑠 +

(
𝐴𝑁1−𝜇

𝑠 − 𝑁𝑠

)
𝑣′(𝑁𝑠) − 𝛽𝑣(𝑁𝑠)

)
𝑑𝑠

+
∫ 𝑡

0
𝑒−𝛽𝑠

(
1𝑑𝑉𝑠=1

(
𝑣((1 − 𝜓𝑠)𝑁𝑠) − 𝑣(𝑁𝑠) − 𝑝𝜓𝑠𝑁𝑠

) + 1𝑑𝑀𝑠=1
(
𝑣(𝜓𝑠𝑁𝑠) − 𝑣(𝑁𝑠) − 𝑝(1 − 𝜓𝑠)𝑁𝑠

) )
𝑑𝑠

����𝑁0 = 𝑛

]
Finally, we divide both sides by 𝑡 and take the limit as 𝑡 → 0. Making use of the

intensities of the counting processes 𝑀𝑡 and 𝑉𝑡 , we find the HJB equation for the value
function:
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0 = (𝑝 − 𝑐)𝑥 + (
𝐴𝑥1−𝜇 − 𝑥

)
𝑣′(𝑥) − (𝛾 + 𝛽)𝑣(𝑥)

+ max
𝜓

𝛾
[(1 − 𝜃) (𝑣((1 − 𝜓)𝑥) − 𝑝𝜓𝑥

) + 𝜃
(
𝑣(𝜓𝑥) − 𝑝(1 − 𝜓)𝑥) ]

𝑣(𝑥) = 0, ∀𝑥 ∈ [0, 1)
(A.3)

This expression is a nonlinear first-order ordinary differential equation. If the max-
imization problem is concave, we can solve for the first-order condition to find the optimal
𝜓∗, which will satisfy:

1 − 𝜃
𝜃

=
𝑝 + 𝑣′(𝜓∗𝑥)

𝑝 + 𝑣′((1 − 𝜓∗)𝑥) (A.4)

as long as 𝜓∗𝑥 ≥ 1 and (1 − 𝜓∗)𝑥 ≥ 1.
The optimal allocation satisfies a ‘probability matching’ of sorts: the ratio of short-

term profit (𝑝) plus long-term marginal benefit (𝑣′) must equal the ratio of aggregate shock
probabilities. In particular, if 𝑣′(1) = ∞, then the multinational will choose an interior
solution.

A.1 Robustness

We can also study the robust minimax problem of Section 3. Again, we assume that 𝜃 ∈
[𝜃̄ − Δ, 𝜃̄ + Δ]. Now, the multinational’s value function is given by

𝑣(𝑛) = max
(𝜓𝑠)𝑠≥0

min
𝜃∈[𝜃̄−Δ,𝜃̄+Δ]

E

[∫ ∞

0
𝑒−𝛽𝑡𝑟(𝑁𝑡)𝑑𝑡 | 𝑁0 = 𝑛

]
, (A.5)

and the corresponding HJB is

0 = (𝑝 − 𝑐)𝑥 +
(

1
1 − 𝜇

𝑥1−𝜇 − 𝑥

)
𝑣′(𝑥) − (𝛾 + 𝛽)𝑣(𝑥)

+ max
𝜓

min
𝜃∈[𝜃̄−Δ,𝜃̄+Δ]

𝛾
[(1 − 𝜃) (𝑣((1 − 𝜓)𝑥) − 𝑝𝜓𝑥

) + 𝜃
(
𝑣(𝜓𝑥) − 𝑝(1 − 𝜓)𝑥) ]

𝑣(𝑥) = 0, ∀𝑥 ∈ [0, 1)

(A.6)

First, we study the first-order condition for the minimization problem. For a fixed 𝜓,
the function to minimize is linear in 𝜃:(

