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To borrow a phrase once used about business cycles, it can be said that ‘‘the
study of super cycles necessarily begins with the measurement of super cycles’’
(adapted from Baxter and King, 1999). Are metal prices currently in the early
phase of such a ‘‘super cycle’’? Many market observers believe the answer is yes.
Academics, on the other hand, are generally skeptical about the presence of long
cycles. This paper searches for evidence of super cycles in metal prices by using
band-pass filters to extract particular cyclical components from time series
data. The evidence is consistent with the hypothesis that there have been three
super cycles in the past 150 years or so, and that we are currently in the early
phase of a fourth super cycle. Most analysts attribute the latter primarily to
Chinese urbanization and industrialization. [JEL E3, Q0]
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Many market observers believe that metal prices currently in the early
phase of a ‘‘super cycle’’ driven by the industrialization and

urbanization of the Chinese economy, and perhaps other economies as
well. Alan Heap of Citigroup, for example, declared in March 2005 that ‘‘a
super cycle is underway, driven by material intensive economic growth in
China’’ (Heap, 2005, p. 1).1
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1See also Armstrong, Chaundry, and Streifel (2006), Heap (2007), and Morgan Stanley
(2006), as well as Rogers (2004), who cofounded the Quantum Fund with George Soros, and
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Just what are super cycles and what are their underlying causes? It is clear
from the writings of super-cycle proponents that these cycles are ‘‘super’’ in
two senses. First, they are long-period cycles with upswings of roughly 10 to
35 years, implying complete cycles of, say, 20 to 70 years. Second, they are
broad-based, affecting a range of industrial commodities, including metals
and other nonrenewable resources. Heap (2005, pp. 1–2), defines a super-
cycle expansion as a ‘‘prolonged (decades) long-trend rise in real commodity
prices, driven by urbanization and industrialization of a major economy.’’ He
believes there have been two earlier super-cycle expansions in the past
century and a half. The first ran from the late 1800s through the early 1900s,
driven by economic growth in the United States. The second was from
roughly 1945 through 1975, initiated by post-war reconstruction in Europe
and fueled by Japanese post-war economic expansion.

Heap also argues that super cycles are demand driven. This implies super-
cycle components in individual commodity prices should be strongly
positively correlated. That is, they should exhibit strong co-movement,
perhaps with some phase shifting as developments in particular commodities
might lead or lag upswings in other commodities.

This paper takes an agnostic view on the presence of super cycles, let
alone their underlying causes. We argue in the spirit of Baxter and King
(1999, p. 575) that for mineral and financial economists ‘‘the study of [super]
cycles necessarily begins with the measurement of [super] cycles.’’2 Thus, the
primary objective here is to document super-cycle facts using recently
developed band-pass (BP) filters and roughly a century and a half of annual
price data for the six base metals currently traded on the London Metal
Exchange (LME)—aluminum, copper, lead, nickel, tin, and zinc.3 Using
these data, this paper (1) documents the existence, frequency, and amplitude
of super cycles in metal prices; (2) investigates whether super-cycle timing is
consistent with that discussed by super-cycle proponents; and (3) examines
the extent of co-movement among the super cycles in the LME6 metal
prices.4

As the end use summary statistics from the London Metal Exchange
(2008) shown in Table A1 confirm, the six LME metals are all critical
inputs in residential and commercial construction activity, transportation
and other infrastructure investments, and/or heavy manufacturing. These
metals are often used in sectors that are expanding in tandem. Moreover,

was among the first to highlight commodities as a long-term investment opportunity in the
new millennium. Others in the investment industry followed.

2This is an adaptation of the comment that Baxter and King (1999) made about business
(rather than super) cycles.

3Although producer price series from industry sources span many decades, LME trading
began at different times for the various metals: copper and tin (1877), lead (1903), zinc (1915),
aluminum (1978), nickel (1979).

4For an examination of super cycles in steel, pig iron, and molybdenum, see Jerrett and
Cuddington (2008).
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they are joint inputs in many construction (buildings, homes, and factories)
and manufacturing applications (automobiles, freight cars, ships, and
airplanes). On the supply side, base metals are often joint outputs from
individual mining operations. Thus, there are strong economic linkages—
supply and demand-side—to explain why co-movement of the metals prices
may be present.

The econometric approach employed here uses BP filters developed by
Baxter and King (1999) and Christiano and Fitzgerald (2003) to search for
evidence of super cycles. First, a review of the writings of super-cycle
proponents is undertaken to decide which periodicities constitute super
cycles. Second, an appropriate BP filter is applied to long-span metal price
series to extract their super-cycle components. Third, super-cycle components
for the six metals are examined using correlation and principal component
analysis to determine whether evidence on the timing and concordance of
these cycles supports the super-cycle hypothesis.

Our findings are consistent with the hypotheses that (1) there have been
three metal price super cycles in the past 150 years or so and (2) world metal
markets are currently in the early stages of a fourth super cycle. The dating of
the super cycles broadly matches the timing suggested by earlier analysts
using less formal approaches. Moreover, our correlation and principal
component analyses suggest that the super cycles in the six metal prices are
highly correlated. This evidence is consistent with the claim that super cycles
are caused by prolonged demand expansions, as major economies move
through the rapid industrialization and urbanization phases of their
economic development processes.

I. Motivation and Background

There have been numerous studies of trends and cycles in commodity prices,
ranging from informal graphical inspection of the data, combined with a
good knowledge of economic history and the peculiarities of the metals
markets being studied, to rigorous statistical decomposition techniques.
Good examples of the former approach include Maxwell (1999); Heap (2005)
and (2007); Radetzki (2006); and Tilton (2006). Examples of times series
econometrics approaches include Cuddington and Urzúa (1989); Deaton and
Miller (1995); Cashin and McDermott (2002); Cuddington, Ludema, and
Jayasuriya (2007); and Gilbert (2007). A number of authors have analyzed
the movement of metal prices over the business cycle as well as co-movements
among commodity prices (see Labys, Achouch, and Terraza, 1999;
McDermott, Cashin, and Scott, 1999; and Pindyck and Rotemberg, 1990).
Lower frequency cycles in metals prices, in contrast, have received scant
attention.

Who cares about possible super cycles in metals prices? Although
academic economists have a longstanding interest in studying trends and
cycles, especially at business cycle frequencies, they are generally very
skeptical about the presence of long cycles, such as Kuznets or Kondratiev
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cycles. Many have argued that ‘‘it amounts to seeing patterns in a mass of
statistics that aren’t really there.’’5 Kuznets cycles, for example, have been
critiqued by Adelman (1965); Howrey (1968); and, more recently, Cogley and
Nason (1995). Nelson and Kang (1981) highlight the ‘‘spurious periodicity’’
that can be introduced by inappropriate de-trending techniques, arguing that
long cycles may be a statistical artifact.

In spite of this longstanding skepticism of long cycles, there have been a
number of recent efforts by distinguished economists to study them. See
Blanchard (1997); Solow (2000); Comin and Gertler (2006); and Evans,
Honkapohja, and Romer (1998), all of whom theorize about and/or
empirically search for growth cycles in macroeconomic data. Comin and
Gertler (2006), for example, use BP techniques similar to those used here to
extract medium term cycles—which they define as cycles with periods of up to
50 years—from common macroeconomic series. They then go on to develop
a real business cycle model to explain these medium-term cycles, as well as
their interaction with conventional business cycles (with periods between two
and eight years).

The study of super cycles in metals prices is important for numerous
industries and governments. The investment community is touting the virtues
of ‘‘commodities as an asset class’’ that can produce large diversification
gains when added to portfolios with stocks and bonds—much the way
international investments were promoted 10 to 20 years earlier (see Gorton
and Rouwenhorst, 2004). The number of commodity-based mutual funds,
hedge funds and exchange-traded funds has grown rapidly in response to
investor appetite for such investments. M&A activity in the mining sector has
proceeded at a torrid pace in the last several years.

Mining industry capital investments have long gestation periods, so the
prospects of an emerging metals super cycle has important implications for
profitable capacity expansion by both private and government-owned mining
companies.6 Regarding the long gestation periods for mining investments, the
observations of Davis and Samis (2006, p. 274) are interesting: ‘‘[E]xplo-
ration investment is unlike most other investment activities due to the long
time frame between the expenditure of capital and the realization of revenues.
An analysis of 54 major base- and precious-metal deposits around the Pacific
rim by Sillitoe (1995) reveals that the time from initial exploration spending
to the discovery drill hole averaged 14 years for base metal deposits and 22
years for gold deposits. There is then an average of a further 13.5 years to
first production for base metal deposits and seven years to first production
for gold deposits. That is, where exploration is successful there is an average
of 27.5 years from initial spending to cash flow generation for base metal
deposits. The average at gold deposits is 29 years.’’ Of course, some mining

5See en.wikipedia.org/wiki/Kondratiev_wave.
6See Radetzki (2008, Chapter 9) on the importance of the latter in the mineral and energy

sectors.
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investments will come on stream faster, to the extent that they expand
existing operations or undertake ‘‘green field’’ exploitation of known, but as
yet undeveloped, mineral reserves.

Many governments rely heavily on resource revenues either from their
direct ownership of resource extraction companies or the tax revenues and
royalties obtained from private firms operating within their borders.
Therefore understanding super cycles is of great importance to metal
exporting countries whose fiscal revenues have been surging in recent years.
Commodity export booms have not always been well managed by exporting
countries in the past.

It is conventional wisdom in the metals industry that short-run price
elasticities of demand and supply are both low, with the latter reflecting
short-run capacity constraints in the mining and processing (smelting,
refining, and treatment) sectors. The long-run price elasticity of supply, on
the other hand, is thought to be much higher. For example, Tilton and Lagos
(2007) argue that ‘‘the long-run supply curve for most metals rises at first
(reflecting the dwindling number of exceptional deposits with unusually low
costs), but then levels off and becomes relatively flatyif the relatively flat
portion of the supply curve covers the relevant range of future global
demand, which seems likely, whether it is nearly or completely horizontal
matters little. In either case, demand has little influence on long-run prices.’’
Note that with this view regarding long-run supply responses, metals prices
should not exhibit super cycles if the metals industry moves to the ‘‘long run’’
reasonably quickly. (Alternatively, one might argue that super-cycle demand
expansions temporarily drive up factor input costs in the mining sector. This
temporarily shifts the (relatively flat) long-run supply curve upward during
super cycles, and down thereafter.)

So how long does it take to get to the long run? In order for prolonged
demand expansion to have a super-cycle effect on prices—where they are
above their long-run trend for 10 to 35 years—one must argue that capacity
constraints and/or the sharp run up in mining input costs (super truck tires,
energy inputs, mining engineer services, permitting costs, etc.) prevail for a
decade or more. Alternatively, if bulk shipping and port facilities are
stretched to the limit, as they have been in recent years, sharp rises in
transportation costs could also put sustained upper pressure on metals prices
until shipping and port capacity constraints are alleviated.

World Bank and Wall Street analysts both conjecture that supply
responses in the current super cycle will be much different than in prior
cycles. Underinvestment in the mining sector over the past decade, due to
sustained low metals prices implies that there are very few large capacity-
enhancing projects in the pipeline. The result will be longer periods
to bring new capacity online. Environmental permitting and sustainability
issues are adding to this lag time. In addition, declining ore grade is
necessitating a return to deep underground mining, with the concomitant
loss of scale economies from open-pit mines. Currently, the lack of skilled
labor is also an acute problem for the mining sector. Contract negotiations
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have led to strikes in various countries, as mine workers have fought for their
‘‘fair share’’ of the windfall profits resulting from surging metals prices.