𝑣((1 − 𝜓)𝑥) − 𝑝𝜓𝑥
) + 𝜃

[
𝑣(𝜓𝑥) − 𝑝(1 − 𝜓)𝑥 − 𝑣((1 − 𝜓)𝑥) + 𝑝𝜓𝑥

]
.
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Nature’s optimal choice of 𝜃 will be an extreme value. If the quantity in the brackets
is negative (or positive), the optimal 𝜃∗ is 𝜃̄ + Δ (or 𝜃̄ − Δ, respectively). Formally,

𝜃∗ =

𝜃̄ + Δ if 𝑣(𝜓𝑁𝑡) − 𝑣((1 − 𝜓)𝑁𝑡) < 𝑝(1 − 2𝜓)𝑁𝑡

𝜃̄ − Δ if 𝑣(𝜓𝑁𝑡) − 𝑣((1 − 𝜓)𝑁𝑡) > 𝑝(1 − 2𝜓)𝑁𝑡

(A.7)

Notice that the choice 𝜓 = 0.5 makes nature indifferent among all 𝜃. Here lie the
effects of robustness: if Δ is large, nature can significantly punish the multinational for
choosing 𝜓 ≠ 0.5, but if Δ is small, the robust optimum may choose a larger 𝜓 and lose fewer
firms. The message is the same — uncertainty rewards optimizing the worst-case outcome.

Finally, the first-order conditions for𝜓 will give the same expression as in the previous
section, but with 𝜃 = 𝜃∗.

A.2 Heterogeneous Prices

We now study the analogue of Section 4 by allowing prices to be different. Due to linearity
of our system, heterogeneous prices will give the same qualitative results as heterogeneous
costs.

Let us consider how the optimal solution changes if 𝑝𝑚 > 𝑝𝑣 . Now, the only difference
is that

𝑟(𝑁𝑡) = 𝑁𝑡
(
𝑝𝑣𝜓(1 − 𝑑𝑉𝑡) + 𝑝𝑚(1 − 𝜓)(1 − 𝑑𝑀𝑡) − 𝑐

)
.

Following the derivation from before, we find that the HJB for the value function is

0 = −𝑐𝑥 + (
𝐴𝑥1−𝜇 − 𝑥

)
𝑣′(𝑥) − (𝛾 + 𝛽)𝑣(𝑥)

+ max
𝜓

(
𝑝𝑣𝜓 + 𝑝𝑚(1 − 𝜓)) 𝑥 + 𝛾

[(1 − 𝜃) (𝑣((1 − 𝜓)𝑥) − 𝑝𝑣𝜓𝑥
) + 𝜃

(
𝑣(𝜓𝑥) − 𝑝𝑚(1 − 𝜓)𝑥) ]

𝑣(𝑥) = 0, ∀𝑥 ∈ [0, 1)
(A.8)

Under similar concavity conditions, the optimal 𝜓∗ will satisfy:

𝑝𝑚 − 𝑝𝑣
𝛾

= 𝜃
[
𝑣′(𝜓∗𝑥) + 𝑝𝑚

] − (1 − 𝜃) [𝑣′((1 − 𝜓∗)𝑥) + 𝑝𝑣
]
.

Rearranging, the first-order condition becomes:
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1 − 𝜃
𝜃

=

(
1 − 1

𝛾𝜃

)
𝑝𝑚 + 𝑣′(𝜓∗𝑥)(

1 − 1
𝛾(1−𝜃)

)
𝑝𝑣 + 𝑣′((1 − 𝜓∗)𝑥)

(A.9)

This is again a probability matching solution. Note that both coefficients of 𝑝𝑚 and 𝑝𝑣
are negative, and therefore if 𝑝𝑚 is large, then 𝑣′(𝜓∗𝑥) must also be large, which we expect
implies a small 𝜓. This indicates that we may be able to re-create any allocation through the
choice of a suitable 𝑝𝑚 .

Additionally, the arrival probability of the aggregate shock plays a role in this expres-
sion. If 𝛾 is close to one, then the multinational’s decision is heavily dictated by the ratio of
marginal values of firms, and the price differences are ignored. However, if 𝛾 is small, then
the ratio of prices is more important.
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