Clearly, it would be desirable to have a ‘‘slick structural model,’’
as one commentator observed, to explain the underlying causes of super
cycles and their likely persistence for individual metals, not to mention co-
movement among them. We hope that the documentation of super-cycle facts
in this paper will lead to the development of such models.

II. Super Cycles and the BP Filter

This paper applies recent statistical decomposition or filtering methods to the
problem of identifying super cycles. Using this BP filter approach, economic
time series can be represented as a combination of cyclical components of
various periodicities or frequencies. As Christiano and Fitzgerald (2003, p. 1)
argue:

The theory of the spectral analysis of time series provides a rigorous
foundation for the notion that there are different frequency components
of the data. An advantage of this theory, relative to other perspectives on
decomposing time series, is that it does not require a commitment to any
particular statistical model of the data. Instead it relies on the Spectral
Representation Theorem, according to which any time series within a
broad class can be decomposed into different frequency components. The
theory also supplies a tool for extracting those components. That tool is
the ideal band pass filter.

Unlike univariate models that assume deterministic or stochastic trends
that are constant over time (with the possible exception of detected break
points), the trend-cycle decomposition or filtering methods used in this
paper allow for gradual change in long-term trends, as well as cycles of
different frequencies or periodicities.7 Filtering techniques to isolate
particular frequencies in an economic time series have been primarily
developed in the context of business cycle research in macroeconomics. The
Hodrick-Prescott (HP) filter is the most popular, but more flexible
alternatives are now available. Baxter and King (1999) argue that it is
difficult to know how to choose the smoothness parameter l in the HP
filter when studying cycles of different periodicities. As an alternative,
they develop and recommend the use of BP filters. These filters are designed
to extract stochastic cyclical components with a specified range of
periodicities from individual time series.8 For example, Baxter and King
show that if a BP(6, 32) filter is applied to a series Y of quarterly data, the

7Recall that periodicity and frequency in a cycle are inversely related. The period of the
cycle is its duration from one trough, through the expansion and contraction phase, to the
beginning of the next trough. The frequency is the number of cycles per unit of time (in days,
month, years, etc., depending on the frequency with which the data are measured).

8These techniques attempt to isolate stochastic rather than deterministic cycles in the data;
they do not amount to fitting the best possible regular sine wave to the data series.
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result is a stationary series with cyclical components with periods between 6
and 32 quarters. This would imply upward expansion phases of one-half
these amounts—3 to 16 quarters—if the upswings and downturns are of
equal duration (which they need not be). Baxter and King (1999)
argue convincingly that when applied to quarterly data, the BP(6, 32) filter
yields a filtered series isolating primarily business-cycle frequency fluctua-
tions. Both lower frequency cycles (and trends) and higher frequency
components (for example, seasonality and noise) are filtered out. Only
fluctuations within the band of 6 to 32 quarters are retained when an ‘‘ideal’’
filter is applied.

The ‘‘ideal’’ BP filter, which isolates only specified frequencies, uses an
infinite number of leads and lags when calculating the filter weights from
the underlying spectral theory. Of course, a finite number of leads and
lags must be used in practice; so a truncation decision must be made. Using
a larger number of leads and lags allows for more precise results, but
renders unusable more observations at the beginning and the end of the
sample. Baxter and King stress that a filter must be symmetric in terms of the
number of leads and lags to avoid causing phase shift in the cycles in filtered
series. Baxter and King and Christiano and Fitzgerald (2003) develop
alternative finite sample approximations to the ideal symmetric filter.
Christiano and Fitzgerald also derive asymmetric filters, which have the
advantage that they allow us to compute cyclical components for all
observations at the beginning and end of the data span. The cost, as
Christiano and Fitzgerald show, is very minor phase shifting, at least in their
applications.

Although Christiano and Fitzgerald (like HP and Baxter and King) are
interested in business-cycle analysis, they also provide a couple of interesting
macroeconomic applications of their symmetric and asymmetric filters for
extracting lower frequency components of economic time series. The first
involves an analysis of the Phillips curve relationship between unemployment
and inflation in the short run vs. the long run (that is, the high- vs. low-
frequency components). The second application examines the correlations
between the low-frequency components of monetary growth and inflation.
Our paper is the first to apply the BP filters to natural resource issues,
including metal markets.

BP filters are well suited for our objective of attempting to measure
super cycles in metals prices. One can define the range of cyclical periodicities
that constitute ‘‘super cycles,’’ and then use the BP filter to extract those
cyclical components. Given current interest in whether a new super
cycle is emerging in the final years of our data sample, the asymmetric
Christiano and Fitzgerald BP filter (ACF) is especially useful because it
allows one to calculate super-cycle components at the end of our data
sample.

We employ the ACF BP filters to decompose the natural logarithms of
real metal prices into three components: the long-term trend (LP_T), the
super-cycle component (LP_SC), and other shorter cyclical components
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(LP_O).9 By construction, there three components sum to the price series
itself:

LPt � LP Tt þ LP SCt þ LP Ot:

One must first decide what cycle periods encompass super cycles. Heap’s
(2005, 2007) discussion implies that super cycles have upswings that last from
10 to 35 years, implying that the period of super cycles is roughly twice that
amount.10 Thus, we apply the BP(20, 70) filter to each price series to extract
its super-cycle component:

LP SC � LP BPð20; 70Þ:
With this definition of the super cycle, it is natural to define the long-run

trend as all cyclical components with periods in excess of 70 years:

LP T � LP BPð70;1Þ:
As mentioned above, this approach does not assume the trend is constant

over the entire 150 years span of our data set. Rather the trend can evolve
slowly over time.

Having identified the long-term trend and the super cycle, what remains
are the shorter cyclical components, which therefore include cycles with
periods from 2 (the minimum measurable period) through 20 years:

LP O � LP BPð2; 20Þ:
It will be convenient in the graphical analysis below to examine the

‘‘nontrend’’ component of prices LP_BP(2, 70), which is the total deviation
from the long-term trend.11 That is, it is the sum of other shorter cycles plus
the super cycle:

LP NT � LP SC þ LP O:

Equivalently, in BP filter notation:

LP BPð2; 70Þ � LP BPð2; 20Þ þ LP BPð20; 70Þ:

9Although it is straightforward to decompose our ‘‘other shorter cycles’’ into business
cycles (2–8 years) and, say, intermediate cycles (8–20 years), this is not necessary for the study
of super cycles, especially given that the various cycles are roughly uncorrelated with each
other. See Appendix IV for details.

10We initially experimented with three different band-pass specifications for defining
super cycles: BP(20,70), BP(20,50), and BP(20,70). These band-pass windows seem roughly
consistent with the duration of super-cycle expansions discussed in Heap (2005, 2007). After
some experimentation, we chose BP(20,70) as a reasonable characterization of what Heap had
in mind. Appendix II shows how the different definitions of super cycle periodicity affect the
characterization of the super cycle in the case of copper.

11Note that the BP(2,70 and BP(70,N) are complements; that is, their sum equals the
actual price series.
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III. Empirical Results

Our long-span annual data series on the six LME-traded nonferrous metals
from Heap (2005) go back, in some cases, as far as 1850.12 Real prices are
computed using the U.S. CPI (2006¼ 100) as the deflator.13 The ACF filter is
applied to the natural logarithm of each real metal price to extract the long-
term trend, nontrend and super-cycle components, as defined above.14 The
resulting decompositions are shown graphically below. The following
questions are addressed:

� Do the metals prices exhibit any long-term upward or downward trends?
Or are they more or less flat, which would be the case if Ongoing
depletion of mineral resources was being more or less offset by
technological innovations that either reduce the long-run demand for
metals and/or turn resources into (economically viable) reserves?

� Is there evidence of a strong super-cycle component for each series? Does
its timing more or less match the super-cycle periods identified by Heap:
(1) the late 1800s through the early 1900s, (2) the post-WWII period
through the early 1970s, and (3) the post-2000 episode, which is still
ongoing?

� Are the super-cycle components in the various metals highly correlated,
as would be expected if the super cycle is demand driven? That is, is there
strong co-movement?

� After accounting for the long-term trends and super cycles, how
pronounced are the shorter cycles? Do they indicate considerable price
risk at the business and intermediate cycle frequencies that would be
relevant for firms undertaking capital investment decisions?

As an illustration, consider the application of the ACF BP filter to the real
copper price series (LRP_CU, where R in the series name indicates ‘‘real’’).
The top portion of Figure 1 shows the log of the real copper price series, with
the long-term trend superimposed. Note that real copper prices trended
downward from 1850 through to the mid-1920s, but remained relatively flat
thereafter. It is difficult to argue on the basis of this long-run trend in copper
prices that increasing resource scarcity is a dominant concern.

The nontrend component LRP_CU_NT, which is the difference between
the actual series LRP_CU and the long-run trend LRP_CU_T, is shown in
the lower panel of Figure 1. The scaling on the left is in logarithms, so a value

12Interestingly, the first version of our paper considered only five of the six LME base
metals. Tin was overlooked. The later inclusion of tin in the super-cycle dating analysis at the
end of the paper had remarkably little effect on our conclusions. Thus, our results are robust
in that sense, at least.

13Appendix III addresses the choice of deflator.
14Tilton (2006) raises the interesting question: when using the ACF filter, how much

recharacterization of super cycles and other shorter cycles will occur as more data come in
over time? We hope to address this issue in our future research on super cycles.
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of 0.50 is a 50 percent deviation from the long-term trend. Thus, the cyclical
fluctuations from the long-term trend are huge. Recall that a portion of these
fluctuations is the super cycle, while the remainder is other shorter cycles. The
super-cycle component LRP_CU_SC is superimposed on the lower panel.
The timing of the super-cycle expansions for copper matches up quite well
with the dating highlighted in Heap’s analysis, although the BP filter analysis
dates the beginning of the second super cycle earlier (that is, the mid-1930s
rather than post-WWII).15

Figure 1. Real Copper Price Components
(Log scaling)
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Note: This figure shows the decomposition of the log of the real price of copper into its various
components using the asymmetric Christiano and Fitzgerald (2003) band-pass filter (denoted BP(..)
here.). The long-run trend is defined as the original series minus all cyclical components with periods
between 2 and 70 years, as extracted by the BP(2, 70) filter. The (total) nontrend component is just
the series that passes through the BP(2, 70) filter, so the trend and nontrend components are
complements. The super-cycle component is defined as the cyclical components with periods
between 20 and 70 years and is extracted using the BP(20, 70) filter. Note that the super-cycle
component is a portion of the total nontrend component, the remainder being cycles with periods
between 2 and 20 years. That is, BP(2, 70)�BP(2, 20)þBP(20, 70). Both the left- and right-hand
axis scalings are in natural logs.

15It is interesting to note that the Great Depression actually includes two business cycles
according to the NBER dating, with the deep contraction of 1929 being interrupted by a
50-month expansion between March 1933 and May 1937. See www.nber.org/cycles.
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The extent to which the super-cycle component differs from the total
nontrend component in the lower panel reflects the importance of other
shorter cycles (such as business and intermediate term cycles). As the lower
panel shows, these shorter cycles are substantial. Even if one has confidence
about the long-term trend and the super cycle in copper prices, the shorter
cycles imply large price risks for those in the industry making long-run
investment decisions.

Analogous decompositions for real prices of aluminum (AL), lead (PB),
nickel (NI), tin (SN), and zinc (ZN) are shown in Figure 2. Note that the time
span covered by the four series differs due to data availability. There is
considerable variation in the long-term trends, with aluminum falling steadily
over time but nickel falling sharply through the mid-1920s before easing
upward thereafter.16 Like copper, the long-run trend for zinc was relatively
flat for most of the post-1920 period, although it seems to have drifted higher
in the last 10–15 years of our data sample. Comparing the nontrend
component in the lower panels to the superimposed super cycle, it is clear
that all price series reflect large cyclical fluctuations above and beyond what
is captured by the super cycle.

As the date span differs for the various metal price series shown in
Figure 2, it is useful to collect all of the super cycles in Figure 3. There
appears to be a general tendency for the super-cycle components to be in a
trough in the late 1800s and to rise through the mid-1920s. During the post-
WWII period up to about 1975, many but not all of the metal prices are in a
strong super-cycle expansion phase. Finally, all of the metals seem to be
moving out of a super-cycle trough in the 1990s into a super-cycle expansion,
albeit with differences in timing across metals.

One can summarize the graphical impression that the super cycles of the
six metals are highly correlated more formally by examining their correlation
matrix and by carrying out principal component analysis. When calculating
the correlation matrix among the super-cycle components of the six metal
prices, there are a couple of options. One might consider the balanced sample
where one includes only the years where all six of the series are available
(1909–2006). Alternatively, one could calculate each cell in the correlation
matrix using the maximum data span for each pair-wise calculation. The
principal component analysis, on the other hand, requires balanced sample.

The correlation results are very similar, so just the balanced sample
results (1909–2006) are reported in Table 1. Most of the correlations are
highly significant, with the aluminum-copper, aluminum-zinc, and lead-
nickel correlations being the exceptions.17 These correlograms show very
little phase differences among the super cycles for the LME6 in that

16Our decomposition produces conclusions regarding the nickel price trend that differ
from Maxwell (1999, p. 4): ‘‘Over the last fifty years as well there has been a downward trend
in nickel prices, though price movements in the nickel have been volatile in the short run.’’

17The interested reader can reference the working paper version of the paper at
www.mines.edu/~jcudding/.
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Figure 2. (a) Aluminum and Lead Real Price Components, (b) Nickel and Tin Real
Price Components, (c) Real Zinc Price Components

(Log scaling)

-0.8

-0.4

0.0

0.4

0.8

1.2

-1

0

1

2

3

Real price Trend
Nontrend Super cycle

Real Aluminum Price Components

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

1875 1900 1925 1950 1975 2000

Real price Trend
Nontrend Super cycle 

Nontrend Super cycle

1925 1950 1975 2000

-1.2

-0.8

-0.4

0.0

0.4

0.8

Real price Trend

Real Lead Price Components

-0.8

-0.4

0.0

0.4

0.8

-1.0

-0.5

0.0

0.5

1.0

-4

-3

-2

-1

0

1850 1875 1900 1925 1950 1975 2000

Real price Trend
Nontrend Super cycle

Real Nickel Price Components

Real Zinc Price Components

-0.8

-0.4

0.0

0.4

0.8

1.2

1.0

1.5

2.0

2.5

3.0

3.5

1900 1925 1950 1975 2000

1900 1925 1950 1975 2000

Real price Trend
Nontrend Super cycle

Real Tin Price Components

See figure note on following page -

John T. Cuddington and Daniel Jerrett

552



contemporaneous correlations are generally higher than correlations at
various leads or lags.

Principal component analysis can be used to assess the importance of
unobservable common factors affecting the super-cycle components of the six

Figure 3. Real Super-Cycle Components for LME6
(Log scaling)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

1900 1925 1950 1975 2000

Aluminum Copper Lead

Nickel Tin Zinc

Note: This figure contains super-cycle components for all six LME metals: aluminum (Al),
copper (Cu), lead (Pb), nickel (Ni), tin (Sn), and zinc (Zn). In each case, the super-cycle component
is obtained by applying the asymmetric Christiano-Fitzgerald BP filter to extract periods between 20
and 70 years from the price series. The left axis is in natural logs and can be interpreted as
percentage deviations from the long-term trend.

b

Figure 2. Concluded

Note: This figure shows the decompositions of the log of the real prices of the remaining five
LME metals into its various components using the asymmetric Christiano and Fitzgerald (2003) BP
filter (denoted BP(..) here.). In each case, the long-run trend is defined as the original series minus all
cyclical components with periods between two and 70 years, as extracted by the BP(2, 70) filter. The
(total) nontrend component is just the series that passes through the BP(2, 70) filter, so the trend and
nontrend components are complements. The super-cycle component is defined as the cyclical
components with periods between 20 and 70 years and is extracted using the BP(20, 70) filter. Note
that the super-cycle component is a portion of the total nontrend component, the remainder being
cycles with periods between 2 and 20 years. That is, BP(2, 70)�BP(2, 20)þBP(20, 70). Both the left-
and right-hand axis scaling are in natural logs.
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metal prices by decomposing their variance-covariance matrix. If all six
metals are included, the principal components can only be calculated over the
balanced sample from 1909 through 2006. The results are summarized in
Table 2.

It is striking that the first principal component (PC1) explains 66 percent
of the joint co-variation in the six metal super-cycle components. All six
metals have a positive factor loading on the PC1. It seems natural, therefore,
to interpret the first principal component obtained from the covariance
matrix decomposition of the six metals’ super cycles as a summary measure
of the super cycle in metals prices. PC1 is shown along with the individual
metal super-cycle components in Figure 4. The principal component analysis
substantiates the claim that there is a strong positive correlation in the super
cycles in the six metal prices.

In an effort to define the super cycle further back in the data sample, the
above analysis was repeated using only the three metals whose prices are
available from 1875: copper, nickel, and zinc. As Tables 3 and 4 show, the
first principal component for these three metals (PC1_3) now explains 78
percent of their joint variation. Figure 5 shows that the timing of the super
cycle based on PC1_3 matches well (over their common sample) that
obtained from the six-metal analysis (denoted PC1_6 in Figure 5).

Using the lower panel of Figure 5, one can date the super cycles (using
PC1_6 when both PC1_3 and PC1_6 are available). The analysis suggests
that the first super-cycle expansion lasted roughly 21 years from 1890
through 1911. The second super-cycle expansion ran from 1930 to 1951, then
after a 11-year pause gave rise to a third super cycle from 1962 through 1977
(15 years). Heap’s discussion, in contrast, characterizes the post-WWII
period through the early 1970s as a single, very long super cycle. The final
super cycle began in 1999 and as of 2006 was not yet at the mid-point in its
expansion phase. Thus, if we are indeed in a super cycle and the duration of

Table 1. Correlations: Super-Cycle Components of Real Prices

Correlation Aluminum Copper Lead Nickel Tin Zinc

Aluminum 1.00

Copper 0.19 1.00

Lead �0.47* 0.56* 1.00

Nickel 0.80* 0.70* 0.03 1.00

Tin 0.45* 0.58* 0.31* 0.68* 1.00

Zinc 0.04 0.80* 0.62* 0.49* 0.74* 1.00

Note: Asymptotic standard errors=0.101. This table reports the contemporaneous
correlations for the super-cycle components of the six LME metal prices. In each case, the
super-cycle component is obtained by applying the asymmetric Christiano-Fitzgerald band-
pass filter to extract periods between 20 and 70 years from the price series. The balanced
sample 1909–2006 is used. Significance at the 95 percent level is indicated by asterisks, based on
the asymptotic standard errors.
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the past three super cycles are any guide, the current cycle may still have
some time to run. A cautionary note, however: as we have only identified
three past super cycles in the last 150 years or so, it is very difficult to predict
their expected duration with any precision.

IV. Concluding Remarks

The BP filtering technique used in this paper has found considerable evidence
of three past super cycles in real metal prices, defined here as cyclical
components with expansion phases from 10 to 35 years. The amplitude of the
super cycles is large with variations of 20 to 40 percent above and below the
long-run trends. Both simple correlations and principal component analysis
confirm that the super cycles for six LME metals are highly correlated. The
statistical evidence from the BP filter analysis is consistent with the claim by
investment industry analysts and industry experts that metal prices entered
the early phase of a super cycle at the beginning of the 21st century.

Given our empirical support for the presence of super cycles, the task for
future research is to develop formal structural models to explain the sources

Table 2. Principal Components: Super-Cycle Components for Real Metal Prices

Number Value Difference Proportion Cumulative Value Cumulative Proportion

1 0.15 0.11 0.66 0.15 0.66

2 0.05 0.02 0.20 0.20 0.86

3 0.02 0.02 0.10 0.22 0.96

4 0.01 0.00 0.03 0.23 0.98

5 0.00 0.00 0.10 0.23 0.99

6 0.00 0.00 0.00 0.23 1.00

Variable PC1 PC2

Aluminum 0.12 0.55

Copper 0.54 �0.20
Lead 0.19 �0.52
Nickel 0.39 0.48

Tin 0.52 0.22

Zinc 0.49 �0.33

Note: Eigen values: sum=0.23; average=0.04. This table gives results for the principal
component analysis for the super-cycle components of the six metal prices over the balanced
sample 1909–2006. In each case, the super-cycle component is obtained by applying the
asymmetric Christiano-Fitzgerald band-pass filter to extract periods between 20 and 70 years
from the price series. According to the top panel in the table, the first principal component PC1
explains 66 percent of the variation in the co-movement of the six metals’ super cycles. From
the lower panel, one can see that four of the six metals have rather high factor loadings on PC1.
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or causes of such long cycles. Super-cycle proponents argue that the current
super cycle is being caused primarily by Chinese industrialization and
urbanization, whereas earlier super cycles were driven by similar
developments in the United States, Europe, and Japan. They argue that
this development phase is particularly metals intensive. As long as the
resulting outward shifts in the demand curves for metals moves metals
producers along upward sloping supply curves, higher prices will clearly
accompany the sustained surge in metals demand.

Figure 4. Real Super-Cycle Components and First Principal Components
(Log scaling)
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Note: This figure reproduces the super-cycle components for the six LME metal prices along
with their first principal component from the principal component analysis reported in Table 2. In
each case, the super-cycle component is obtained by applying the asymmetric Christiano-Fitzgerald
BP filter to extract periods between 20 and 70 years from the price series. It can be seen that the first
principal component is highly correlated with the super-cycle components from the metals. Thus, it
can be interpreted as a summary measure of the super cycle for these metal prices taken as a group.
Left axis is in natural logs and can be interpreted as percentage deviations from the long-term trend.
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The sustained demand expansion hypothesis for the super cycle may not
the only one consistent with our results of strong co-movements in real
metals prices at the super-cycle frequencies. As mineral economist John
Tilton observes, ‘‘Another possible explanation, which I prefer given my
perceptions of long-run metal supply and demand, is that super cycles are
driven by supply: real prices rise when increasing costs due to depletion are
greater than falling costs due to new technology, and vice versa. The
synchronization of the super cycles for various metals may arise if most new
mining technologies (for example, large trucks, bigger shovels, better
explosives) reduce the mining costs across a number of metals at more or
less the same time.’’18 To the extent that technological improvements are
metal specific (for example, the solvent extraction electrowinning (SX-EW)
process for copper), however, one would not expect to see high correlation in

Table 3. Correlations: Super-Cycle Components of Real Prices

Correlation Copper Nickel Zinc

Copper 1.00

Nickel 0.65* 1.00

Zinc 0.81* 0.47* 1.00

Note: Asymptotic standard errors=0.087. This table reports the contemporaneous
correlations for the super-cycle components for the three metal prices whose common data
sample extends from 1875 to 2006. In each case, the super-cycle component is obtained by
applying the asymmetric Christiano-Fitzgerald band-pass filter to extract periods between 20
and 70 years from the price series. Significance at the 95 percent level is indicated by asterisks,
based on the asymptotic standard errors.

Table 4. Principal Component Analysis for Copper, Nickel, and Zinc

Principal Component

Number Value Difference Proportion

Cumulative

Value

Cumulative

Proportion

PC1 0.09 0.07 0.78 0.09 0.78

PC2 0.02 0.01 0.16 0.11 0.94

PC3 0.01 0.00 0.06 0.12 1.00

Note: Eigen values: sum=0.12; average=0.04. This table contains the principal
component analysis for the super cycles in the three longest price series. In each case, the
super-cycle component is obtained by applying the asymmetric Christiano-Fitzgerald band-
pass filter to extract periods between 20 and 70 years from the price series. It is evident that
copper, nickel, and zinc have very strong co-movement. The first principal component (PC1)
explains 78 percent of their joint variation.

18Private correspondence with the authors during the fall of 2007 and early winter of
2008.
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super-cycle components across metals. There is also the issue of how long-
lasting the impacts of technological changes on metals prices are. Perhaps
they are better thought of as inducing intermediate cycles in the 8 to 20-year
range, rather than super cycles, although the Comin-Gertler model suggests
that endogenous technological innovation waves can produce much long-
term cycles in their real business and medium cycle model.

The underlying causes of super cycles cannot be resolved here. Given the
current interest in metal price super cycles, however, structural modeling
efforts to shed light on the relative importance of various supply and
demand-side causes is clearly high on the agenda for future research.

APPENDIX I. END USE STATISTICS FOR THE LME METALS

Table A1 shows current global end use consumption of each LME metal used in the

analysis in the paper. Although each metal has specific industry end-uses, many of the

metals’ consumption usages are related in one way or another to construction and

transportation activities. End use has, of course, changed over time. For example, tin has

gradually replaced lead in soldering applications.

Figure 5. Comparing LME3 and LME6
(Log scaling)
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Note: The left panel displays the super-cycle components for the three-metal group along with
the first principal component from the principal component analysis summarized in Table 4. The
right panel puts the first principal components from the three and six metal analyses on the same
figure to see if the characterization of the super cycles is similar for the six LME metals taken as a
group and the subset of three where the data extend further back in time. The segmentation and the
dating above each segmented portion indicate the expansion phase of each super cycle. The six-
metal group is used for dating when data for all six metals are available.
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Table A1. End Use Consumption for LME6 Metals

Percent

Aluminum end uses

Transportation 26

Packaging 22

Construction 22

Machinery 8

Electrical 8

Consumer durables 7

Other 7

Total 100

Copper end uses

Building 48

Electrical 17

General engineering 16

Light engineering 8

Transportation 7

Other 4

Total 100

Lead end uses

Batteries 71

Pigments 12

Rolled products 7

Shot/Ammunition 6

Cable sheathing 3

Alloys 1

Total 100

Nickel end uses

Stainless steel 65

Nonferrous alloys 12

Other alloys 10

Electroplating 8

Other inc. chemicals 5

Total 100

Tin end uses

Solders 32

Tin plate 27

Other 17

Alloy 14

PC stabilizers 6

Tinning 4

Total 100

Zinc end uses

Galvanizing 47

Brass and bronze 19

Zinc alloying 14

Chemicals 9
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APPENDIX II. ELABORATION ON CHOICE OF CUTOFF POINTS FOR VARIOUS
CYCLICAL COMPONENTS OBTAINED FROM THE BP FILTER

The BP filter methodology has the advantage that it is possible to decompose a time series

into a number of mutually exclusive and exhaustive components. For our purpose, the

natural choice revolves around the definition of the super cycle. Initially, we

experimented with super-cycle definitions of 20 to 50 years, 30 to 70 years and 20 to

70 years, as these alternatives seemed broadly consistent with the description of super

cycles in Heap (2005, 2007).

Figure A1 shows how the three definitions of the super cycle differ when applied to the

natural logarithm of the real (CPI-deflated) price of copper.

We ultimately settled on the 20 to 70-year definition of super cycles. With this

definition, it makes sense to define the trend to include all cycles with periods above 70

years (denoted LP(70,N)). We define all cycles with periods between 2 (the minimum

detectible cycle period) and 20 years as ‘‘other shorter cycles,’’ denoted LP(2, 20). Thus,

the log of each real metal price is decomposed into the three components described

in the text.

If one is also interested in business-cycle movements in metals prices using the

traditional definition of cycles in the 2- to 8-year range, it is straightforward to

decompose our shorter cycles into two separate components, business cycles LP(2, 8) and,

say, intermediate cycles LP(8, 20):

LP ¼ LPð2; 8Þ þ LPð8; 20Þ þ LPð20; 70Þ þ LPð70;1Þ:
Comin and Gertler (2006) take a similar approach, decomposing various quarterly

macroseries into a business cycle component, a medium-term component, and a trend,

defined as follows:

LY ¼ LYð2; 32Þ þ LYð32; 200Þ þ LYð200;1Þ:
Their medium-term business cycles are defined as the sum of the business cycle (2 to 32

quarters) and medium-term components (32 to 200 quarters).19 The Comin-Gertler

choice of cut-off periods at 200 quarters (that is, 50 years) is somewhat arbitrary, as is our

choice of the 20- to 70-year BP window in defining super cycles.

Table A1 (concluded )

Percent

Zinc semimanufacturing 8

Miscellaneous 3

Total 100

Source: London Metal Exchange (2008).

19Note that the Comin-Gertler definition of business cycle is atypical in that it includes
shorter seasonal and irregular components (with periods from 2 to 8 quarters), rather just the
cycles with periods from 8 to 32 quarters as in Baxter and King (1999).
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APPENDIX III. CHOICE OF DEFLATORS: CPI VS. PPI

Discussions of real commodity price behavior invariably raise the question of the

‘‘appropriate’’ deflator (CPI, PPI, MUV, U.S.-based or other). No deflator can make the

claim that it is universally ‘‘most relevant.’’ Ultimately, this depends on what relative

prices one is most interested in for the questions at hand. For example, suppose a U.S.

financial investor is considering investments in commodities (or industrial metals, or

precious metals) as an asset class. Presumably she wants to know how their prices move

over time relative to the CPI. Percentage changes in the metals prices deflated by the CPI

would be the relevant ‘‘real’’ return. Gorton and Rouwenhorst (2004), for example, use

the U.S. CPI as their deflator in their analysis of commodities as an asset class.

On the other hand, if one is looking for the price of metal inputs relative to output

prices, then one would want to select the particular outputs of interest. Here the PPI for

final goods (or particular Subcategories of interest) might be viewed as more relevant,

because the PPI includes capital as well as consumption goods and excludes distribution

costs and indirect taxes.20 For a mining company that produces copper using energy

Figure A1. Real Copper Super-Cycle Components. Varying Filter Windows
(Deflated by CPI)
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Note: This figure graphs three possible window specifications for the asymmetric Christiano-
Fitzgerald BP filter (BP) used to define super cycles the six LME metals in the paper. The figure
shows how the definition of the super cycle for the natural logarithm of the CPI-deflated price of
copper is affected by extracting cycles between 20 and 50 years vs. 30 and 70 years, vs. 20 and 70
years. Ultimately, we opted to use the BP(20–70) filter, as it produced super-cycle timing roughly
consistent with that proposed by Heap (2005).

20The U.S. Bureau of Labor Statistics website has a nice discussion of the differences in
coverage between PPI and CPI: http://www.bls.gov/ppi/ppicpippi.htm.
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inputs, the relative price of copper in terms of an energy input price index may be

especially important to the overall profitability of the operation.

The analysis in the text uses the U.S. CPI from Heap (2005) to deflate nominal metal

prices. To illustrate how the choice of deflator might affect our analysis, we consider the

alternative of using the U.S. PPI.21 Figure A2 shows the time plot of the CPI and PPI in

log scale (LCPI and LPPI respectively) in the upper panel and their respective super-cycle

components in the lower panel. Comparing the LCPI and LPPI series, it is clear that the

CPI has risen more rapidly over the last century and a half than the PPI. Therefore

the long-term trend in real commodity prices will be less positive or more negative when

the CPI is the chosen deflator. Figure A3 compares the super-cycle components of the

Figure A2. Comparing the U.S. CPI and PPI
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Note: Comparing the CPI and PPI series, it is clear that the CPI has risen more rapidly over the
last century and a half than the PPI. Therefore the long-term trend in real commodity prices will be
less positive or more negative when the CPI is the chosen deflator. Comparing the super-cycle
components of the two deflators, one finds that the PPI super cycle has higher amplitude and
generally leads the super-cycle component of the CPI, especially in the first half of the sample. In
each case, the super-cycle component was obtained by applying the asymmetric Christiano-
Fitzgerald BP filter to extract periods between 20 and 70 years from the price series.

21The long U.S. PPI series for the period 1833 through 2005 was kindly provided by Chris
Gilbert. We updated the series through 2006 using the PPI figures from the U.S. Bureau of
Labor Statistics (via the Haver USECON database).
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two deflators (LCPI_SC and LPPI_SC), one finds that the PPI super cycle has higher

amplitude and generally leads the super-cycle component of the CPI, especially in the first

half of the sample.22

The choice of deflator can have a potentially large impact on the characterization of

super cycles in real metals prices. The logarithm of the real price of copper used in the text

Figure A3. Comparison of Copper Super Cycle and Various Deflators
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Note: The three series in the upper portion of the figure show the super-cycle components for
the logarithm of the nominal prices of copper, the U.S. consumer price index and the U.S. producer
price index. The lower portion of this graph shows the resulting super cycles for the (log of the) real
copper price depending on which deflator is used. Subtracting the super cycle in the CPI from the
nominal copper price’s super cycle yields the super cycle for the CPI-deflated price of copper.
Analogously, subtracting the super cycle in the PPI from the nominal copper price’s super cycle
yields the super cycle for the PPI-deflated price of copper. Because the super-cycle component of the
PPI leads the CPI, especially during the early years of the sample, the use of the PPI rather than the
CPI as deflator would shift the copper super cycle forward in time. In particular, note how the first
super-cycle expansion in the later 1800s and early 1900s is shifted forward in time and is lower in
amplitude when the PPI is chosen as the deflator.

22An article on the BLS website contains a discussion of lead lag relationships between
the PPI and the CPI: http://www.bls.gov/opub/mlr/2002/11/art1full.pdf.
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is, of course, just the log of the nominal price minus the log of the CPI. Interestingly, this

identity continues to hold when examining super-cycle components (as the BP filter is a

linear operator):

LRP CU SC � LP CU SC � LCPI SC:
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